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Abstract: In this article, a new method for obtaining closed-form solutions of the simplified modified
Camassa-Holm (MCH) equation, a nonlinear fractional partial differential equation, is suggested. The
modified Riemann-Liouville fractional derivative and the wave transformation are used to convert
the fractional order partial differential equation into an integer order ordinary differential equation.
Using the novel (G′/G2)-expansion method, several exact solutions with extra free parameters are
found in the form of hyperbolic, trigonometric, and rational function solutions. When parameters are
given appropriate values along with distinct values of fractional order α travelling wave solutions
such as singular periodic waves, singular kink wave soliton solutions are formed which are forms of
soliton solutions. Also, the solutions obtained by the proposed method depend on the value of the
arbitrary parameters H. Previous results are re-derived when parameters are given special values.
Furthermore, for numerical presentations in the form of 3D and 2D graphics, the commercial software
Mathematica 10 is incorporated. The method is accurately depicted, and it provides extra general
exact solutions.

Keywords: novel (G′/G2)-expansion method; time fractional MCH equation; solitary wave solutions;
homogeneous balance principle; exact solutions

1. Introduction

Fractional calculus is a sort of fractional differential equation that resembles a large
sweeping differential equation [1]. In the sense that many theoretical and practical charac-
teristics of differential equations can be easily extended to fractional differential equations
while maintaining the same character and spirit. In a letter to Leibniz in 1695, L’Hopital
demanded a precise description of the derivative of order n = 0.5, sowing the seeds of
fractional calculus almost 300 years ago. As a result, fractional integrals and derivatives
differ from regular integrals and derivatives in a variety of ways, allowing them to be
applied to a broader range of problems that integer-order calculus cannot adequately cap-
ture. In many branches of science and engineering, fractional calculus has been carefully
developed to be a very authoritative approach to assist scientists in uncovering the hidden
properties of the dynamics of multidimensional systems. Fractional calculus has played
a crucial role in recent years as a proficient, efficient, and elementary theoretical basis for
more accurate modelling of diverse dynamic processes. As a result, fractional calculus
is being utilized more frequently in modelling, signal processing, physics, electromag-
netics, biological systems, mechanics, medicine, biology, chemistry, bioengineering, and
other domains [2,3]. Differential equations with non-integer derivatives [4] have been
discovered lately. For example, fractional derivatives can be utilized to anticipate seismic
nonlinear oscillations [5]. Nonlinear equations with multi-order fractional derivatives have
recently been added to the list of applications. The complex transformation of fractional
order is used to turn a fractional order nonlinear partial differential equation (FNPDE)
into a nonlinear ordinary differential equation (NODE) [6,7]. Fractional order differential
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equations are well represented by a variety of significant phenomena in material science,
electrochemistry, electromagnetics, and viscoelasticity [8,9]. Researchers [10,11] give a
physical understanding of fractional calculus.

A soliton is a self-reinforcing wave packet that maintains its shape while propagating
at a constant rate. Solitons, in other words, are unaffected by collisions with other solitons
in terms of shape and speed, and are studied in nuclear physics, quantum mechanics,
and waves along a weakly anharmonic mass-spring chain. Periodic travelling waves,
among other things, play a role in self-oscillatory systems, reaction–diffusion–advection
systems, and excitable chemical reactions. The motion of a particle in a potential field
in the presence of dissipation is referred to as self-oscillatory dynamics. The described
method of self-oscillation excitation is caused by features of a potential whose shape is
dependent on the system state, rather than by characteristics of a dissipation function.
Furthermore, properties of a potential function allow for self-oscillation excitation in the
scenario where the dissipation function is positive at each phase space point. Reaction-
diffusion-advection equations are partial differential equations that describe the evolution
of a substance (e.g., a drug) in a medium described by spatial coordinates, involving
sheltered transport (or advection) according to a physical or chemical force represented by
a velocity vector, diffusion, or irregular motion of the material molecules in the medium,
and reaction (e.g., chemical) with other constituents present in the medium represented by
a reaction vector. They demonstrate physical properties such as the singular periodic wave
solution, singular single-soliton solution, and singularly double periodic wave solution.
The solutions’ features make them ideal for analyzing nonlinear processes in applied math,
physics, and engineering.

The dynamics of waves in the fractional Schrödinger equation with harmonic poten-
tial were studied by Zhang et al. [12]. To explore such dynamics, they used an analytical
technique with fractional Laplacian derivative and compared it to numerical simulation.
They discovered that the beams follow zigzag and funnel-like patterns in one and two
dimensions, which become irregular after a substantial period of propagation. In a frac-
tional Schrödinger equation with a PT -symmetric potential, Zhang et al. [13] explored
the conical diffraction of a light beam. Their research not only shows how to acquire
beam localization in a PT -symmetric potential without using nonlinearities, but it also
relates fractional Laplacian and symmetry, implying that their research has benefits on
both sides. As a result, it could have a lot of potential for manufacturing on-chip optical
devices. Through the longitudinal modulation of the transverse Gaussian and periodic
potentials, Zhang et al. [14] also studied resonant mode conversions and Rabi oscillations
in the fractional Schrödinger equation. They discovered that the Lévy index can efficiently
alter the oscillation period and conversion efficiency.

As a result of the introduction of symbolic computation tools like Maple and Math-
ematica, various numerical and analytical approaches for searching accurate solutions
of nonlinear evolution equations (NLEEs) have garnered further attention. Many ap-
proaches for obtaining exact solutions have been devised and established as a result,
including the Cole-Hopf transformation [15], Tanh-function [16], Inverse scattering trans-
form [17], Exp-function [18–23], differential transform [24], and Laplace perturbation [25],
F-expansion [26] methods.

Wang et al. [27] recently proposed an expansion method called the (G′/G) -expansion,
which they demonstrated to be a powerful method for finding analytic solutions to NLEEs.
It is a trustworthy method for obtaining a wide range of solitary wave solutions, such as
hyperbolic, trigonometric, and rational functions.

The (G′/G)-expansion approach recently become popular [28,29] has caught the inter-
est of a large number of scientists. The method was used to create closed form solutions to
a number of NPDEs. The travelling waves solutions of biological population model of frac-
tional order, the Burgers equation with time-fractional order, and the space-time fractional
Whitham–Broer–Kaup model were investigated by Arshed and Sadia [30] by using the
(G′/G2)-expansion methodology in 2018. In 2020, the (G′/G2)-expansion method was used
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to build numerous novel accurate travelling wave solutions for the Boiti–Leon–Pempinelli
system in two dimensions [31]. The unidirectional Dullin–Gottwald–Holm (DGH) system
describing wave prorogation in shallow water, which include singular periodic wave solu-
tions, shock-singular, shock, and singular solutions investigated in 2021 by Bilal et al. [32]
to find novel exact solutions via the (G′/G2)- expansion approach.

A novel (G′/G2)-expansion method is introduced in this article, to solve the MCH
equation of fractional order in the sense of Jumarie [33], and we discover a large number of
new families of precise solutions. The proposed technique has never been reported in the
literature previously which make it novel.

The Jumarie fractional order derivative of order α is demarcated by the expression:

Dα
t v(t) =


1

Γ(1−α)
d
dt

∫ t
0 (t− ς)−α(v(ς)− v(0)) dς, 0 < α ≤ 1 ,(

v(n) (t)
)(α−n)

, n ≤ α < n + 1 , n ≥ 1
(1)

Properties of Jumarie’s fractional derivative are:

Dα
t f (t) =

Γ (1 + ω)

Γ (1 + ω− α)
tω−α, (2)

Dα
t ( f (t)g(t)) = g(t)Dα

t f (t) + f (t) Dα
t g(t) , (3)

Dα
t h [g (t) ] = h′g[g(t)] Dα

t g(t) = Dα
gh[g(t)]

(
g′(t)

)α. (4)

2. The Methodology

Assume that a fractional PDE has the form:

P (u, ux, ut, Dα
t u, . . .) = 0, 0 < α ≤ 1, (5)

In which the unknown function is denoted by u(x, t).
The method’s main steps are as follows:
Step 1: The complex fractional transformation [7]

u (x, t) = u(η) , η = Lx + V
tα

Γ(1 + α)
, (6)

In which L and V are arbitrary constants transforms Equation (5) into an ODE

M
(
u, u′, u′′ , u′′′ , . . .

)
= 0, (7)

where ordinary derivatives with regard to η are denoted by superscripts.
Step 2: If possible, integrate Equation (7) one or more times to obtain integration

constants that can be determined later.
Step 3: Assume the solution to Equation (7) can be categorized as follows:

u(η) =
p

∑
i=−p

ai

(
H +

(
G′/G2

)) i
, (8)

where ai and H are constants, found later, and G is the solution of following differential equation:(
G′/G2

)′
= A + B

(
G′/G2

)2
(9)

with A 6= 1 and B 6= 0 being integers.
Step 4: According to the balancing principle between the highest order derivative and

the nonlinear term in Equation (7), the value of a positive integer p can be determined.
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Step 5: We get polynomials in
(

H +
(
G′/G2))i

, (i = 0, ±1, ±2, · · · ,±p) by substi-
tuting Equation (8) with Equation (9) into Equation (7). The system of algebraic equations
is obtained by putting to zero each coefficient of the resultant polynomials. By solving
system of equations with Maple, the values of the constants ai (i = 0, ±1, ±2, · · · ,±p),
H, L, C and V can be retrieved.

Step 6: On the base of the general solutions of Equation (9), the ratio G′
G2 can be split

into three categories:

G′

G2 =

√
A
B

E cos
(√

ABη
)
+ F sin

(√
ABη

)
F cos

(√
ABη

)
− E sin

(√
ABη

)
 , AB > 0, (10)

G′

G2 = −
√
|AB|
B

Esinh
(

2
√
|AB|η

)
+ E cosh

(
2
√
|AB|η

)
+ F

Esinh
(

2
√
|AB|η

)
+ E cosh

(
2
√
|AB|η

)
− F

 , AB < 0, (11)

G′

G2 = − E
B(Eη + F)

, A = 0, B 6= 0, (12)

where E and F are constants that are not zero.

3. Application

Consider the following time fractional MCH equation:

Dα
t u + 2δ ux − ux x t + ψ u2ux = 0, where δ ∈ <, ψ > 0, 0 < α ≤ 1, (13)

where Dα
t is the Jumarie fractional derivative of order α, δ is a non-zero real constant, and

ψ is a positive constant.
Many researchers have examined the simplified MCH equation and attempted to

obtain exact answers in a number of approaches. For example, Liu et al. [34] are interested
in solving the simplified MCH equation using the (G′/G)-expansion method, with an
auxiliary equation as linear ordinary differential equation (LODE) of second order. The
sine-cosine approach was used on MCH equation by Wazwaz [35] to investigate the exact
solutions. The (G′/G)-expansion strategy was used to MCH problem in conjunction
with the generalized Riccati equation by Zaman and Sultana [36] to obtain the closed
form solutions.

Using Equation (4), we convert Equation (12) into an ODE, and integrating once, we get:

(V + 2δL) u−VL2u′′ ++ψL
u3

3
+ C1 = 0, (14)

where C1 is an integration constant that will be calculated later.
In Equation (14), we obtain p = 1 by applying the homogeneous balancing principle

among the uppermost order derivative and the uppermost order nonlinear term. As a
result, trial solution (8) is:

u(η) = a−1

(
H + (G′/G2)

)−1
+ a0 + a1

(
H + (G′/G2)

)
. (15)

In equating the coefficients of all
(

H +
(
G′/G2)) i, (i = 0, ±1, ±2, ±3), a system of

equations for the unknowns a0, a1, a−1, H, C1, V and L are given as by putting the left hand
side of Equation (15) into Equation (14).
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1
3 ψLa3

1 − 2VL2a1 BH2 = 0,
6VL2a1B2H + ψLa0 a2

1 = 0,
2δLa1 + ψLa−1a2

1 + Va1 − 6VL2a1B2H2 − 2VL2a1 AB ++ψLa2
0a1 = 0,

2VL2a1 ABH + 2VL2a−1B2H + 2 ψLa0a−1a1 + Va0 + 2δLa0 +
1
3 ψLa3

0 + 2VL2a1B2H3 + C1 = 0,
2δLa−1 − 6VL2a−1B2H2 + Va−1 + ψLa1a2

−1 + ψLa−1 + a2
0 − 2VL2a−1 AB = 0,

6VL2a−1B2H3 + ψLa0a2
−1 + 6VL2a−1 ABH = 0,

1
3 ψLa3

−1 − 2VL2a−1 A2 − 4VL2a−1 ABH2 − 2VL2a−1B2H4 = 0.

Using symbolic computation software to solve the given system of equations, we get
the following results:

Set 1.

a0 = ± 6
√

δBLH√
−3ψ(4L2 AB+6L2B2 H2+1)

, a−1 = ± 2L
√
−3δ(A+BH2)√

ψ(4L2 AB+6L2B2 H2+1)δ
, a1 = ∓ 6

√
δBL√

−3ψ(4L2 AB+6L2B2 H2+1)
,

C1 = ± 48L4δ2B2 H(A+BH2)√
−3ψδ(4L2 AB+6L2B2 H2+1)(4L2 AB+6L2B2 H2+1)

, V = − 2δL
4L2 AB+6L2B2 H2+1 , H = H.

(16)

Set 2.

a0 = ∓ 2
√

3δBLH√
ψ(2L2 AB− 1)

, a−1 = ±2

√
3ψδ(2L2 AB− 1)

(
A + BH2)L

ψ(2L2 AB− 1)
, a1 = 0, C1 = 0, V =

2δL
2L2 AB− 1

, H = H. (17)

Set 3.

a0 = a0, a−1 = 0, a1 = ±2
√

3ψδ(2L2 AB− 1)BL
ψ(2L2 AB− 1)

, C1 = 0, V =
2δL

2L2 AB− 1
, H = ∓

a0
√

3ψ
(
2L2 AB− 1

)
6
√

ψδ(2L2 AB− 1)BL
. (18)

When the three cases with Equation (16) and the interleaving ratios Equations (10)–(12)
are combined, there are three clusters of solutions for Equation (13):

Family 1. When AB > 0, the trigonometric function solution of the Equation (13) is

u11(η) = ±
2L
√
−3δ(A+BH2)√

ψ(4L2 AB+6L2B2 H2+1)δ

(
H +

√
A
B

(
E cos(

√
ABη)+F sin(

√
ABη)

F cos(
√

ABη)−E sin(
√

ABη)

))−1

∓ 6
√

δBL√
−3ψ(4L2 AB+6L2B2 H2+1)

(
H +

√
A
B

(
E cos(

√
ABη)+F sin(

√
ABη)

F cos(
√

ABη)−E sin(
√

ABη)

))
± 6

√
δBLH√

−3ψ(4L2 AB+6L2B2 H2+1)
,

(19)

where η = Lx− 2δLtα

(4L2 AB+6L2B2 H2+1) (Γ(1+α))
.

When AB < 0, the solution of Equation (13) is:

u12(η) = ±
2L
√
−3δ(A+BH2)√

ψ(4L2 AB+6L2B2 H2+1)δ

(
H −

√
|AB|
B

(
Esinh

(
2
√
|AB|η

)
+E cosh

(
2
√
|AB|η

)
+F

Esinh
(

2
√
|AB|η

)
+E cosh

(
2
√
|AB|η

)
−F

))−1

∓ 6
√

δBL√
−3ψ(4L2 AB+6L2B2 H2+1)

(
H −

√
|AB|
B

(
Esinh

(
2
√
|AB|η

)
+E cosh

(
2
√
|AB|η

)
+F

Esinh
(

2
√
|AB|η

)
+E cosh

(
2
√
|AB|η

)
−F

))
± 6

√
δBLH√

−3ψ(4L2 AB+6L2B2 H2+1)
,

(20)

where η = Lx− 2δLtα

(4L2 AB+6L2B2 H2+1) (Γ(1+α))
.

When A = 0, B 6= 0, the solution of the Equation (13) is:

u13(η) = ±
2L
√
−3δ(A+BH2)√

ψ(4L2 AB+6L2B2 H2+1)δ

(
H − E

B(Eη+F)

)−1
± 6

√
δBLH√

−3ψ(4L2 AB+6L2B2 H2+1)

∓ 6
√

δBL√
−3ψ(4L2 AB+6L2B2 H2+1)

(
H − E

B(Eη+F)

)
,

(21)
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where η = Lx− 2δLtα

(4L2 AB+6L2B2 H2+1) (Γ(1+α))
.

Family 2. When AB > 0, the solution of the Equation (13) is:

u21(η) = ∓
2
√

3δBLH√
ψ(2L2 AB− 1)

± 2

√
3ψδ(2L2 AB− 1)

(
A + BH2)L

ψ(2L2 AB− 1)

H +

√
A
B

E cos
(√

ABη
)
+ F sin

(√
ABη

)
F cos

(√
ABη

)
− E sin

(√
ABη

)
−1

, (22)

where η = Lx + 2δLtα

(2L2 AB−1) Γ(1+α)
.

When AB < 0, the solution of the Equation (13) is:

u22(η) = ±2
√

3ψδ(2L2 AB−1)(A+BH2)L
ψ(2L2 AB−1)

(
H −

√
|AB|
B

(
Esinh

(
2
√
|AB|η

)
+E cosh

(
2
√
|AB|η

)
+F

Esinh
(

2
√
|AB|η

)
+E cosh

(
2
√
|AB|η

)
−F

))−1

∓ 2
√

3δBLH√
ψ(2L2 AB−1)

,
(23)

where η = Lx + 2δLtα

(2L2 AB−1) Γ(1+α)
. .

When A = 0, B 6= 0, the solution of the Equation (13) is:

u23(η) = ∓
2
√

3δBLH√
ψ(2L2 AB− 1)

± 2

√
3ψδ(2L2 AB− 1)

(
A + BH2)L

ψ(2L2 AB− 1)

(
H − E

B(Eη + F)

)−1
, (24)

where η = Lx + 2δLtα

(2L2 AB−1) Γ(1+α)
.

Family 3. When AB > 0, the solution of the Equation (13) is:

u31(η) = a0 ±
2
√

3ψδ(2L2 AB− 1)BL
ψ(2L2 AB− 1)

∓ a0
√

3ψ
(
2L2 AB− 1

)
6
√

ψδ(2L2 AB− 1)BL
+

√
A
B

E cos
(√

ABη
)
+ F sin

(√
ABη

)
F cos

(√
ABη

)
− E sin

(√
ABη

)
 , (25)

where η = Lx + 2δLtα

(2L2 AB−1) Γ(1+α)
.

When AB < 0, the solution of the Equation (13) is:

u32(η) = a0 ±
2
√

3ψδ(2L2 AB− 1)BL
ψ(2L2 AB− 1)

∓a0
√

3ψ
(
2L2 AB− 1

)
6
√

ψδ(2L2 AB− 1)BL
−
√
|AB|
B

Esinh
(

2
√
|AB|η

)
+ E cosh

(
2
√
|AB|η

)
+ F

Esinh
(

2
√
|AB|η

)
+ E cosh

(
2
√
|AB|η

)
− F

. (26)

where η = Lx + 2δLtα

(2L2 AB−1) Γ(1+α)
.

When A = 0, B 6= 0, the solution of the Equation (13) is:

u33(η) = a0 ±
2
√

3ψδ(2L2 AB− 1)BL
ψ(2L2 AB− 1)

(
∓

a0
√

3ψ
(
2L2 AB− 1

)
6
√

ψδ(2L2 AB− 1)BL
− E

B(Eη + F)

)
, (27)

where η = Lx + 2δLtα

(2L2 AB−1) Γ(1+α)
.

The main advantage of the presented method is that it offers more general and enor-
mous amount of new exact traveling wave solutions when we take different values to p
with some free parameters. The exact solutions have its extensive importance to interpret
the inner structures of the natural phenomena. The explicit solutions represented various
types of solitary wave solutions according to the variation of the physical parameters.

4. Results and Discussion

The found solution of the time fractional simplified MCH equation was described
in this section. We get the travelling wave solutions assembled from Equations (19)–(27)
to the time fractional simplified MCH equation using the novel (G′/G2)-expansion ap-
proach. The time-fractional order α for the equations is changed in order to study graph-
ical behaviors of the exact solutions chosen from the preceding section. Mainly, the
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value of the time-fractional order used for the following simulations is α = 0.75. So-
lutions u11(η), u12(η), u21(η), u22(η), u31(η) and u32(η) of Equation (13) are selected
to present in terms of 3D, and 2D plots according to the values of α. The 3D solution
graphs of u11(η) , and u31(η) are portrayed on the domain {(x, t) : −5 ≤ x ≤ 5, 0 ≤ t ≤ 1},
of u12(η) on the domain {(x, t) : −5 ≤ x ≤ 5, 0 ≤ t ≤ 2 }, of u21(η) on the do-
main {(x, t) : −5 ≤ x ≤ 5, 0 ≤ t ≤ 5}, of u22(η) on the domain {(x, t) : −15 ≤ x ≤ 15,
0 ≤ t ≤ 5 }, and of u32(η) on the domain {(x, t) : −20 ≤ x ≤ 20, 0 ≤ t ≤ 1 }, respectively.

The 2D solution graphs, representing a relation among u(x) and x, of u11(η) is represented
on {(x, t) : −5 ≤ x ≤ 5, t = 0.2}, of u12(η), and u21(η) on {(x, t) : −5 ≤ x ≤ 5, t = 1},
of u22(η) on {(x, t) : −15 ≤ x ≤ 15, t = 2}, of u31(η) on {(x, t) : −5 ≤ x ≤ 5, t = 0.1},
and of u32(η) on {(x, t) : −20 ≤ x ≤ 20, t = 0.2} , respectively. The solutions are singular
periodic wave solution, and singular kink shape soliton, which are all generic solitary
wave solutions. The solutions (19), (22) and (25) provide singular periodic wave solutions
while, the solutions (20), (23), and (26) provide singular kink shape wave solutions, and the
solutions (21), (24), and (27) provide rational solutions, according to the aforementioned
solutions. Figure 1a,b represents the singular periodic wave solution, which is spatiotempo-
ral oscillations with discontinuous derivatives of u11(η) in Equation (19) for the parameters
values A = 2, B = 1, E = 1, F = 1, H = 1, ψ = 1, δ = −1, L = 1 in 3D and 2D. The
Figure 2a,b and Figure 3a,b are similar to Figure 1a,b for different values of the parameters.
Figure 4a,b represents the 3-dimensional and 2-dimensional singular kink wave solution
u12(η) in Equation (20) for the parameters values A = 2, B = 3, E = 1, F = 1, H = 2,
ψ = 2, δ = −4.5, L = 1. Figure 5a,b and Figure 6a,b are similar to Figure 4a,b for different
values of the parameters.
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B = 1, E = 1, F = 1, H = 1, ψ = 1, δ = −1, L = 1, α = 0.75, −5 ≤ x ≤ 5, 0 ≤ t ≤ 1,
for 3D and t = 0.2 for 2D plots.
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Figure 2. (a,b): Graphical analysis of Equation (23) for the values of the parameters A = 2,
B = −3, E = 1, F = 1, H = 1, ψ = 1, δ = −2, L = 1, α = 0.75, −15 ≤ x ≤ 15, 0 ≤ t ≤ 5
for 3D and t = 2 for 2D plots.
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Figure 3. (a,b): Graphical analysis of Equation (20) for the values of the parameters A = 2,
B = 3, E = 1, F = 1, H = 2, ψ = 2, δ = −4.5, L = 1, α = 0.75, −5 ≤ x ≤ 5, 0 ≤ t ≤ 2,
for 3D and t = 1 for 2D plots.
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Figure 4. (a,b): Graphical analysis of Equation (25) for the values of the parameters a0 = 2,
ψ = 1, δ = −2, L = 1, α = 0.75, −5 ≤ x ≤ 5, 0 ≤ t ≤ 1 for 3D and t = 0.1 for 2D plots.
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Figure 5. (a,b): Graphical analysis of Equation (22) for the values of the parameters A = 2,
B = 2, E = 1, F = 1, H = 1, ψ = 1, δ = 1, L = 1, α = 0.75, −5 ≤ x ≤ 5, 0 ≤ t ≤ 5 for
3D and t = 1 for 2D plots.
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Figure 6. (a,b): Graphical analysis of Equation (26) for the values of the parameters A = 2,
a0 = 2, ψ = 1, δ = −2, L = 1, α = 0.75, −20 ≤ x ≤ 20, 0 ≤ t ≤ 1 for 3D and t = 0.2 for
2D plots.

Comparison between our obtained solutions and the Liu et al. solutions [34].

Our Obtained Solutions Liu et al. Solutions [34]

If L = 1, α = 1, δ = 1, A = 2, B = 0.5, E = 0, ψ = 1,
a0 = 0, and u31(ξ) = u3,4(x, t) then our solution u31(ξ)

becomes: u3,4(x, t) = ±2
√

3 tan(x + 2t).

If we put C1 = 1, C2 = 0, λ2 − 4µ = −4, and k = 1,
a = 1 in u3,4(x, t) then u3,4(x, t) = ±2

√
3 tan(x + 2t).

If L = 1, α = 1, δ = 1, A = 2, B = 0.5, E = 1, ψ = 1,
a0 = 0, F = 0 and u33(ξ) = u3,4(x, t) then our solution u33(ξ)

becomes: u3,4(x, t) = ±2
√

3 1
x+2t .

If we put C1 = 1, C2 = 1, λ = 2, µ = 1, and k = −1,
a = 1 in u5(ξ) then u3,4(x, t) = ±2

√
3 1

x+2t .

If L = 1
2 , α = 1, δ = −2, A = 2, B = 2, E = 0, ψ = 4,

a0 = 0, and u31(ξ) = u3,4(x, t) then our solution u31(ξ)
becomes: u3,4(x, t) = ±

√
6i tan 1

2 (x− 4t).

If we put C1 = 1, C2 = 0, λ = 0, µ = 1
4 , and k = 1,

a = 1 in u3(ξ) then u3,4(x, t) = ±
√

6i tan 1
2 (x− 4t).

If L = 1, α = 1, δ = −1, A = 2, B = 0.5, F = 0, ψ = 1,
a0 = 0, E = 1 and u33(ξ) = u3,4(x, t) then our solution u33(ξ)

becomes: u3,4(x, t) = ±2
√

3i 1
x−2t .

If we put C1 = 1, C2 = 1, λ = 2, µ = 1, and k = 1,
a = 1 in u5(ξ) then u3,4(x, t) = ±2

√
3i 1

x−2t .
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5. Conclusions

The time fractional simplified MCH problem is solved using a novel (G′/G2)-expansion
method. Following the elimination of the trivial and excluded solutions, Equation (13) pro-
vides three types of solutions: trigonometric, exponential, and rational function solutions.
The Maple software package was used to replace all of the exact answers created in this work
back into their respective equations, and their fulfilment validated the correctness of the
solutions provided in the current paper. After illustrating the graphs of numerous solutions
for the value of α = 0.75 they demonstrate physical properties such as the singular periodic
wave solutions, and singular kink wave solutions. The solutions’ features make them ideal
for analyzing nonlinear processes in applied math, physics, and engineering. A soliton, for
example, is a self-reinforcing wave packet that maintains its shape while propagating at a
constant rate. Solitons, in other words, are unaffected by collisions with other solitons in
terms of shape and speed, and are studied in nuclear physics, quantum mechanics, and
waves along a weakly anharmonic mass-spring chain. Singular periodic travelling waves,
among other things, play a role in self-oscillatory systems, reaction–diffusion–advection
systems, and excitable chemical reactions. To conclusion, the method produces some truly
unusual forms of solutions, and its performance is clear, direct, dependable, and successful.
The limitation of the proposed method is that, it depends on the value of arbitrary constant
H which can be calculated when the transformed ODE contains the constant of integration.
As a result, we conclude that the provided approach can be used to address a wide range
of NPDEs emerging in solitons theory or other physics and engineering areas. Finally,
future research could benefit from applying the novel(G′/G2)-expansion approach to the
proposed challenges involving an extension to the NLEEs involving sequential fractional
partial derivatives.
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