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Abstract: Through direct shear tests, this paper aimed to research the effect of fine marble aggregate
on the shear strength and fractal dimension of the interface between soil and concrete corroded by
sulfuric acid. More realistic concrete rough surfaces than the artificially roughened surfaces were
formed by immersing four concrete plates in plastic buckets filled with sulfuric acid for different
periods of time. The sand was adopted to imitate the soil. 3D laser scanner was employed to obtain
the digital shapes of concrete plates subjected to sulfuric acid, and the rough surfaces were evaluated
by fractal dimension. Large direct shear experiments were performed to obtain the curves of the
interface shear stress and shear displacement between sand and corroded concrete plate. The method
of data fitting was adopted to calculate the parameters of shear strength (i.e., friction angle and the
cohesive) and the parameters of the Clough–Duncan hyperbolic model. The results indicated that as
the corrosion days increased, the surface of the concrete plate became rougher, the surface fractal
dimensions of the concrete corroded by sulfuric acid became bigger, and the interface friction angle
became greater. The friction angle of the interface and the fractal dimensions of the surface of the
concrete plate containing crushed gravel and marble sand were smaller than that of the concrete plate
containing crushed gravel and river sand.

Keywords: direct shear test; sulfuric acid; fine marble aggregate; fractal dimension; 3D laser
scanning technique

1. Introduction

The research on the shear performance of interface between soil and structure has
long received significant attention due to its common existence in geotechnical engineering
including soil–pile foundation interaction, soil–retaining wall contact, soil–tunnel contact,
and so on [1–3]. The shear performance of interface between soil and structure could be
researched by performing in situ experiments and reduced model in the laboratory. The
reduced model experiments between soil–structure interface, including direct shear experi-
ments, simple shear experiments, and ring shear experiments [4–15], have the advantages
of repeatability and parameter controllability. Since the direct shear test method was simple
and the results were reasonable accurate, the direct shear test was usually selected to study
the performance of the interfaces between soil and structure [16–20]. Previous studies have
indicated that the shear strength of the soil–structure interface was influenced by the rough-
ness of the structure interface, normal stress, water content of the soil, soil type, relative
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density, and other factors [21]. Potyondy [21] noted that the roughness of the interface
was one of the major factors in determining soil–structure interface shear resistance as
early as 1961. Uesugi et al. [22] performed simple shear experiments to study the shear
performance of the steel–sand interface and they put forward the surface roughness as
a key factor affecting the interface shear mechanical property. In order to investigate the
soil–structure interface property at different roughnesses, three problems were required to
be considered: the method for producing the rough surface, the method for measuring the
rough surface, and the method for evaluating roughness.

First of all, regular, artificial rough surfaces were usually adopted by most of the re-
searchers to simulate the rough structure interface in engineering practice. Sharma et al. [23]
glued fine and medium sand on the smooth mild steel surface to produce two types of
rough surfaces. Taha et al. [24] obtained two different rough surfaces by using sand blasting
and disc grinding the concrete specimens. Qian et al. [25] employed three ribbed slabs
made of concrete with rib spacing of 125 mm, 170 mm, and 250 mm to imitate the influence
of ribs on the interfacial resistance between helical pile and soil. Kou et al. [26] adopted
three different numbers of grooved trenches (e.g., 0, 7, and 9 trenches) to achieve different
surface roughness; the cross-section of each trench was an isosceles triangle and these
grooves have cross-sections of isosceles triangles with the height of 1.0 mm and vertex
angle of 45◦. Zhao et al. [27,28], Zhang et al. [29], Li et al. [30], Su et al. [31], Hu et al. [5],
Chu et al. [32], and Wang et al. [33] employed concrete serration slabs or steel serration slabs
to simulate structural surfaces with different roughness. Chen et al. [34] adopted concrete
plates with different numbers of grooved trenches to obtain five different target roughness
values and these grooved trenches have semicircular cross-sections with a diameter of 5 cm.
Since most of the structure surfaces were generally random or highly irregular, the artificial
regular surfaces cannot reflect the real performance of a random and irregular interface in
a corrosive environment. In this paper, four concrete slabs which were soaked in plastic
buckets filled with sulfuric acid for four different periods of time were utilized to obtain
four various concrete surface morphologies.

Secondly, the Sand Patch Test was the simplest quantitative method due to its low
cost and convenient operation. However, the Sand Patch Test method was only applicable
to horizontal structure surfaces and the parameters were not sensitive to microscopic
texture characteristics [35]. Then, another method was to employ the Mechanical Stylus to
measure and evaluate the roughness of the surface in the laboratory. However, there were
some shortcomings in this approach. First, the size of the test specimen would affect the
measurement accuracy, and second, the surface of the test piece may be destroyed during
the testing process [36]. For the last few decades, due to its merits of high measurement
precision, good portability, nondestructive, and noncontact properties, the laser scanning
technology has been widely used in medical, aerospace, automotive, civil engineering,
historical architectural protection, and other fields [37,38]. In this study, 3D laser scanner
was adopted to obtain the digital models of concrete plates corroded by sulfuric acid.

Thirdly, the roughness evaluations in the early studies were qualitative, where sur-
faces were divided roughly into smooth and rough kinds [24,25]. The advantage of this
method was fast and simple, but the disadvantage of this approach was that the result
was subjective. In order to better investigate the effect of surface roughness on the shear
performance of the interface, it is necessary to quantitatively define the roughness based
on the surface profile. Many parameters have been proposed for evaluating the concrete
surface roughness. The parameter Ra, which was defined as the average deviation of a
surface profile relative to its average line, was widely used in surface roughness quantifi-
cation due to its simplicity [39]. Rmax [28–30] was proposed by Yoshimi and Kishida [40]
and its definition was the maximum vertical distance between the highest point and the
lowest point along the section line on a standard length, while Rn [5,31] was proposed
by Uesugi and Kishida [41] and was expressed as Rmax divided by the mean particle
diameter (D50). However, Rmax and Rn could not reflect the partial distribution and
local changes of the surface profile [42]. The application of fractal dimensions to the eval-
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uation of the rough surface became more and more popular [43–46] and several studies
concluded that the fractal dimension could be applied successfully in evaluating the resis-
tance of steel corrosion [47,48], pore evolution in concrete [49], and evolution of fracture
in rock surface [50,51]. The calculation of fractal dimension had nothing to do with the
sampling range and the resolution of roughness measuring tool [52]. In this study, the
fractal dimension was used to assess the roughness of the surface.

Concrete has become the most widely used material in the world [12–14,53–65]. Since
concrete is always alkaline, the service life of concrete structures would be shortened when
exposed to acidic conditions. Sulfuric acid is one of the most common and harmful acid en-
vironments encountered in engineering practice. Sulfuric acid could be produced by sulfur
compounds oxidation (e.g., pyrite [66], sulfur dioxide [67,68]) or bacterial activities [69,70].
In terms of the mix proportion of concrete, the fine material accounts for about 25% of the
total weight of concrete. The aggregate could be divided into calcareous aggregate and
siliceous aggregate according to their chemical composition. The calcareous aggregate is
mainly composed of calcium carbonate which is more susceptible to acid attack. However,
the siliceous aggregate id mainly composed of silicon dioxide which does not react well
with acids. The influence of aggregate chemical composition on concrete sulfuric acid
resistance was investigated by some researchers. Chang et al. [71] studied the sulfuric acid
resistance of different concrete mixtures containing calcareous limestone aggregates and
siliceous aggregates to a 1% sulfuric acid solution over 168 days. The results indicated
that mixtures prepared with calcareous limestone aggregates had a better performance in
the 1% sulfuric acid solution because only cement hydration products in silica aggregate
concrete can react with acid, whose neutralization ability during acid attack was quite
limited. However, in the calcareous limestone aggregates concrete, calcareous limestone
aggregates are 99.5% acid soluble, which means that calcareous limestone aggregates would
lower the concentration of the acid near the surface of the concrete and would lower the
deterioration rate. According to the report, the service life of the sewer pipes containing
limestone aggregates was 3–5 times bigger than that containing siliceous aggregates in
South Africa [71]. Belie et al. [72] carried out chemical and microbiological experiments to
assess the resistance of concrete containing slag cement, limestone aggregates, and siliceous
aggregates and pointed out that degradation is most affected by the type of aggregate.
Concrete containing siliceous aggregates presented a larger degradation depth than the
concrete containing limestone aggregates which could create a local buffer environment to
protect the cement slurry. Hughes et al. [73] compared the resistance to the sulfuric acid
attack of similar concretes containing either limestone or siliceous aggregate and found
that the concrete containing limestone aggregates presented a smoother surface with no
detritus and the concrete made with siliceous aggregates formed a very irregular surface
with considerable aggregate detritus. Xiao et al. [74] investigated the influence of sulfuric
acid erosion on the interface between concrete plates and sand, which were soaked in
sulfuric acid for four different periods of time. In their studies, the fine aggregate cast in
concrete plates was river sand, which belonged to siliceous aggregates. However, the effect
of sulfuric acid erosion on the interface between concrete plates and sand incorporating
fine marble aggregates is not clear yet.

In this paper, the rough surface of the concrete plate was formed by sulfuric acid
corrosion, and the theory of fractal geometry and laser scanning technique were separately
adopted to calculate roughness evaluation parameters and measure the rough surface. This
study aimed to perform the direct shear experiment to investigate the influence of fine
marble aggregate on the frictional behavior of soil–pile interfaces when the concrete was
under sulfuric acid environment, which had infrequently been reported in the past. The
results in the paper would become a reference for diagnosing, evaluating, and analyzing
the interface performance between soil and concrete materials corroded by sulfuric acid.
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2. Experiment Program
2.1. Large Direct Shear Experiment Equipment

The large direct shear equipment adopted in this study was designed and fabricated
in Tongji University (SJW-200) [18]. Figure 1 depicts a schematic diagram and photograph
of the large direct shear device. The traditional direct shear instrument has some disadvan-
tages, such as drainage not being able to be effectively controlled, the void water pressure
not being measureable, the shear plane being fixed, its area decreasing with the increase of
shear displacement, the distribution of shear force on the shear plane not being uniform,
and the middle being small and the edge large. However, since the direct shear test method
was simple and the results were reasonably accurate, the direct shear test was usually
selected to study the performance of the interfaces between soil and structure. This paper
selected dry sand as the soil sample, and the maximum displacement was only 5.83% of
the shear box length of 600 mm, and the area due to shear was relatively small.
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Figure 1. The large direct shear device in Tongji University (SJW-200).

The device was composed of three main components: measuring and controlling
component, a hydraulic servo component, and loading actuators in the loading component.
The major technical indicators were shown in Table 1. The inner sizes of the shear box at the
bottom is 600 mm × 400 mm × 100 mm as is the shear box at the top. During the shearing,
the shear box at the top which is full of sand is fixed, and the shear box at the bottom which
is filled up with concrete is able to move horizontally by a horizontal loading actuator
to simulate pile movement through the soil. In order to look into the shear deformation
of the soil layers, a window made of plexiglass was provided in the middle of the lower
and upper shear box. Hydraulic actuators were adopted to apply horizontal and vertical
displacement loads. Two load cells were used to measure the shear stress and vertical
stress during shearing. Two linear variable different transformers (LVDTs) were adopted to
monitor horizontal and vertical displacement. A computerized data logging system was
used to collect all recorded data at 0.4 seconds intervals.

Table 1. Major specialized indicators of the large direct shear experiment equipment.

Shear Box Net
Size/mm

Maximum Load/kN Maximum Displacement/mm
Shear

Rate/(mm/min)
Accuracy in

Measurement/%Normal
Direction

Tangential
Direction

Normal
Direction

Tangential
Direction

600 × 400 × 200 200 200 50 150 0.1–50 0.5
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2.2. Concrete Plate

In this study, normal Portland cement P·II 52.5 R was used; its 28-day compressive
strength was 55.3 Mpa, the crushed gravel had sizes of 5–25 mm, and its apparent density
was 2644 kg/m3. Cement and crushed gravel were supplied by Suzhou Sanhe Pipe Pile
Company of China. Marble sand, which was adopted as fine aggregates, was crushed into
particles by a crusher from a block of natural marble rock. The fineness modulus of marble
sand was 2.61 and the water absorption of marble sand was 1.79% and the apparent density
of marble sand was 2630 kg/m3. The water-to-cement ratio was set at 0.45 (by weight) and
water content per cubic meter of concrete was 205 kg, cement 456 kg, fine aggregate 522 kg,
and coarse aggregate 1162 kg. The structural material was concrete slab with thickness of
50 mm, width of 400 mm, and length of 600 mm. A total of four identical concrete slabs
were poured. Three concrete slabs were completely immersed in sulfuric acid solution after
28 days of curing, as shown in Figure 2. According to previous studies, the sulfuric acid
solution pH value in the plastic vessel was 0.95 [71,75]. The rough surfaces of concrete
slabs were generated by completely soaking for 0, 31, 93, or 154 days (the actual soaking
periods of time) in sulfuric acid solution with pH ≈ 0.95. A portable pH meter with an
accuracy of 0.01 was employed to measure the pH value of the solutions during 154 days of
the testing period. Concentrated sulfuric acid of 98% mass fraction was added every day to
maintain the pH value fluctuating within the set value 0.95. After the concentrated sulfuric
acid was added daily, the solution was stirred gently to lower differential concentrations
of the sulfuric acid in the solution container. The sulfuric acid solution was replaced once
a month.
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2.3. Soil Sample

Since the research objective of the paper was to explore the effect of the surface
roughness of the concrete pile formed by sulfuric acid on the interface behavior between
soil and corroded pile. For the purpose of eliminating the effect of soil samples variation on
the research of the structure–soil interface, this paper kept the soil samples unchanged and
the sand was selected as soil samples to perform the direct shear test because the nature of
sand soil is more uniform and stable. The sand was dried in the sun, such that the effect
of saturation degree was ignored. Figure 3 shows the distribution curve of the sand and
Table 2 shows the fundamental physical properties of the sand.
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Table 2. Fundamental material properties of the sand.

Specific
Gravity

Water
Content/%

Density/g/cm3 Void Ratio Coefficient of
Uniformity Cu

Coefficient of
Curvature Ccρmax ρmin emax emin

2.58 0.04 1.726 1.453 0.776 0.495 2.78 1.00

2.4. The Morphology of Corroded Surface Acquired by Laser Scanning Technique

In recent decades, the laser scanning technology has been widely applied in medical,
aerospace, automotive, civil engineering, historical architectural protection, and other fields
due to its merits of high measurement precision, good portability, nondestructive, and non-
contact properties. In this study, digital models of the corroded concrete plates’ rough surface
were obtained with the 3D laser scanning technology. The hand-held 3D laser scanning
device called T-SCAN CS was adopted, which was from German Steinbichler Optoelectronics
Technology Co., Ltd., as shown in Figure 4. The three-dimensional coordinates of every point
on the rough surface of corroded concrete plates were obtained based on the principle of
triangulation techniques and the method of light sweeping. Then, the 3D coordinates of every
point on the corroded surfaces of concrete plates were obtained, which were then further
processed by the MATLAB. In this paper, the T-SCAN hand-held laser scanner technical
data were listed in the Table 3 and this commercial laser scanner, after verification by using
a precision sphere (Φ = 50 mm) at 2.5 m, 4.0 m, and 5.5 m distance, exhibited a maximum
deviation of 40 µm. The linear Gaussian filter is fairly fashionable in surface character-
ization; it has been widely applied among researchers and it has become an industrial
filtration standard characterized in the ISO standard [76]. The filter used in this paper is
filtered by the software that comes with the laser scanner, as described in the reference [77].

Table 3. Technical data of T-SCAN hand-held laser scanner in this paper.

Measurement depth ±50 mm

Line width up to 125 mm

Mean working distance 150 mm

Line frequency up to 330 Hz

Data acquisition rate 210,000 points/second

Weight 1100 g

Sensor dimensions (incl. handle and IR pins) 300 × 170 × 150 mm

Cable length 10 m

Mean point distance 0.075 mm

Laser class (IEC 60825-1:2014) Class 2M (eye-safe)
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The fractal dimension of the corroded rough surface was calculated by a method
called the cubic covering method, and this method was devised by Zhou and Xie [51]. The
calculation principle of the cubic covering method calculating the fractal dimension of the
rough surface of the corroded concrete slabs was as follows: a regular grid of squares with
side length δ existed on the plane XOY, as shown in Figure 5. The four corners of the square
grid ABCD correspond to four altitudes of the rough surface of corroded concrete plate:
h(i, j), h(i + 1, j), h(i, j + 1), and h(i + 1, j + 1) (where 1 ≤ i ≤ n − 1, 1 ≤ j ≤ m − 1, n and
m denoted the total sampling points of the rough surface along the x-axis directions and
y-axis directions, respectively). If the rough surface was covered with a cube with side
length δ, the biggest deviation among h(i, j), h(i + 1, j), h(i, j + 1), and h(i + 1, j + 1) could
determine the number Ni,j(δ) of cubes to cover the irregular surface within the scale δ:

Ni,j(δ) = INT
{

1
δ
[max(h(i, j), h(i, j + 1), h(i + 1, j), h(i + 1, j + 1))

−min(h(i, j), h(i, j + 1), h(i + 1, j), h(i + 1, j + 1))] + 1}
(1)

where INT represented the integral function. If the side length of the cube was δ, the overall
number of cubes covered the total irregular surface could be calculated as:

N(δ) =
n−1

∑
i,j=1

Ni,j (2)

Change the cube side length δ to cover again, and then count the entire number of
cubes N(δ) to cover the entire rough surface. It is obvious that the smaller δ is, the bigger
N(δ) is.

If the irregular surface exhibited fractal characteristics, based on the fractal theory,
there should be the following relationship between the overall amount of cubes N(δ) and
the side length of the cube δ.

N(δ) ∼ δ−D (3)

where D denotes the fractal dimension of the concrete irregular surface.
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2.5. Direct Shear Experiment for Interface between Sand and Corroded Concrete Plate

The concrete plate was filled into the shear box at the bottom which could move
horizontally, and the sand was filled into the upper shear box, which was fixed during the
shearing. The vertical force of the direct shear device was used to simulate the soil pressure
around the pile and the horizontal displacement of the direct shear device was used to
simulate the vertical downward displacement of the pile, as shown in Figure 6. In order
to cut down the mass of the concrete plate and make it convenient for manual handling,
the concrete sample was designed to be 50 mm thick, rather than 100 mm, which was the
height of the shear box at the bottom. The concrete plate was adjusted by installing a steel
plate of about 50 mm underneath to guarantee that the surface of the concrete specimen
was at the same level as the upper surface of the shear box at the bottom. The reason the
concrete slab was placed in this way was that when the concrete pile was corroded, the
rough morphology of the concrete pile surface was somewhat similar to a sawtooth shape,
as illustrated in Figure 6a. As is known to all, the shear strength of concrete material was
bigger than that of sand. The shear strength of plane 2-2 in Figure 6a would be greater
than that of plane 1-1. Therefore, the 1-1 plane was chosen as the shear interface and the
concrete sample arrangement in the test is illustrated in Figure 6b.

For the purpose of maintaining the stability of the soil sample, 30 kg sand was weighed
each time, and then the sand was filled into the shear box at the top and manually com-
pacted the sand to the target relative density. Two load cells were adopted to measure the
tangential and normal forces at the interface. Four linear variable displacement transducers
(LVDTs) were used to obtain the normal displacement and tangential displacement at the
interface. Four normal loads of 50, 100, 150, and 200 kPa were used to carry out the direct
shear test for each concrete plate. An initial normal stress of 200 kPa was applied on the
sand through loading plate for 20 min in order to make the normal deformation stable.
Then, shear force was gradually applied to the shear box at the bottom until the tangential
displacement did not exceed 35 mm since the shear box wall was 40 mm thick. The shear
displacement rate used in this paper is 2.0 mm/min. The readings of the LVDTs and load
cells were monitored and recorded by a data acquisition system, which was connected to a
computer. In addition, the direct shear test of the sand itself was also carried out according
to the above shear experimental procedure, but there were some differences: instead of
concrete plate, 30 kg of sand was placed into the shear box at the bottom and the sand was
manually compacted to the target relative density.
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3. Experiment Results and Analysis
3.1. Appearance

Photos of concrete plates soaked in the sulfuric acid for four predetermined durations
(0 days, 31 days, 93 days, and 154 days) are shown in Figure 7. The degree of corrosion is
obviously exhibited in the photos: the uncorroded surface after demolding was smooth
and flat. After soaking for 31 days, the sulfuric acid reacted chemically with the alkaline
substances in the concrete, resulting in the dissolution of the cement, the exposure of
the sand, and the deposition of the white corrosion product, which was reported to be
mainly gypsum. From the 31-day immersion to the 154-day immersion, the dissolution of
the cement paste continued, the fine aggregates were gradually detached, and the coarse
aggregates were gradually exposed.

3.2. The Fractal Dimension Calculated Results

The steps to obtain the fractal dimension of concrete plate surface under the sulfuric
acid environment were the same as in reference [74], from which the detailed procedures
could be obtained. The steps to obtain the fractal dimension were briefly described as
follows. As shown in Figure 8, there were four steps. Step 1© and Step 2©: obtain the
three-dimensional coordinates of every point on the uncorroded and corroded concrete
surface with a hand-held 3D laser scanning device called T-SCAN CS from Steinbichler).
Step 3©: In MATLAB software, extract the surface of the concrete plate corroded by sulfuric
acid, and the points on the remaining surface of the concrete plate were removed. Step 4©:
Display the surface corroded by sulfuric acid in MATLAB software and adopt the cubic
covering method, which was indicated in Section 2.4, to calculate the uncorroded and
corroded surface fractal dimension.
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In MATLAB software, the uncorroded and corroded surface of the concrete plates
were illustrated in Figure 9. Nine different grid numbers were chosen for the four concrete
specimens to generate nine kinds of different side lengths cubes: 75 × 50, 150 × 100,
300 × 200, 600 × 400, 900 × 600, 1200 × 800, 1500 × 1000, 2100 × 1400, and 3000 × 2000.
Then, in these nine cases, the number of the square boxes N(δ) required to completely
cover the surface by cubes with side length δ were obtained. The fractal dimension could be
calculated from the relationship between N(δ) and δ as the above-mentioned Equation (3).
Usually, the value of fractal dimension can be estimated from the slope of dual logarithmic
coordinate graphs of ln(N(δ)) against ln(δ), as shown in Figure 10. After calculation, the
fractal dimensions of concrete specimens corroded for 0 days, 31 days, 93 days, and 154 days
were 2.0094, 2.034, 2.078, and 2.135, respectively. The fractal dimension of the concrete plate
surface uncorroded is almost 2.00, indicating that the surface of the concrete plate after
demolding was nearly a smooth plane. With the prolongation of corrosion time, the cement
slurry was dissolved, and the exposure of the aggregates made the surface rougher and the
fractal dimension greater, which indicated that the fractal dimension could characterize the
growth law of surface roughness with corrosion time.
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Figure 9. Reconstruction of the concrete plate surfaces corroded for 0, 31, 93, and 154 days in Matlab.
(a) Concrete plate uneroded; (b) Concrete plate eroded for 31 days; (c) Concrete plate eroded for
93 days; (d) Concrete plate eroded for 154 days.
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(a) (b) 

(c) (d) 

(a) 

(c) 

(b) 

(d) 

Figure 10. Dual logarithmic coordinate graphs of concrete specimens corroded for 0 days, 31 days,
93 days, and 154 days to calculate fractal dimensions. (a) Concrete uncorroded (D = 2.0094); (b) Con-
crete corroded for 31 days (D = 2.034); (c) Concrete corroded for 93 days (D = 2.079); (d) Concrete
corroded for 154 days (D = 2.135).

3.3. Direct Shear Experimental Results of the Interface

The shear stress-shear displacement curves of the interface between concrete plates
eroded for 0 days, 31 days, 93 days, and 154 days and sand were presented in Figure 11a–d.
The curves had some common characteristics. In the initial stage, the shear stress was
substantially proportional to the shear displacement. In this stage, the interface shear
modulus was constant and relatively large. As the shear displacement increased, the
increase rate of shear stress gradually decreased, and finally, with the growth of shear
displacement, the shear stress was almost constant, which indicated the interface yield.
Since there is no evident peak value in the relation curve of the interface shear stress
and shear displacement between four concrete plates and sand, it made sense to take the
interface yield stress as the shear strength. The shear displacement and shear stress exhibit
an elastic-plastic relationship and could be expressed in terms of a hyperbolic model. The
test results of the direct shear experiment of the interface between concrete specimens
under sulfuric acid environment and sand for four different periods were listed in Table 4.

The test method for the interfacial relation curve of shear stress and shear displacement
between sand and sand was similar to the previous test method for the interfacial relation
curve of shear stress and shear displacement between concrete plate and sand, except that
when measuring the relation curve of shear stress and shear displacement of sand itself,
the shear box at the bottom was filled by sand instead of the concrete plate. The interfacial
shear stress-displacement curve between sand and sand was shown in Figure 12. The
results of the direct shear experiments for the sand itself were listed in Table 4.
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Figure 11. The relation curve of interface shear stress and shear displacement between sand and
concrete specimens corroded different periods. (a) Concrete plate eroded for 0 days (uncorroded);
(b) Concrete plate eroded for 31 days; (c) Concrete plate eroded for 93 days; (d) Concrete plate eroded
for 154 days.
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Table 4. Direct interface shear experimental results and fitted parameters of the experimental data.

Test Plan
Corrosion
Time/Days

Normal
Stress
σ/kPa

Direct Interface Shear Experimental Results Fitting Parameters

Peak
Stress
τf/kPa

Displacement
at Peak Stress

ωf/mm

Cohesive
c/kPa

Friction
Angle ϕ/◦ Adj.R2 a b Adj.R2

Direct shear
test for sand
and concrete

specimens
immersed in
sulfuric acid
for different

days

0

50 32.79 6.57

3.39 30.87 0.996

0.0197 0.0303 0.997

100 66.88 13.25 0.0170 0.0149 0.996

150 96.15 11.97 0.0126 0.0103 0.997

200 122.58 12.82 0.0121 0.0080 0.994

31

50 35.33 8.79

4.09 34.65 0.995

0.0622 0.0269 0.936

100 82.07 20.05 0.0252 0.0126 0.957

150 110.16 18.63 0.0845 0.0065 0.952

200 147.10 18.78 0.0399 0.0057 0.955

93

50 37.28 15.30

1.43 35.27 0.999

0.1337 0.0237 0.962

100 75.36 16.78 0.0399 0.0124 0.980

150 110.25 18.30 0.0338 0.0083 0.980

200 149.61 19.17 0.0162 0.0067 0.986

154

50 35.34 16.90

0.243 36.44 0.991

0.0230 0.0276 0.909

100 76.58 21.88 0.0580 0.0124 0.978

150 107.97 22.98 0.0478 0.0081 0.975

200 150.46 34.54 0.0544 0.0052 0.964

Direct shear test for the
sand itself

50 36.98 20.04

0.055 37.61 0.998

0.0626 0.0250 0.996

100 73.77 22.20 0.0438 0.0121 0.998

150 115.87 34.03 0.0349 0.0077 0.999

200 151.36 33.48 0.0231 0.0059 0.997

Figure 13 shows the shear strengths of the interfaces between sand and concrete
plates soaked in the sulfuric acid solution for four different days under different normal
stresses and the shear strength of sand itself under different normal stresses. These curves
represented that the shear strength increased linearly with the increase of the normal
stress, which demonstrated that the shear performance of the interfaces between corroded
concrete and sand complied with the Mohr–Coulomb law, as illustrated in Equation (4).
The test data in Figure 12 were plotted in the coordinate diagram, where the abscissa was
the normal stress and the ordinate was the shear strength of the interface. The least-square
method was employed to fit the data points to obtain the shear strength parameters (i.e.,
friction angle and the cohesive), which were presented in Table 4.

τf = σ tan ϕ + c (4)

where τf denotes the maximum shear stress (shear strength), kPa; σ denotes the normal
stress, kPa; ϕ denotes the friction angle; and c denotes the cohesive force, kPa.

As shown in Figure 13, as the immersion days increased, the friction angle of the
sand and corroded concrete interface gradually increased.The friction angle of the interface
between corroded concrete and sand was larger than that of the interface between uncor-
roded concrete and sand, but smaller than that of sand itself. This meant that the shearing
resistance of corroded rougher interfaces was still weaker than that of the sand itself, but
was stronger than that of the uncorroded smooth interface.
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Figure 13. The shear strengths of sand-corroded concrete interfaces and sand itself for different days
under different normal stresses.

It was an important aspect of the study of the mechanical behavior of the interface to
establish the constitutive model of the interface between soil and structure. The constitutive
relation of the interface referred to the relationship between the normal and tangential
components of the interaction force or stress at the interface and the normal and tangential
components of the relative displacement at the interface. At present, the constitutive relation
of the interface generally referred to the relationship between shear stress and relative shear
displacement. There were many constitutive models of the interface between structure
and soil to simulate the property of the interface between structure and soil, such as the
Clough–Duncan hyperbolic model, the elastic-plastic model [78], and the rigid plastic
model [79]. Among these models, the hyperbolic constitutive model, which was proposed
by Duncan and Clough, was widely applied because the formula was simple, and the
parameters were easy to determine, and the physical implications of the parameters were
clear. The relationship between the shear stress and the shear displacement of the interface
in the Clough–Duncan hyperbolic constitutive model was shown as follows:

τ =
ω

a + bω
(5)

where τ denotes interface shear stress, ω represents the shear displacement between
corroded concrete and sand, and a and b denote parameters obtained by fitting the test
data of the shear stress and shear displacement. When the interfacial shear displacement ω
tends to infinity, the interfacial shear stress tends to a constant τf , which is named ultimate
shear stress. As the interfacial shear displacement ω tends to zero, the initial shear stiffness
is defined as the value of shear stress divided by shear displacement, denoted by the
symbol ks0. Therefore, the physical implication of fitted parameter a in Equation (6) was the
reciprocal of the initial shear stiffness, while the physical implication of fitted parameter
b was equal to the reciprocal of the value of ultimate shear stress. Parameters a and b in
the Clough–Duncan hyperbolic constitutive model were obtained by fitting the test data of
the shear displacement and shear stress between sand and corroded concrete plate for four
different periods of time. The results of the fitting parameters b and a were presented in
Table 4. For convenience, the test data of the shear stress and shear displacement between
concrete plate corroded for 93 days and sand was employed as an example to show the
comparison of the experimental data points and fitted curves of shear displacement and
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shear stress, as illustrated in Figure 14. The comparison result indicated that the test data
points were in good agreement with the fitted curve.

lim
ω→∞

τ = lim
ω→∞

ω

a + bω
=

1
b
= τf

lim
ω→0

τ

ω
= lim

ω→0

1
a + bω

=
1
a
= ks0

(6)
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Figure 14. The comparison of the tested data points and fitted curves of shear stress and shear
displacement between concrete plate corroded for 93 days and sand.

3.4. Correlation between Interface Shear Strength and Fractal Dimension

The friction angle between concrete and sand played an important role in the shear
strength at the interface. Therefore, we aimed to explore the effect of the roughness of the
concrete surface on the interface shear strength between corroded concrete and sand by
finding the relation between the friction angle and the fractal dimension of the concrete
surface. In the initial stage, the friction angle increased rapidly as the fractal dimension
increased, but at the later stage, the growth rate of the friction angle decreased with the
increase of the fractal dimension and tended to become steady, as illustrated in Figure 15
and Equation (7). The results showed that the test data points were in good agreement with
the fitted curve.

ϕ = 38.26× (D− 2.0094)0.0161 (7)

where ϕ represented the interface friction angle of the interface and D denoted the fractal
dimension of the rough surface of the corroded concrete. In this initial stage, the reason
the friction angle increased rapidly as the fractal dimension increased is that with the
dissolution of cement paste, white corrosion products were deposited on the surface of
concrete plate, and the gradual exposure of coarse aggregate and fine aggregate caused
the surface of the concrete to become rough from the initial smooth surface. However, in
the next erosion stages, on the one hand, corrosion products and fine aggregate gradually
fell off, which would reduce the surface roughness of the concrete slab. On the other hand,
due to the further dissolved cement paste, the newly exposed aggregate could increase
the surface roughness. Under the combined influence of these two effects, the surface
roughness of the concrete plate became stable, as shown in Figure 16.
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3.5. Influence of Fine Marble Aggregate on Interface Properties

For the purpose of investigating the effect of fine marble aggregate on the interface
shear strength and surface fractal dimension when the concrete specimen was under
the sulfuric acid environment, the friction angle of the interface and the surface fractal
dimension of the concrete in this paper were compared with those in the reference [74], as
illustrated in Table 5 and Figure 17.
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Table 5. Comparison of the friction angle of the interface and fractal dimension between this paper
and reference.

Corrosion Time/Days In This Paper In the Reference [74]

Coarse aggregate Crushed gravel Crushed gravel
Fine aggregate Marble sand River sand

Interface friction angle/◦
0 30.87 30.87

31 36.02 34.65
93 36.64 35.27

154 37.00 36.44

Surface fractal dimension

0 2.0094 2.0094
31 2.1269 2.033

93 days 2.1827 2.078
154 days 2.192 2.134
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From Table 5 and Figure 17, we find that the friction angle of the interface and the
surface fractal dimension of the concrete plate containing crushed gravel and marble sand
were smaller than that of the concrete plate containing crushed gravel and river sand. This
was attributed to the different fine aggregate. If concrete specimens contained siliceous
aggregates (river sand), only the hydration products of the cement reacted with sulfuric
acid and the neutralization ability in the process of acid attack could be very limited
while crushed marble sand generally contains calcium carbonate, which easily reacts with
acid and the concrete specimens would have greater neutralization ability to react with
acid and the rate of the acid attack on specimens would be reduced. Therefore, concrete
plate with marble sand as fine aggregate in this paper produced a smaller surface fractal
dimension and formed a smoother surface. The smoother surface led to a smaller interface
friction angle.

4. Discussion

Previous studies have found that concrete specimens containing marble sand have
better performance in terms of mass loss and corrosion depth than concrete specimens
containing river sand. When concrete is used in a pile foundation, in addition to mass loss,
corrosion depth, and so on, the effect of acid corrosion on the mechanical properties of
pile–soil interface is also of concern for researchers and engineers. In order to study the
effect of acid corrosion on the mechanical properties of the pile–soil interface, three issues
need to be considered: how to produce rough surfaces, how to measure rough surfaces, and
how to calculate roughness evaluation parameters. Firstly, most of the researchers adopted
regular, artificial rough surfaces to simulate the interfacial roughness of actual piles. In this
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paper, the rough surfaces of concrete slabs were generated by completely soaking for 0,
31, 93, or 154 days (the actual soaking periods) in sulfuric acid solution with pH ≈ 0.95.
Secondly, different from the traditional comparison method, mechanical stylus method and
sand patch test, in this paper, geometric models of the rough surface were captured using
a 3D laser scanning technology, which had the obvious advantages of high measuring
accuracy, good portability, automatic reconstruction of 3D shapes, non-destruction, and
non-contact with the detected object. Thirdly, the fractal dimension was adopted to evaluate
the surface roughness, which could be determined independently from the resolution and
sampling range of the roughness measurement instrument. Due to its wide availability
and relatively simple test setup and sample preparation procedures, direct shear apparatus
was adopted for interface testing in this research. However, in order to better simulate the
variation rule of concrete pile lateral friction in actual engineering acidic soil, a model box
test or field test can be used to carry out research in the future.

In order to better represent the roughness of the concrete slab in this paper, the
following calculation was carried out. As one of the 3D characterization parameters of
surface roughness, areal surface roughness Sa is most commonly used to quantitatively
describe surface topography. It is the arithmetic mean of the absolute values of the surface
deviations from the mean plane as described in Equation (8) [80].

Sa =
1
A

∫ x

0

∫ y

0
|Z(x, y)|dxdy (8)

where A is the sampling area, x, y, |Z(x, y)| are the values of a data point on the x-axis,
y-axis, z-axis. Sa is the average surface roughness evaluated over the complete 3D surface.
After calculation, the areal surface roughness Sa of concrete specimens corroded for 0 days,
31 days, 93 days, and 154 days were 0.2057, 0.3236, 0.627, and 1.2731, respectively.

5. Conclusions

(1) The surface of the concrete cast with crushed gravel and marble sand as aggregates
exhibited fractal characteristics after being corroded by sulfuric acid. The surface
fractal dimensions of the corroded concrete plate under sulfuric acid environment
increased with the increase of the corrosion time.

(2) The shear strength of the interface increased linearly as the normal stress increased,
and the relationship between the interface shear strength and the interface normal
stress complied with the Mohr–Coulomb rule. The interface friction angle between
sand and the corroded concrete plate was smaller than that of sand itself.

(3) As the corrosion days increased, the surface of the concrete plate became gradually
rougher, and the friction angle of the interface became greater. In the initial stage, the
friction angle increased rapidly with the increase of the fractal dimension from 30.87◦

to 34.65◦, but in the later stage, the growth rate of the friction angle decreased with
the increase of the fractal dimension and tended to be stable from 34.65◦ to 36.44◦.

(4) The hyperbolic constitutive model proposed by Clough and Duncan was used to
regress the relation between the shear stress and shear displacement of the corroded
concrete-sand inteface. Parameters a and b in the hyperbolic constitutive model were
achieved by fitting the test data.

(5) The friction angle of the interface and the surface fractal dimension of the concrete
plate containing crushed gravel and marble sand were smaller that that of the concrete
plate containing crushed gravel and river sand.
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Nomenclature

LVDTs linear variable different transformers
ρmax the maximum density of the sand
ρmin the minimum density of the sand
emax the maximum void ratio of the sand
emin the minimum void ratio of the sand
Cu the coefficient of uniformity of the sand
Cc the coefficient of curvature of the sand
h(i, j), h(i + 1, j), h(i, j + 1) the four corners of the square grid ABCD correspond to four altitudes
and h(i + 1, j + 1) (where of the rough sur-face of corroded concrete plate
1≤ i≤ n− 1, 1≤ j≤m− 1)
n the total sampling points of the rough surface along the x-axis directions
m the total sampling points of the rough surface along the y-axis directions
Ni,j(δ) when its side length is δ, the number of cubes required to cover the

rough surface in the ABCD grid area
N(δ) when its side length is δ, the number of cubes required to cover the

total rough surface
D the fractal dimension of the concrete irregular surface
τ the interface shear stress
ω the shear displacement between corroded concrete and sand
a and b parameters obtained by fitting the test data of the shear stress and

shear displacement
τf the ultimate shear stress
ks0 the initial shear stiffness
εu the ultimate strain
a and b regression parameters in the constitutive relation proposed by Guo
ω f the displacement at peak stress
c cohesive
ϕ friction angle
σ normal stress
Sa the average surface roughness evaluated over the complete 3D surface
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