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Abstract: This paper comprehensively reviews the spiral dynamics optimization (SDO) algorithm
and investigates its characteristics. SDO algorithm is one of the most straightforward physics-based
optimization algorithms and is successfully applied in various broad fields. This paper describes the
recent advances of the SDO algorithm, including its adaptive, improved, and hybrid approaches. The
growth of the SDO algorithm and its application in various areas, theoretical analysis, and comparison
with its preceding and other algorithms are also described in detail. A detailed description of different
spiral paths, their characteristics, and the application of these spiral approaches in developing and
improving other optimization algorithms are comprehensively presented. The review concludes the
current works on the SDO algorithm, highlighting its shortcomings and suggesting possible future
research perspectives.

Keywords: advances of SDO; applications of SDO; metaheuristic optimization; nature-inspired
algorithms; optimization problems; spiral dynamics optimization; spiral-inspired optimization
algorithms; spiral paths

1. Introduction

In engineering applications, metaheuristic optimization algorithms are more popular
and widely used for computing the optimal solution [1]. This broad application is because:

1. The algorithms are easy to implement and do not require gradient information as they
depend on relatively simple concepts;

2. The algorithms can avoid settling at optimal local solutions;
3. The algorithms can be applied to various problems of different fields.

A great variety of nature and population-based metaheuristic optimization algorithms
have been published in the literature [2]. As reported in [2], these algorithms are cate-
gorized into breeding-based, swarm intelligence-based, physics-based, chemistry-based,
social human behavior-based, plant-based, and others. Many developed metaheuristic
optimization algorithms published in the literature are swarm intelligence-based algo-
rithms. After swarm intelligence-based algorithms, physics-based algorithms are the most
widely proposed and implemented in various applications [3,4]. As the name suggests,
in swarm intelligence-based algorithms, some degree of intelligence is present in the algo-
rithm process while finding the optimal solution. However, in physics-based algorithms,
the algorithm process is based on specific laws or principles [3,5,6]. The main advantage
of physics-based algorithms compared to others is the most straightforwardness. This
is because the algorithm’s strategy is based on fundamental physical principles. Thus,
the algorithms can consistently and accurately represent the dynamics over the entire
domain. Further, some physics-based algorithms also take advantage of a nature-inspired
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ratio, called the golden ratio, which helps to converge quickly and effectively when finding
the optimal solution [7].

The most popular physics-based optimization algorithms are harmony search, gravi-
tational search algorithm (GSA), big bang big crunch, electromagnetic field optimization
(EFO), galaxy-based search [8], ray optimization, magnetic optimization, spiral dynamics
optimization [9], and water cycle optimization [10]. Spiral dynamics optimization (SDO) is
one of the most straightforward physics-based algorithms proposed by Tamura and Yasuda
in 2011, developed using a logarithmic spiral phenomenon in nature [9]. The algorithm is
simple and has few control parameters. Moreover, the algorithm has fast computational
speed, local searching capability, diversification in the early phase, and intensification in
the later stage.

This review paper provides the origin and concept of the SDO algorithm for an n-
dimensional system. The effect of variation of spiral parameters (radius and angle) for
two- and three-dimensional systems are analyzed by generating the conventional and
hypotrochoid spiral trajectories. Besides, the recent advances in SDO algorithm, including
adaptive, improved, and hybrid versions, are highlighted. The current applications of SDO
and its variants are also focused. Different types of spirals, coordinates on xy-plane, and tra-
jectories are generated to understand spiral behaviors. Further, various novel optimization
algorithms’ developments using these spirals are presented comprehensively. Therefore,
this review paper helps in guiding multiple researchers who are currently working and
willing to work by employing SDO and its variants to solve various engineering problems.
Moreover, the review helps in developing or improving existing algorithms using the
spiral phenomenon.

The paper’s remaining sections are organized as follows: the origin and concept of the
SDO algorithm and the effect of the spiral parameter in developing search trajectories are
presented in Section 2. Section 3 offers the recent adaptive, improved, and hybrid versions
of the SDO algorithm. Section 4 gives the different types of spiral trajectories and a list of
novel optimization algorithms created using these trajectories. The applications of SDO and
its hybrid versions are presented in Section 5. Finally, the paper is concluded in Section 6.

2. Spiral Dynamics Optimization Algorithm

This section presents the origin and the concept of the SDO algorithm for two-
dimensional and three-dimensional systems. A detailed analysis of the effect of varying
spiral parameters (radius and angle) is also presented.

2.1. Origin

Tamura and Yoshida developed the SDO algorithm in 2011 to mimic the spiral phe-
nomena in nature [9,11]. Many spirals are available in nature, such as galaxies, aurora,
blackbuck horns, hurricanes, tornadoes, seashells, snails, ammonites, cabbage butterflies,
Pieris brassicae, chameleon tail, seahorse, and fish vortex [12,13]. The spirals are also seen
in ancient art created by humanity during 5000 BC to 1600 AD [12]. Over the years, several
researchers have made efforts to understand the spiral sequences and complexities and
develop equations and algorithms of the spirals. Moreover, it is worth highlighting that
the frequently encountered spiral phenomenon in nature is the logarithmic spiral, which
can be seen in galaxies, tropical cyclones, and nautilus shells [14]. The discrete processes
of generating a logarithmic spiral have been realized as an effective search behavior in
metaheuristics, which inspired the spiral dynamics optimization algorithm to develop.

2.2. Concept

In the SDO algorithm, the multipoint search function for an n-dimensional system is
formulated as [15],

xk+1 = rR(n)(θ)xk − (rR(n)(θ)− In)x∗, (1)



Fractal Fract. 2022, 6, 27 3 of 31

where r is the spiral radius, R(n)(θ) is the rotational matrix of order n× n, θ is the spiral
rotation angle, In is the identity matrix of order n× n, x∗ is the spiral center, xk and xk+1
are the search point positions at iterations k and k + 1, respectively.

The rotational matrix R(n)(θ) for an n-dimensional case on an arbitrary xixj-plane is
given as [9,16,17],

R(n)(θ) =



1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
0 0 cos(θi,j) . . . − sin(θi,j) 0 0
...

...
...

. . .
...

...
...

0 0 sin(θi,j) . . . cos(θi,j) 0 0
0 0 0 . . . 0 1 0
0 0 0 . . . 0 0 1


, (2)

where θi,j is the spiral rotation angle around the origin on xixj-plane.
From (2), the only one possibility of rotational matrix R(2)(θ) for a two-dimensional

system on x1x2-plane is given as follows:

R(2)(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (3)

On the other hand, the three possible combinations of rotational matrix R(3)(θ) for a
three-dimensional system on x1x2, x2x3, and x1x3-planes are respectively given as follows:

R(3)
1,2 (θ) =

cos(θ1,2) − sin(θ1,2) 0
sin(θ1,2) cos(θ1,2) 0

0 0 1

, (4)

R(3)
2,3 (θ) =

1 0 0
0 cos(θ2,3) − sin(θ2,3)
0 sin(θ2,3) cos(θ2,3)

, and (5)

R(3)
1,3 (θ) =

cos(θ1,3) 0 − sin(θ1,3)
0 1 0

sin(θ1,3) 0 cos(θ1,3)

. (6)

From (1), it is to be noted that the model generated the spiral trajectories around the
center x∗ and these trajectories are classified into two types [18,19]:

• If r > 1 and θ ∈ (−π
2 , π

2 ), the trajectory is a conventional spiral;
• If r < 1 and θ ∈ (−π

2 , π
2 ), the trajectory is a hypotrochoid spiral.

From the above classification, the spiral’s direction of rotation based on the value of θ
is classified as follows:

• If θ ∈ (−π
2 , 0), the rotation of trajectory is clockwise;

• If θ ∈ (0, π
2 ), the rotation of trajectory is anticlockwise.

The spiral trajectories for a two-dimensional system for various values of r ∈ [−1, 1]
and θ = π

8 is shown in Figure 1. Similarly, the trajectories for various values of θ ∈ [−π
2 , π

2 ]
and r = 0.85 for conventional spiral and r = −0.85 for hypotrochoid spiral are shown in
Figure 2. Further, the conventional and hypotrochoid spiral trajectories for both positive
and negative values of θ are shown in Figure 3. In all these cases, the starting point used in
the study is (25, 25).
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Figure 1. Spiral trajectories for a two-dimensional system for various values of r ∈ [−1, 1] and θ = π
8 :

(a) conventional spiral and (b) hypotrochoid spiral.
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Figure 2. Spiral trajectories for a two-dimensional system for various values of θ ∈ [−π
2 , π

2 ] and
r = 0.85 for conventional spiral in (a) and r = −0.85 for hypotrochoid spiral in (b).
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Figure 3. Spiral trajectories for a two-dimensional system for both positive and negative values of θ:
(a) conventional spiral and (b) hypotrochoid spiral.

Observing the notations k = 0, k = 1, . . . , k = 4 on spiral trajectories in Figures 1–3,
it can be noted that at each iteration, the spiral point from the starting point moves by an
angle θ and then tends towards the center x∗. Thus, the net effect is the spiral movement
of the initial point towards the center. The trajectories also depict the angle θ, controlling
the spiral curve. A smoother curve is achieved for smaller values of θ, compared to the
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boxy curved with larger values of θ (refer to Figure 2a). The spiral trajectories in Figure 3
show the clockwise and anticlockwise spiral movement for negative and positive angles,
respectively. On the other hand, the spiral radius r controls the spiral movement towards
the center x∗. A quick movement of spiral towards the center is achieved for smaller values
of r, compared to the slow movement with larger values of r (refer to Figures 1 and 2).
The hypotrochoid spirals shown in Figures 1b, 2b, and 3b are internal trajectories which are
generated along a circle. The advantage of a hypotrochoid spiral over conventional spirals
is it does not exceed the search space and can search most of the area in the search space.

In a similar way, the conventional and hypotrochoid spiral trajectories for a
three-dimensional system with r = 0.95 and θ = π

4 are shown in Figure 4. The trajec-
tory in Figure 4a on the x1x2-plane is obtained using the rotational matrix in (4). Similarly,
the trajectories in Figure 4b,c on the x2x3 and x1x3-planes are obtained using the rotational
matrices in (5) and (6), respectively. The starting point used is(25, 25, 25) in all of these cases.
The trajectories depict the conventional spiral with a positive r value and the hypotrochoid
spiral with a negative r value. As the θ value is positive, all the spiral movements are
anticlockwise. As mentioned earlier, the advantage of hypotrochoid spirals is they can
search most of the area in the search space, as shown in Figure 4. The search space of a
conventional spiral is only on the positive plane, while the hypotrochoid spirals search
space is both negative and positive. Thus, the trajectories in the figure conclude that the
hypotrochoid spirals can search most of the area in the search space.
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Figure 4. Conventional and hypotrochoid spiral trajectories for a three-dimensional system with
r = 0.95 and θ = π

4 : (a) on x1x2-plane with R1,2. (b) on x2x3-plane with R2,3. (c) on x1x3-plane
with R1,3.

3. Advances of Spiral Dynamics Optimization Algorithm

This section presents the recent adaptive, improved, and hybrid versions of the
SDO algorithm.

3.1. Adaptive Versions of Spiral Dynamics Optimization Algorithm

Researchers have developed the adaptive versions of the SDO algorithm by dynami-
cally varying the spirals’ radius and angle based on the fitness value during each iteration.
The four types of proposed adaptive approaches in the literature are linear, quadratic,
exponential, and fuzzy [16,20,21]. The mathematical functions of spirals’ radius and angle
using the proposed approaches are given in Figure 5.

In the figure, the notations are defined as follows:

• rla and θla are the computed radius and angle using linear adaptive approach;
• rqa and θqa are the obtained radius and angle using quadratic adaptive approach;
• rea and θea are the radius and angle obtained using exponential adaptive approach;
• r f a and θ f a are the calculated radius and angle using fuzzy adaptive approach;
• rl ∈ [0, 1] and ru ∈ [0, 1] are the minimum and maximum radius of spiral;
• θl ∈ [0, 1] and θu ∈ [0, 1] are the minimum and maximum angles of spiral;
• c1 and c2 are constants;
• fuzzy(·) is the fuzzy logic mapping;
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• YFit is the difference between fitness value at a current iteration f (xi(k)) and best
fitness min( f (xi(k))), is defined as,

YFit = f (xi(k))−min( f (xi(k))). (7)

In [17], using the linear adaptive approach in Figure 5, the authors have proposed
the adaptive hypotrochoid SDO algorithm. The proposed algorithm performs best on
various benchmark functions compared to conventional techniques. On the other hand,
in [22], a self-adaptive approach is proposed for the SDO algorithm to update the spiral
radius and angle during the optimization. The approach’s advantage is that all search
points are updated by randomly tuning the parameter values in each iteration. Similarly,
the authors of [23] have proposed an adaptive SDO by incorporating three mechanisms,
such as (i) bi-considering updation, (ii) self-adaptive radius, and (iii) punish mechanisms.
The proposed algorithm boosted the optimization efficiency and avoided trapping at the
local optimal minima.

Adaptive SDO 
Algorithm

Linear Adaptive

Fuzzy Adaptive

Exp
o

n
en

tial A
d

ap
tive Q

u
ad

ra
ti

c 
A

d
ap

ti
ve

Figure 5. Adaptive versions of the SDO algorithm.

3.2. Improved Versions of Spiral Dynamics Optimization Algorithm

As mentioned earlier in Section 2.2, the algorithm settles into optimal local values at the
end of the optimization process due to insufficient exploration of the conventional SDO’s
search space. Thus, to avoid this problem, Nasir et al. have proposed the improved SDO
algorithm using the bacterial foraging algorithms’ elimination–dispersal strategy [24,25].
In this enhanced version, the algorithm structure is kept the same. However, two new
phases, namely elimination and dispersal, are introduced. Similarly, Hashim et al. have
proposed the chaotic SDO algorithm logistic chaotic map patterns in the conventional
SDO [26,27]. The chaotic map pattern helps in the initial population distribution rather
than randomly in conventional SDO. Moreover, the search strategy of the artificial bee
colony optimization algorithm is employed to improve the SDO’s exploration capability.
The authors have also proposed the greedy SDO algorithm by incorporating the greedy
selection stage and chaotic logistic map in the conventional SDO [28]. In this selection
stage, the obtained solution is compared to the previous value for updating the spiral
positions. The authors of [18,19] have proposed the hypotrochoid SDO algorithm in which
the search points follow the hypotrochoid spiral rather than the conventional spiral in SDO.
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The proposed hypotrochoid SDO can explore the search space more effectively and explore
the whole neighborhood of the optimal center. The experimental validation on optimal
triaxial accelerometers placement in the Shanghai Tower in China [19], and sizing and
layout of truss structures [18] has shown the better performance of hypotrochoid SDO than
its predecessors.

The SDO algorithm in Section 2.2 is developed by utilizing a feature of the logarithmic
spiral. This algorithm is also known as a deterministic or direct-solving metaheuristic
optimization algorithm. One of the significant drawbacks of this algorithm is the slow
convergence. Therefore, the authors of [29–31] have proposed a stochastic SDO algorithm
by incorporating some random disturbances at each searching point of the algorithm.
Similarly, the authors of [32] have introduced the iterative SDO algorithm for analyzing the
information on blurred images. In this algorithm, the model’s output is given as an input to
the same model iteratively. Thus, the optimization algorithm searches for the sharp image
spirally with the blurred vision at the initial stage. On the other hand, the authors of [33]
have proposed the distributed SDO algorithm to increase the diversity in the search space.
In this conventional SDO algorithm, it is clear that the search points rotate spirally around
the optimal center only. Thus, the algorithm falls into the local minimum quickly. However,
in the proposed distributed SDO algorithm, the population of search points is split into
sub-populations to increase diversity and capture the whole search space. The summary of
all these approaches is given in Figure 6.

Improved Versions of 
SDO Algorithm

Improved SDO Algorithm

✓ Uses bacterial foraging algorithms'
elimination and dispersal strategies.

✓ Improves the exploration rate of SDO
algorithm.

Chaotic SDO Algorithm

✓ Uses logistic chaotic map patterns for
initial population distribution.

✓ Alternative for random initialization
of SDO algorithm.

Hypotrochoid SDO Algorithm

✓ Uses the hypotrochoid spiral rather
than the conventional spiral in SDO.

✓ Helps in exploring the search space
effectively.

Stochastic SDO Algorithm

✓ Incorporates random disturbances at
each searching point of the algorithm.

✓ Improves the convergence speed of
conventional SDO algorithms.

Iterative SDO Algorithm

✓ The model's output is given as an
input to the same model iteratively.

✓ Increases the diversity in the search
space.

Distributed SDO Algorithm 

✓ The population of search points is
split into sub-populations.

✓ Increases the diversity in the search
space.

Figure 6. Improved versions of the SDO algorithm.

3.3. Hybrid Versions of Spiral Dynamics Optimization Algorithm

From the literature review, the following points are worth highlighting on the perfor-
mance of the SDO algorithm. SDO has the advantages of a simple structure, few control
parameters, and early diversification and intensification strategies. However, the SDO’s
performance is poor in searching the whole search space [20,34], and the exploration mech-
anism of the SDO needs to be improved [35]. The algorithm gets trapped at optimal local
minima easily [33].

Thus, to improve the performance of SDO, researchers have proposed the hybridiza-
tion of SDO with other algorithms. Further, various algorithms’ performance has also
been enhanced using SDO. The hybrid versions of the SDO algorithm presented in the
literature used an artificial bee colony (ABC) [36,37], antlion optimization (ALO) [38], bac-
terial chemotaxis algorithm (BCA) [20,34,39], bacterial foraging algorithm (BFA) [35,40,41],
biogeography-based optimization (BBO) [42], cuckoo search (CS) [43], genetic algorithm
(GA) [44], particle swarm optimization (PSO) [45–48], sine-cosine algorithm (SCA) [49],
and teaching–learning-based optimization (TLBO) [50], as shown in Figure 7. As shown in
the figure, the excellent exploitation strategy of SDO is hybridized with the fast exploration
strategy of another algorithm to balance both the exploitation and exploration phases.
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Hybrid SDO 
Algorithm

ABC

ALO

BCA

BFA

BBO

CS

GA

PSO

SCA

TLBO

Logarithmic spiral search
strategy is introduced in the
teaching phase.

Integrated the random and
spiral searching mechanism
in BBO's mutation operator.

Adopted the spiral strategy
from SDO and incorporated
it into the SCA algorithm.

Incorporated the spiral
equation of SDO into the
chemotaxis of BFA.

Position update equation of
PSO is modified using a
spiral search mechanism.

Hybridized using chemotaxis
strategy in exploration and
SDO in exploration stages.

Modified the GA algorithm
to move its chromosomes
spirally using SDO.

Complex spiral paths are
introduced in ALO to select
the elite antlion.

Fermat spiral searching
movement is introduced in
the CS algorithm.

Archimedean-based spiral
strategy is used to hybridize
with the ABC.

Figure 7. Hybrid versions of the SDO algorithm.

Moreover, there are several other novel optimization algorithms in which spiral behav-
ior or trajectory is used during the development of the algorithm. A detailed description of
various spiral paths and a list of novel spiral path-inspired optimization algorithms are
discussed in the following section.

4. Spiral Path Inspired Optimization Algorithms

The first part of this section presents the various spiral trajectories used to develop the
optimization algorithms. Then, the list of different novel optimization algorithms created
using these spirals is shown.

4.1. Spiral Paths

Patterns referred to as visible consistencies found in nature are trees, spirals, waves,
etc. Visual patterns in nature are modeled using chaos theory, fractals, spirals, etc. In some
natural patterns, the spirals and fractals are related. For instance, a variant of the logarithmic
spiral, namely the Fibonacci spiral, is based on the golden ratio and Fibonacci numbers.
As it is logarithmic, the curve at every scale appears the same and can be considered a fractal.
Romanesco broccoli is an example of such Fractal spirals. The above patterns inspired
researchers to develop optimization algorithms. Different types of spiral trajectories used
in the research include:

• Archimedes spira;
• Cycloid spiral;
• Epitrochoid spiral;
• Hypotrochoid spiral;
• Logarithmic spiral;
• Rose spiral;
• Inverse spiral; and
• Overshoot spirals.

A detailed description of the five most widely used spirals, including Archimedes,
logarithmic, rose, epitrochoid, and hypotrochoid, is provided underneath. This detailed
description includes the coordinates on the xy-plane and trajectories showing the effect of
each parameter on the xy-plane.
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4.1.1. Logarithmic Spiral

The logarithmic spirals often appear in nature. For instance, the nautilus cutaway,
Iceland’s low-pressure area, galaxies, and tropical cyclones arms usually take a logarithmic
spiral shape. The logarithmic spiral is also known as equiangular or growth spiral because
the spiral distance increases in geometric progression. The coordinates of a logarithmic
spiral on xy-plane are given as follows [13,38]:

x(φ) = a · ebφ · cos(φ), y(φ) = a · ebφ · sin(φ), (8)

where φ is the angle, a and b are the arbitrary constants.
The logarithmic spiral for a = 0.18, φ from −4π to 4π, and various b values is shown

in Figure 8. The spiral in Figure 8a is obtained for positive values of b, while Figure 8b is
obtained for negative values. The trajectories in Figure 8 show that parameter b controls
the tightness and the direction of the spiral. The trajectories in Figure 8a also depict the
logarithmic spiral proprieties that for positive b values and φ tends to +∞, the spiral
evolves in an anticlockwise direction. Whereas for the same b values and φ tends to −∞,
the spiral evolves in a clockwise direction. However, for negative b values, the spiral
evolves or twists in the opposite direction.
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Figure 8. Logarithmic spiral with various values of b: (a) logarithmic spiral with positive b values
and (b) logarithmic spiral with negative b values.

4.1.2. Archimedean Spiral

Archimedean spiral is another famous spiral that has been used in significant applica-
tions of engineering, biology, etc. The Archimedean spiral is also known as the arithmetic
spiral. This spiral can be seen in nature in ferns, millipedes, and human fingerprints.
The spiral trajectory is the locus of a point’s position that moves away from the fixed
point with a constant speed along a line that rotates with a constant angular velocity.
The coordinates of an Archimedean spiral on xy-plane is given as follows [13,38]:

x(ψ) = (c + d · ψ) · cos(ψ), y(ψ) = (c + d · ψ) · sin(ψ), (9)

where c and d are constants that define the spirals initial radius and the successive turns
difference, respectively.

The Archimedean spiral for c = 0.5, ψ from 0 to −7π, and various d values are shown
in Figure 9. The trajectory in Figure 9a is obtained for positive values of d, while Figure 9b
is obtained for negative values. As the initial radius is c = 0.5, all the spirals are starting
at this value, as shown in Figure 9. The spiral growth rate d controls the increment per
revolution. Thus, the distance between successive turns is constant, which is equal to the
value of d. Moreover, the parameter d controls the evolution of the spiral. The spiral in
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Figure 9a depicts that for positive d values, and the spiral evolves in an anticlockwise
direction. Whereas for negative d values, the spiral evolves clockwise.
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Figure 9. Archimedean spiral with various values of d: (a) Archimedean spiral with positive d values
and (b) Archimedean spiral with negative d values.

Observing the spirals in Figures 8 and 9 shows a difference between the Archimedean
and logarithmic spirals worth highlighting. In the Archimedean spiral, the intersection
points of a ray from the origin on successive turnings have a constant separation distance.
However, in a logarithmic spiral, these distance of intersection points on next turnings
from the origin will form a geometric progression.

4.1.3. Rose Spiral

As the name suggests, the rose spiral is often seen in the unfurling of rose petals and
holds the properties of symmetric and periodic arc curves. The coordinates of a rose spiral
on xy-plane is given as follows [13,38]:

x(ξ) = e · cos(nξ) · cos(ξ), y(ξ) = e · cos(nξ) · sin(ξ), (10)

where e and n are constants that define the pedal length and number, respectively.
The rose spiral with various values of e and n are shown in Figure 10. The spiral in

Figure 10a is achieved for n = 2 and multiple values of e. Similarly, the spiral in Figure 10b
is obtained for e = 2 and various values of n. In both cases, ξ ranges from 0 to 2. The spirals
in Figure 10a depict that parameter e controls the petal length. It is worth noting that as the
value of e increases, the petal length increases. The spirals in Figure 10b also show that n
controls petals’ number, size, and length. For an even value of n, the number of petals is 2n.
However, for odd values of n, the number of petals is only n.
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Figure 10. Rose spiral with various values of e and n: (a) rose spiral with constant n value and
variable e and (b) rose spiral with constant e value and variable n.
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4.1.4. Epitrochoid and Hypotrochoid Spirals

Epitrochoid and hypotrochoid spirals are a family of curves generated by a point
attached to a rolling circle. This rolling circle will roll out around the outside of a fixed
circle to form an epitrochoid spiral. On the other hand, to create a hypotrochoid spiral,
the rolling one will roll around inside the fixed one. Let ρ1 and ρ2 be the radii of rolling
and fixed circles, respectively, and f is the distance between the point and rolling circle’s
center. The coordinates of epitrochoid spiral on xy-plane is given as [13,38],

x(ζ) = (ρ2 + ρ1) · cos(ζ)− f · cos
(

ρ2 + ρ1

ρ1
ζ

)
, and

y(ζ) = (ρ1 + ρ2) · sin(ζ)− f · sin
(

ρ1 + ρ2

ρ1
ζ

)
.

(11)

Similarly, the coordinates of a hypotrochoid spiral on xy-plane is given as follows:

x(ζ) = (ρ2 − ρ1) · cos(ζ) + f · cos
(

ρ2 − ρ1

ρ1
ζ

)
, and

y(ζ) = (ρ2 − ρ1) · sin(ζ)− f · sin
(

ρ2 − ρ1

ρ1
ζ

)
.

(12)

The trajectories of epitrochoid and hypotrochoid spirals for ρ1 = 0.8, ρ2 = 3, d = 2.5,
and ζ ranging from 0 to 10π is shown in Figure 11a,b, respectively. In both spirals, it should
be noted that ζ significantly affects the spiral’s shape. If the considered ζ ranges from 0 to
2π, the rolling circle will revolve only once around the fixed circle. Thus, it is not possible
to obtain the whole pattern of the spiral. These spirals can be drawn using Spirograph
toys and often appear in nature. For instance, the planets orbit in a geocentric system,
and Wankel engines’ combustion chambers take these spiral shapes.
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Figure 11. Epitrochoid and hypotrochoid spirals for ρ1 = 0.8, ρ2 = 3, and d = 2.5: (a) epitrochoid
spiral and (b) hypotrochoid spiral.

4.2. Spiral Path-Based Optimization Algorithms

Over the years, researchers have developed various novel optimization algorithms in
which the spiral motion has been used while mimicking the system’s behavior. Further,
an improved version of multiple algorithms is also proposed using spiral trajectories to
improve the performance of conventional techniques. Table 1 provides the list of spiral path-
inspired optimization techniques, including the inspiration of developing the algorithm,
the type of spiral used, and the source code links.
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Table 1. List of spiral path-inspired optimization algorithms.

Ref. Year Algorithm Author Inspiration Spiral Type Source Code Link

[40,41] 2010 Spiral Bacterial Foraging
Optimization Algorithm

Alireza
Kasaiezadeh et al.

E. coli bacteria foraging
behavior Spiral –

[8] 2011 Galaxy-Based Search
Algorithm

Hamed
Shah-Hosseini Arms of the spiral galaxy Spiral –

[51] 2014 Hurricane-Based
Optimization Algorithm Isamil Rbouh et al.

Behavior of hurricanes,
radial wind, and pressure

profiles
Logarithmic spiral –

[52] 2015 Moth–flame Optimization
Algorithm Seyedali Mirjalili Moths’ navigation behavior

around the flame Logarithmic spiral https://seyedalimirjalili.com/mfo
(accessed on 1 December 2021)

[53] 2016 Whale Optimization
Algorithm Seyedali Mirjalili Whales’ hunting bubble net

phenomenon Logarithmic spiral https://seyedalimirjalili.com/woa
(accessed on 1 December 2021)

[54] 2017 Moth Swarm Optimization
Algorithm

Al-Attar Ali
Mohamed et al.

Moths orientation towards
the moonlight Logarithmic spiral

https://mathworks.com/
matlabcentral/fileexchange/57822

(accessed on 1 December 2021)

[50] 2018
Improved

Teaching–Learning-Based
Optimization Algorithm

Zhuoran
Zhang et al.

effect of teacher influence on
learners Logarithmic spiral –

[55] 2018 Developed Grey Wolf
Optimization Algorithm Mostafa Abdo et al. Grey wolves leadership and

hunting strategies Logarithmic spiral –

[56] 2019 Seagull Optimization
Algorithm

Gaurav
Dhiman et al.

Seagulls’ migration and
attacking behavior 3D logarithmic spiral

https://mathworks.com/
matlabcentral/fileexchange/75180

(accessed on 1 December 2021)

[57] 2019 Emperor Penguins Colony
Optimization Algorithm Sasan Harifi et al. Emperor penguins behavior Logarithmic spiral –

[36,37] 2019 Spiral Artificial Bee Colony
Algorithm Sonal Sharma et al. Honey bee swarms’

intelligent foraging behavior
Logarithmic and

Archimedean spirals –

[58] 2019 Sooty Tern Optimization
Algorithm

Gaurav
Dhiman et al.

Sooty terns’ migration and
attacking behaviors Spiral

https://mathworks.com/
matlabcentral/fileexchange/76667

(accessed on 1 December 2021)

[59] 2019 Whirlpool Algorithm Yuanyang
Zou et al.

Physical phenomenon of
whirlpool Spiral –

[60] 2020 Improved Crow Search
Algorithm Xiaoxia Han et al.

Crows intelligent behavior
of searching, hiding and

retrieving food
Logarithmic Spiral –

https://seyedalimirjalili.com/mfo
https://seyedalimirjalili.com/woa
https://mathworks.com/matlabcentral/fileexchange/57822
https://mathworks.com/matlabcentral/fileexchange/57822
https://mathworks.com/matlabcentral/fileexchange/75180
https://mathworks.com/matlabcentral/fileexchange/75180
https://mathworks.com/matlabcentral/fileexchange/76667
https://mathworks.com/matlabcentral/fileexchange/76667
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Table 1. Cont.

Ref. Year Algorithm Author Inspiration Spiral Type Source Code Link

[38] 2020 Improved Ant Lion
Optimization Algorithm M. W. Guo et al. Natural hunting

phenomenon of antlions

Archimedes, Cycloid,
Epitrochoid,

Hypotrochoid,
Logarithmic, Rose,

Inverse,
and Overshoot

spirals

–

[61] 2020 Manta Ray Foraging
Optimization Algorithm Weiguo Zhao et al. Manta rays intelligent

behavior Logarithmic spiral
https://www.mathworks.com/

matlabcentral/fileexchange/73130
(accessed on 1 December 2021)

[62] 2020 Bald Eagle Search
Optimization Algorithm H. A. Alsattar et al. Bald eagles hunting behavior Spiral

https://mathworks.com/
matlabcentral/fileexchange/86862

(accessed on 1 December 2021)

[63] 2020 Improved Firefly Algorithm Jinran Wu et al. Fireflies’ flashing behavior Logarithmic spiral
https://github.com/wujrtudou/

AdaptiveFireflyAlgorithm (accessed
on 1 December 2021)

[64] 2021 Spiral Water Cycle
Algorithm Heba F. Eid et al. Natural hydrological cycle

process Hyperbolic spiral –

[65] 2021 Improved Slap Swarm
Optimization Algorithm Diab Mokeddem Behavior of slap chains Logarithmic spiral –

[66] 2021 Spiral Flying Sparrow Search
Algorithm

Chengtian
Ouyang et al.

Sparrow’s behaviors during
group wisdom,

antipredation, and foraging
Logarithmic spiral –

[67] 2021 Spiral Grasshopper
Optimization Algorithm Zhangze Xu et al. Grasshoppers foraging and

swarming behavior Logarithmic spiral –

[68] 2021 Aquila Optimization
Algorithm

Laith
Abualigah et al.

Aquilas’ behavior during
prey catching Spiral

https://www.mathworks.com/
matlabcentral/fileexchange/89381

(accessed on 1 December 2021)

[69] 2021 Spiral Spotted Hyena
Optimization Algorithm Vijay Kumar et al. Spotted hyenas behavior

during hunting Logarithmic spiral –

[70] 2021 Spiral Chicken Swarm
Optimization Algorithm Miao Li et al.

Chicken swarms’
hierarchical order and its

behaviors
Logarithmic spiral –

[71] 2021 Golden Eagle Optimization
Algorithm

Abdolkarim
Mohammadi-
Balani et al.

Golden eagles’ intelligent
behavior during hunting Spiral

https://mathworks.com/
matlabcentral/fileexchange/84430

(accessed on 1 December 2021)

https://www.mathworks.com/matlabcentral/fileexchange/73130
https://www.mathworks.com/matlabcentral/fileexchange/73130
https://mathworks.com/matlabcentral/fileexchange/86862
https://mathworks.com/matlabcentral/fileexchange/86862
https://github.com/wujrtudou/AdaptiveFireflyAlgorithm
https://github.com/wujrtudou/AdaptiveFireflyAlgorithm
https://www.mathworks.com/matlabcentral/fileexchange/89381
https://www.mathworks.com/matlabcentral/fileexchange/89381
https://mathworks.com/matlabcentral/fileexchange/84430
https://mathworks.com/matlabcentral/fileexchange/84430
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For example, a detailed description of four novel optimization algorithms in which
spiral trajectory has been used in the development is explained underneath. The chosen
novel optimizations algorithms list includes moth–flame, whale, seagull, and Aquila.
Further, a detailed description of four improved optimization algorithms using spiral
trajectories is also explained in this section. The enhanced optimization algorithms are the
water cycle, antlion, slap swarm, and sparrow search. Some of these algorithms have been
widely used by various researchers recently, and others have been developed newly, thus
selected for the detailed explanation.

4.2.1. Moth–Flame Optimization Algorithm

The moth–flame optimization algorithm was developed in 2015 by Seyedali Mirjalili
from the behavior of moths’ navigation around the light/flame in a spiral path [52,72,73].
The application of a logarithmic spiral to mimic the moths’ transverse orientation property
around the flame in this algorithm is explained underneath. In the algorithm, the initial
moths’ positions will be updated with respect to flames using the logarithmic spiral as
follows [52,74]:

mi,j =

{
Di,j · ebτ · cos(2πτ) + fi,j, for i ≤ FN

Di,j · ebτ · cos(2πτ) + fN,j, for i > FN
, (13)

where mi,j, fi,j, and Di,j are the positions of jth variable of ith moth, flame, and distance
between the moth and its corresponding flame, N is the total number of flames. Further, b
and τ are the parameters of logarithmic spiral (refer to Section 4.1.1).

The major drawback of this algorithm is the premature convergence at optimal local
solutions during the search process. Moreover, they cannot be applied to permutation
problems as it is developed for continuous search space [75]. As mentioned in Table 1,
the source code of this optimization algorithm created using MATLAB for both single and
multiobjective problems is made publicly available by the developer on his website at
https://seyedalimirjalili.com/mfo (accessed on 1 December 2021). Further, the links for the
source code using other platforms, such as Python, C++, and R studio, are also available on
the same website.

4.2.2. Whale Optimization Algorithm

The whale optimization algorithm is a novel metaheuristic algorithm developed
in 2016 by Seyedali Mirjalili and Andrew Lewis to mimic whales’ hunting bubble net
phenomenon in a spiral motion [53,76–79]. The algorithm is a model of capturing whales’
behavior during the encircling, attacking, and searching of prey. During the encircling
phase, all the whales’ positions will be updated to move towards the best whale position,
which is near to the target and is given as,

~X(i + 1) = ~X∗(i)− ~A · |~C · ~X∗(i)− ~X(i)|. (14)

During the phase of attacking the prey, the whales move spirally using the bubble net
movement phenomenon. Thus, position updation of whales during this phenomenon in
logarithmic spiral motion is as follows:

~X(i + 1) = |~X∗(i)− ~X(i)| · ebl · cos(2πl)~X∗(i). (15)

Finally, the whales will choose either encircling or attacking during the searching of
prey, which can be achieved using the following model:

~X(i + 1) =

{
~X∗(i)− ~A · |~C · ~X∗(i)− ~X(i)|, p < 0.5,
|~X∗(i)− ~X(i)| · ebl · cos(2πl)~X∗(i), p ≥ 0.5.

(16)

https://seyedalimirjalili.com/mfo
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Therefore, the position updation of all the whales during all three phases is summa-
rized as,

~X(i + 1) =


{
~X∗(i)− ~A · |~C · ~X∗(i)− ~X(i)|, ~A < 1,
~Xr(i)− ~A · |~C · ~Xr(i)− ~X(i)|, ~A ≥ 1,

p < 0.5,

|~X∗(i)− ~X(i)| · ebl · cos(2πl)~X∗(i), p ≥ 0.5,

, (17)

where the vectors ~X∗(i) is the closest whale’s position to the prey, ~X(i) and ~X(i + 1) are
the whales’ positions at ith and i + 1th iterations, ~A and ~C are the coefficients, b and l are
the parameters of logarithmic spiral (refer to Section 4.1.1). Further, it is to be noted that
for ~A ≥ 1, positions updation has been achieved using ~Xr(i), a random position vector at
ith iteration.

This whale optimization algorithm has the drawbacks of lower accuracy, slow conver-
gence, and being trapped into optimal local solutions and cannot solve higher-dimensional
problems effectively [80]. As given in Table 1, the source codes of this optimization al-
gorithm for single-objective problems using MATLAB, Python, C++, and R are publicly
available at https://seyedalimirjalili.com/woa (accessed on 1 December 2021).

4.2.3. Seagull Optimization Algorithm

Gaurav Dhiman et al. proposed the seagull optimization algorithm in 2019 to mimic
the seagulls’ migration and hunting behavior [56]. The algorithm is a mathematical model
of seagulls’ behavior in two stages, namely migration and attack. During the stage of
natural attacking, the seagulls maintain spiral behavior in the air. The coordinates of this
spiral behavior in x, y, and z planes are modeled as follows:

x = u · ekv · cos(k), y = u · ekv · sin(k), z = u · ekv · k, (18)

where k ∈ [0, 2π] is the spiral angle, u and v are the arbitrary constants.
The seagull optimization algorithm has the significant drawback of weak population

diversity during the search process [81]. The link to the MATLAB-based source code of this
optimization algorithm is given in Table 1.

4.2.4. Aquila Optimization Algorithm

The Aquila optimization algorithm was proposed in 2021 by Laith Abualigah et al. to
mimic Aquila’s behavior during prey catching [68]. The algorithm constitutes four stages:
(i) expanded exploration, (ii) narrowed exploration, (iii) expanded exploitation, and (iv)
narrowed exploitation. During the stage of narrowed exploration, the Aquila rotates over a
target prey for a short glide attack. This behavior is modeled as follows:

X(t + 1) = Xbest(t) · Levy() + Xr(t) + (y− x) · rand(), (19)

where Xr(t) and Xbest(t) are the random and best solutions at tth iteration, X(t + 1) so-
lution at (t + 1)th iteration, rand() ∈ (0, 1] is the random number, and Levy() is the Lévy
distribution. Further, x and y are the Cartesian coordinates of the spiral with radius r and
angle l given as follows:

x = r sin(l), y = r cos(l). (20)

From the above, it is to be highlighted that the Levy flight’s effect is relatively weak.
Thus, the algorithm has insufficient local exploitation ability [82]. The MATLAB and Java-
based source code link of this optimization algorithm for single-objective problems is given
in Table 1.

https://seyedalimirjalili.com/woa
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4.2.5. Water Cycle Optimization Algorithm

The water cycle optimization algorithm was proposed in 2012 by Eskandar et al. to
mimic the natural hydrological cycle process [10,83,84]. The algorithm simulates the stream
and river flow, rainfall, and evaporation into the sea. In this algorithm, the position update
of (a) streams flow to the rivers, (b) streams flow to the sea, and (c) rivers flow to the sea
are respectively given as follows:

Xst(i + 1) = Xst(i) + rand() · C · (Xr(i)− Xst(i)), (21)

Xst(i + 1) = Xst(i) + rand() · C · (Xse(i)− Xst(i)), (22)

Xr(i + 1) = Xr(i) + rand() · C · (Xse(i)− Xr(i)), (23)

where Xst(i), Xr(i) and Xse(i) are the positions of stream, river, and sea at ith iteration,
Xst(i + 1), Xr(i + 1), and Xse(i + 1) are the positions of stream, river, and sea at (i + 1)th

iteration, C ∈ [1, 2] is the constant value and rand() ∈ (0, 1] is the random number.
The MATLAB-based source code of this conventional optimization algorithm for

both constrained and unconstrained problems, including several improved versions and
multiobjective problems, are made publicly available by the researcher on his website at
https://ali-sadollah.com/water-cycle-algorithm-wca/ (accessed on 1 December 2021).

The algorithm has insufficient exploitation ability, and thus, in [64], the authors
have integrated the hyperbolic spiral, which helps improve the exploitation ability of
the algorithm. Therefore, modified position update equations using the hyperbolic spiral
are given as follows:

Xst(i + 1) = Xst(i) + |Xr(i)− Xst(i)| · cos(2πl)/l, (24)

Xst(i + 1) = Xst(i) + |Xse(i)− Xst(i)| · cos(2πl)/l, (25)

Xr(i + 1) = Xr(i) + |Xse(i)− Xr(i)| · cos(2πl)/l, (26)

where l ∈ [−1, 1] is the parameter of hyperbolic spiral, which is an uniformly distributed
random number.

4.2.6. Ant Lion Optimization Algorithm

Seyedali Mirjalili proposed the antlion optimization algorithm in 2015 to mimic the
natural hunting phenomenon of antlions [85–88]. The algorithm is a model of capturing the
following ants and antlions behaviors: (i) the ants’ random walk behavior and gets trapped
in antlions pits and (ii) the antlions’ hunting behaviors include building traps, sliding ants
towards them, catching, rebuilding pits, and elitism. The algorithm retains the best antlion
with optimal fitness value, elitism, and the corresponding antlion is called elite antlion.
Thus, the elite and selected antlions update their position randomly as follows:

Anti(t) =
Re(t) + Ra(t)

2
, (27)

where Re(t) and Ra(t) are the elite and selected antlions random walk during tth iteration.
The MATLAB, Python, and R software-based source codes of this conventional opti-

mization algorithm for both single and multiobjective problems are made publicly available
by Seyedali Mirjalili on his website at https://seyedalimirjalili.com/alo (accessed on 1
December 2021).

In [38], the authors proposed an improved version of this algorithm. In this enhanced
version, the elite and selected antlions update their position using eight spiral complex
paths instead of moving in randomly to improve the convergence speed and performance.
These spiral trajectories include Archimedes, cycloid, epitrochoid, hypotrochoid, logarith-

https://ali-sadollah.com/water-cycle-algorithm-wca/
https://seyedalimirjalili.com/alo
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mic, rose, inverse, and overshoot spirals. For an example case, the values of Re(t) and Ra(t)
are computed using logarithmic spiral as,

Re(t) = D1 · eb1t cos(2πt1), Ra(t) = D1 · eb1t sin(2πt1), (28)

where D1, b1, and t1 are the parameters of logarithmic spiral (see Section 4.1.1).
Similarly, using the Archimedes spiral, the values of Re(t) and Ra(t) are computed as

follows:

Re(t) = D2 + b2 · t2 · cos(2πt2), Ra(t) = D2 + b2 · t2 · sin(2πt2), (29)

where D2, b2, and t2 are the parameters of Archimedes spiral (see Section 4.1.2).

4.2.7. Slap Swarm Optimization Algorithm

Slap swarm optimization algorithm was developed in 2017 by Seyedali Mirjalili et al.
to mimic the behavior of slap chains, which is searching for target food [89–92]. In the slap
chain, the first slap is the leader, and all the other slaps follow the leader. In the algorithm,
the update equations for the leader and followers’ positions during the searching of target
food are as follows:

X1
i =

{
Fi + r1((UBi − LBi)r2 + LBi), if r3 ≥ 0,
Fi − r1((UBi − LBi)r2 + LBi), if r3 < 0,

, (30)

X j
i = 0.5(X j

i + X j−1
i ), j ≥ 2, (31)

where X1
i and X j

i are the positions of leader and followers, Fi is the target food, LBi and
UBi are the lower and upper bounds of ith dimension, r1, r2, and r3 are random numbers.

The MATLAB-based source code of this optimization algorithm for both single and
multiobjective problems is made publicly available by the developer on his website at
https://seyedalimirjalili.com/ssa (accessed on 1 December 2021). Further, the links for the
source code using Python and R are also available on the same website.

However, in [65], it is stated that the conventional slap swarm optimization algorithm
(SSOA) has a slower convergence and gets trapped at local optima. Thus, the authors
have proposed an improved SSOA using a logarithmic spiral. In this improved algorithm,
the followers’ positions are updated using a logarithmic spiral as follows:

X j
i = 0.5(X j

i + X j−1
i ) · ebθ · cos(2πθ), j ≥ 2, (32)

where b and θ are the parameters of logarithmic spiral (refer to Section 4.1.1).

4.2.8. Sparrow Search Optimization Algorithm

Jiankai Xue and Bo Shen proposed a sparrow search optimization algorithm in 2020
to mimic the sparrow’s behaviors during group wisdom, antipredation, and foraging [93].
In this algorithm, the sparrows’ population is divided into two groups of 20:80 as discovers
and followers. The discover have a broad search space to search for the food and guide the
followers to move towards the food source. The position update equation for the discover
sparrows during the searching of target food is as follows:

Xi,j(t + 1) =

{
Xi,j(t) · exp(− h

α·M ), if R2 < ST,
Xi,j(t) + Q · L, if R2 ≥ ST,

(33)

where Xi,j(t) and Xi,j(t + 1) are the ith discover sparrows’ position of jth dimension tth
and (t + 1)th iterations, h and M are the current and maximum number of iterations, Q is
a uniformly distributed random number, L is a row matrix with all values as one, α and
R2 ∈ [0, 1] are the random numbers, ST ∈ [0.5, 1] is the safety threshold values.

https://seyedalimirjalili.com/ssa


Fractal Fract. 2022, 6, 27 18 of 31

The values of R2 and ST help indicate the safety of the food source area. Based on
these values, the type of environment around the food source area, predators status, and the
actions that need to be taken are classified as follows:

Condition =

{
Safe, No predators around, can search for food, if R2 < ST,
Unsafe, Predators around, fly to other safe area, if R2 ≥ ST.

(34)

As some of the followers closely follow the discoverers, they update their positions
to move towards the discovered food source area. The position update equation for the
follower sparrows towards the food source is as follows:

Xi,j(t + 1) =

Q · exp
(

Xworst(t)−Xi,j(t)
i2

)
, if i > n/2,

Xp(t + 1) + |Xi,j(t)− Xp(t + 1)| · AT(AAT)−1 · L, otherwise,
(35)

where Xworst(t) is the group’s worst position at tth iteration, Xp(t + 1) is the discovers’
optimal position at (t + 1)th iteration, A is row matrix of randomly assigned with 1 or −1.
Further, i > n/2 indicates that the sparrows are in a danger position. Thus, the sparrows
make antipredation behavior. The MATLAB-based source code for implementing this
algorithm is available for registered users at https://www.mathworks.com/matlabcentral/
fileexchange/88788 (accessed on 1 December 2021).

However, in [66,94], the authors proposed a variable spiral search technique for the
followers to update their positions better. The position update equation of the followers
using this search strategy is as follows:

Xi,j(t + 1) =

ezl · cos(2πl)Q · exp
(

Xworst(t)−Xi,j(t)
i2

)
, if i > n/2,

Xp(t + 1) + |Xi,j(t)− Xp(t + 1)| · AT(AAT)−1 · L, otherwise,
(36)

where z and l are the parameters of logarithmic spiral (refer to Section 4.1.1). Further,
the value of z is varied at every iteration, making the proposed technique a variable spiral
search approach.

5. Application of Spiral Dynamics Optimization Algorithm

The conventional and other variants of the SDO algorithm have been applied in
various fields for finding the optimal solution, as explained underneath.

5.1. Modeling and Controller Tuning

The application of SDO and its variants in the area of modeling and controller tuning
is as follows:

• Controller tuning [95];
• Controlling robotic arm movement [96];
• Flexible manipulator system [14,16,20,26,28,34,35];
• Stair descending in a wheelchair [97,98];
• Inverted pendulum [99];
• Twin rotor systems [25,34];
• Two-wheeled robotic vehicle [39].

Hassan et al. proposed using an SDO algorithm to tune the predictive proportional-
integral (PI) controller for wireless networked control systems [95]. Similarly, the authors
of [96] have utilized SDO in the tuning of proportional-integral-derivative (PID) in con-
trolling the robotic arm movement. Moreover, for both modeling and control of flexible
link manipulator systems, the authors of [14] have used conventional SDO. For the same
application, the authors of [20,34,35] proposed the hybridization of the SDO algorithm with
BCA and BFA. The improved and adaptive version of SDO is also presented for both mod-

https://www.mathworks.com/matlabcentral/fileexchange/88788
https://www.mathworks.com/matlabcentral/fileexchange/88788
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eling and control of a flexible link manipulator system [16,26,28]. In another application,
fuzzy control of a stair descending in a wheelchair, an SDO algorithm is used for tuning
of controller parameters. In [99], a hybrid algorithm using PSO and SDO is proposed for
the tuning of a fuzzy controller designed for the inverted pendulum. Nasir et al. have
proposed an improved SDO and hybrid algorithm using SDO and BFA to model twin rotor
systems [25,34]. The hybrid SDO and BFA algorithm has also been used for controlling the
two-wheeled robotic vehicles [39].

5.2. Electrical Energy Optimization

Similarly, the application of SDO and its variants in the area of optimizing electrical
energy systems is as follows:

• Digital filters [100];
• Economic/emission dispatch [14,101,102];
• Hybrid electrical vehicles [23];
• Maximizing power production of a wind farm [103];
• Multigeneration energy system [104];
• Network with power distribution [105].

The economic and emission dispatch problems in power systems have been solved
by various researchers using the SDO algorithm [14,101,102]. Similarly, an optimal strat-
egy using the SDO algorithm is proposed for maximum power production in the wind
farm [103]. A multiobjective SDO algorithm for a multigeneration energy system is pre-
sented for minimizing the total cost while maximizing energy efficiency [104]. In [105],
a hybrid algorithm using SDO and BFA is proposed to optimize decentralized generation
placement simultaneously. In another application, an optimal sizing strategy using the
adaptive version of the SDO algorithm has been presented for hybrid electric air–ground
vehicles [23]. The authors of [100] have proposed using SDO for the filter design. The al-
gorithm achieved better performance in achieving the desired magnitude response in the
multiobjective optimization task.

5.3. Mechanical Systems Optimization

Over the years, several mechanical systems have been optimized using the SDO
algorithm. The list of applications are as follows:

• Micro-channel heat sink [29,30];
• Automation of high-rise buildings [19];
• Planar, spatial truss structures [18];
• Pressure vessel design problems [38,50];
• Welded beam design problems [50].

Cruz et al. proposed the generalized and stochastic SDO algorithms to solve micro-
electronic thermal management problems [29,30]. The authors of [19] have proposed a
hypotrochoid SDO algorithm to optimize the sensor placement in the 632-meter-tall Shang-
hai Tower and compared the performance with seven optimization algorithms, including
its predictors. The authors of [18] also proposed the hypotrochoid SDO algorithm for
finding the optimal setting parameters of 10, 37, 52, 72, and 200-bar planar and spatial truss
structures. The use of spiral equation in improving the TLBO and antlion optimization
algorithms for pressure vessel design problems is presented in [38,50]. The improved TLBO
algorithm using logarithmic spiral trajectory is also applied to find the optimal setting
parameters for welded beam design problems [50].

5.4. Other Optimization Problems

The application of the SDO algorithm for other types of optimization problems are
as follows:

• 2D mesh topologies [106];
• Clustering problems [33];
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• Cubic polyhedral cages [107];
• Face image de-blurring [32];
• Neural network training [108,109];
• Sensor pattern sorting [110,111].

The authors of [107] are the first to showcase the problems and scope of spiral dy-
namics optimization applied to polyhedral cages. Another work before developing the
conventional SDO algorithm is reported in [106]. Here, a heuristic spiral mapping algo-
rithm is the first type of SDO applied for 2D mesh network topologies. For clustering
problems, distributed SDO is proposed in which the population of search space is split
into sub-populations [33]. Hong-Chun Jia et al. have proposed an efficient and intelligent
algorithm using SDO for deep neural networks [108]. The network is to find the optimal
physical health and fitness level in sports. Recently, James McCaffrey from Microsoft
Research has developed the SDO algorithm in Python to train the neural network to find
the optimal weights and biases values [112], the real-time implementation of a determin-
istic SDO algorithm using field-programmable gate arrays for spot patterns sorting in a
Shack–Hartmann wavefront sensor [110].

As mentioned earlier, the SDO and its variants have been applied in various applica-
tions. The summary of all applications is given in Table 2. The table provides the details
of the application system, including the dimension, software tool, cost function, type of
optimization problem, and comparison techniques. In the table, SO and MO are optimiza-
tion problems denoting single objective and multiobjective. The SDO validation and its
variants on various benchmark functions are also detailed. It is to highlight that the most
widely used error-based cost functions are: mean squared error (MSE), root mean squared
error (RMSE), and the sum of squared error (SSE). Similarly, the integral error functions
used in the research are integral squared error (ISE) and integral time absolute error (ITAE).
The errors are computed as follows:

MSE =
1
ns

ns

∑
i=1

(Ya −Yp)
2, (37)

RMSE =

√
1
ns

ns

∑
i=1

(Ya −Yp)2, (38)

ISE =
∫ ∞

t=0
e(t)dt, (39)

ITAE =
∫ ∞

t=0
t|e(t)|dt, (40)

where ns is the total number of samples, Ya and Yp are the actual and predicted values, e(t)
is the error, the difference between actual and reference values.
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Table 2. List of applications of SDO and its variants in various fields over the years.

Ref. Year Algorithm
Validation Application

SO/MO
Comparison

Status Functions System Dim Tool Cost Function Algorithms

[107] 1997 SDO 7 - Cubic Polyhedral
Cages - - - SO -

[106] 2008 Dynamic Spiral
Mapping 7 - 2D Mesh Topologies 3 SMAP Reconfiguration Time MO Partially, Fully DSM

[9] 2010 SDO 3
Rosenbrock, Minima,

Rastrigin - - MATLAB - SO GA, PSO, ALO

[11] 2011 SDO 3
Schwefel, Minima,

Rastrigin, Griewank - - - - SO Differential evolution
(DE), PSO

[21] 2012 Adaptive SDO 3
Sphere, Ackely,

Grienwank - - - - SO

SDO, Linear,
Quadratic, and

Exponential
Adaptive SDO

[20] 2012 Hybrid SDO-BCA 3
Sphere, Ackley,

Rastrigin, Griewank
Flexible Manipulator

System 30 MATLAB ISE SO BFA, SDO

[113] 2012 SDO 3

Sphere, Schwefel,
Minima, Rastrigin,

Alpine, Levy, Ackely
- - - - SO -

[100] 2013 SDO 7 - Digital Filters 10 - Weighted Magnitude,
Lp Norm SO -

[14] 2014 Adaptive SDO,
Hybrid SDO 3

Rastrigin, Sphere,
Griewank, Ackley

Flexible Manipulator
System,

Economic/Emission
Dispatch, Neural
Network Training

30, 15,
9 - RMSE, MSE MO SDO

[114] 2014 Cluster-structured
SDO 3 Rosenbrock, Minima - - - - SO SDO

[33] 2014 Distributed SDO 7 - Clustering Problems 10 C++ SSE SO SDO, Genetic
K-Means

[34] 2014 Hybrid SDO-BCA 7 - Flexible Manipulator,
Twin Rotor Systems 16 MATLAB RMSE MO

Recursive Least
Squares (RLS), Least
Mean squares (LMS),
PSO, GA, Hybrid GA

RLS
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Table 2. Cont.

Ref. Year Algorithm
Validation Application

SO/MO
Comparison

Status Functions System Dim Tool Cost Function Algorithms

[24] 2014 Improved SDO 3
Sphere, Rosenbrock,
Griewank, Rastrigin Twin Rotor System 136 MATLAB Weighted RMSE SO BFA, SDO, Improved

SDO

[97] 2014 SDO 7 - Stair Descending in a
Wheelchair 10 MATLAB Weighted MSE SO Trial and Error

Method

[101] 2014 SDO 7 - Economic/Emission
Dispatch 3, 4, 60 - Min SO -

[115] 2014 SDO 3

Sphere, Rosenbrock,
Schwefel, Rastrigin,
Ackley, Griewank,

Minima, Levy,
Six-hump

- - MATLAB - SO PSO

[25] 2015 Improved SDO 3
Sphere, Rosenbrock,

Rastrigin, Ackley Twin Rotor System 50 MATLAB Weighted RMSE SO SDO

[96] 2015 SDO 7 - Controlling Robotic
Arm Movement 3 - Steady State Error SO -

[116] 2015 SDO 7 -
Rectangular

Microchannel Heat
Sink

5 – Generation Rate MO SA, Unified PSO

[26] 2016 Enhanced Chaotic
SDO 3

Sphere, Ackely,
Grienwank

Single-Link Flexible
Manipulator 50 - MSE SO SDO, ABC

[28] 2016 Greedy SDO 3
Sphere, Ackely,

Grienwank
Single-Link Flexible

Manipulator 50 - MSE SO SDO

[16] 2016 Linear Adaptive SDO 3

Sphere, Rosenbrock,
Ackley, Rastrigin,

Griewank,
Dixon-Price,

Goldstien-Price,
Six-hump Camel

Flexible Manipulator
Rig 16 MATLAB RMSE SO SDO, BFA, Improved

BFA

[117] 2016 SDO 3

Sphere, Schwefel,
Ackley, Minima,

Bohachevsky,
Rosenbrock

- - - - SO ABC
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Table 2. Cont.

Ref. Year Algorithm
Validation Application

SO/MO
Comparison

Status Functions System Dim Tool Cost Function Algorithms

[110] 2016 SDO 7 -
Shack–Hartmann
Wavefront Sensor

Pattern Sorting
28 MATLAB RMSE SO B-Spline, Zernike

[102] 2016 SDO 7 - Economic/Emission
Dispatch 40 MATLAB Optimal Power SO

BBO, GA,
Evolutionary

Algorithm (EA)

[105] 2017 Hybrid BFA-SDO 7 - Network With Power
Distribution 4 - Weighted Error MO

Simulated Annealing
(SA), GA, Tabu

Search (TS), Hybrid
BFA-PSO

[39] 2017 Hybrid SDO-BCA 7 - Two-Wheeled
Robotic Vehicle 9 - MSE MO BFA, SDO

[95] 2017 SDO 7 - Controller Tuning 2 MATLAB ITAE SO -

[15] 2017 SDO 3
Sphere, Schwefel,

Minima, Levy - - MATLAB - SO -

[103] 2017 SDO 7 -
Maximizing Power
Production of Wind

Farm
50 - Maximum Power SO PSO, Game Theoretic

[18] 2018 Hypotrochoid
SDO 7 -

10, 37, 52, 72, 200-bar
Planar, Spatial Truss

Structures

10, 14,
8, 16,

29
MATLAB Min SO SDO, GA, PSO, DE,

Hybrid SDO

[50] 2018 Spiral TLBO 3

Sphere, Schwefel,
Rosenbrock, Step,
Quartic, Schwefel,
Rastrigin, Ackley,

Griewank, Penalized

Pressure Vessel,
Welded Beam Design

Problems
4, 4 MATLAB Min SO

TLBO, Whale
Optimization

Algorithm (WOA),
Grey Wolf Optimizer

(GWO)

[118] 2018 SDO 7 - System of Nonlinear
Equations 2, 4, 20 C++ Min SO -

[31] 2018 Stochastic SDO 3

Booth, Chichinadze,
Zettl, Dixon–Price,
Griewank, Mishra,

Wing, Rastrign

- - MATLAB - MO
Deterministic SDO,
EFO, DE, Unified

PSO
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Table 2. Cont.

Ref. Year Algorithm
Validation Application

SO/MO
Comparison

Status Functions System Dim Tool Cost Function Algorithms

[37] 2019 Archimedean
Spiral-ABC 3

Griewank, Salomon,
Inverted cosine,
Neumaier, Beale,
Colville, Kowalik,

Rosenbrock, spring,
Goldstein–Price

- - - Mean Error SO

Archimedean
Spiral-inspired Local

Search (ASLS),
Modified ABC,

Best-So-Far ABC

[42] 2019
Biogeography-

based
SDO

3

Sphere, Schwefel,
Axis, Quatic,
Rosenbrock,

Rastrigin, Griewank,
Ackley, Step

CEC 2017 Benchmark
Problems - - Cluster count SO

DE, BBO, Slap
Swarm Optimization
Algorithm (SSOA),
GWO, WOA, GSA

[99] 2019 Hybrid PSO-SDO 7 -
Triple-link Inverted

Pendulum on
Two-wheels

4 Simwise4D RMSE MO

GSA, ABC, GWO,
Ant Colony

Optimization (ACO),
GA

[32] 2019 Iterative SDO 7 -

Face Image
De-blurring,
Generative

Adversarial Network
Model

- PyTorch Loss Function SO

[36] 2019 Spiral ABC 3
10 functions of
various orders - - - - SO ABC, Modified ABC,

Best-So-Far ABC

[43] 2019 Spiral CS 3

Schwefel, Quartic,
Rosenbrock, Sphere,

Powell, Brown,
Ackley, Griewank

Spam Detection - Python - SO PSO, DE. GA, CS,
Improved CS

[49] 2019 Spiral-based SCA 3 Sphere, Rosenbrock - - - - SO SDO, SCA

[19] 2020 Hypotrochoid
SDO 7 -

Automated
Monitoring of

High-rise Buildings
50 - Modal Assurance

Criterion MO PSO, ABC, SDO,
TLBO
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Table 2. Cont.

Ref. Year Algorithm
Validation Application

SO/MO
Comparison

Status Functions System Dim Tool Cost Function Algorithms

[38] 2020 Improved ALO -
Spiral 3

10 Unimodel, 8
Multimodel, 10

Combinatorial, 6
Multi Objective

Pressure Vessel 4 - Multicriteria
Function SO, MO

Hypotrochoid, Rose,
Logarithmic,
Epitrochoid,

Archimedes, Cycloid,
and Inverse Spiral

ALO

[104] 2020 Multiobjective
SDO 7 - Multigeneration

Energy System - - Min Cost MO GA, PSO, EA

[17] 2021
Adaptive

Hypotrochoid
SDO

3

Shubert, Ackley, Levy,
Perm, Sphere, Trid,

Booth, Beale, Powell,
Shekel

- - - - SO SDO, Adaptive SDO,
Hypotrochoid SDO

[30] 2021 Reflection-based
stochastic SDO 3

Keane, Hosaki,
Branin, Bird, Hansen,

Ursem Waves,
Damavandi, Giunta,
Rana, 2nd Minimum

Microchannel Heat
Sink 3 MATLAB Minimum Entropy

Generation SO
Unified PSO,

Deterministic SDO,
Cuckoo search

[108] 2021 SDO 7 –

Physical Fitness
Determination Using

Deep Neural
Networks

20 – RMSE SO GA, PSO

[99] 2021 SDO 7 – Fuzzy Control of
Inverted Pendulum 20 MATLAB RMSE SO Trial and Error, PSO

[35] 2021 Hybrid SDO-BFA 3 28 Functions Fuzzy Control of
Flexible Manipulator 103 MATLAB SO MAE

SDO, BFA, Hybrid
SDO-Bacteria
Chemotaxis

[98] 2021 SDO 7 – Two-wheeled
Wheelchair System 20 MATLAB RMSE SO –

[23] 2022 Adaptive SDO 7 – Hybrid Electrical
Vehicles 4 MATLAB Weighted Error MO SDO, Enhanced GA,

Adaptive PSO
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6. Conclusions
6.1. Findings

SDO is a promising and fascinating algorithm that has been greatly appreciated in
the literature. The SDO algorithm’s advantages over other optimization algorithms lie in
its simplicity, ease of implementation, the requirement of few control parameters, and bet-
ter diversification and intensification strategies. This comprehensive review summarizes
the research outcomes published from 1997 until January 2022. The advances and vari-
ants of SDO, including adaptive, improved, and hybrid approaches for solving various
optimization problems, are critically analyzed. Further, the application of SDO and its
variants in multiple fields, including modeling, controller tuning, electrical energy systems,
mechanical systems, etc., is comprehensively summarized. Besides, a special interest is
devoted to highlighting various nature-inspired optimization algorithms fascinated by the
concept of spiral paths. This review is expected to draw the attention of the investigators,
experts, and researchers to solve the optimization problems using the SDO algorithm and
its variants.

6.2. Future Perspectives

This comprehensive review has helped open up new scopes in the field of spiral-
inspired optimization and is highlighted as such underneath.

• Even though the authors have tried to avoid the issue of settling at local optima
by the SDO algorithm, the issue is persisting. It requires a careful balance between
exploration and exploitation phases.

• The problem of insufficient search space exploration with the conventional SDO, which
uses a logarithmic spiral, can be overcome by judiciously selecting spirals. A few such
spirals are Fermat, Archimedean, etc., which seem suitable in the present context to
solve multiobjective problems. Specifically, the use of Fibonacci and a golden spiral is
expected to solve image processing optimization problems effectively as their spiral
behavior helps analyze the entire image.

• Dynamically varying control parameters in each iteration of SDO variants is still
unresolved, leading to lower accuracy of the optimal solution. The selection of suitable
adaptive functions for control parameters is required.

• There is a scope to improve the performance of several existing spiral-inspired optimiza-
tion algorithms either by utilizing the spiral position update equation of SDO or using
other spiral trajectories. Further, the natural behavior of nonspiral-inspired algorithms
can be modified using spiral paths for better accuracy in the optimal solution.

• The lack of a mathematical model for complex spiral trajectories, such as the Celtic
spiral, limits its use for better search space exploration. Hence, the development of
suitable models for such a complex spiral trajectory is expected to enhance the SDO
algorithm’s exploration performance.
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