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in these classes are examined. The order of starlikeness in the class of convex function is investigated.
It provides some interesting connections of newly defined classes with known classes. The mapping
property of these classes under the family of q-Bernardi integral operator and its radius of univalence
are studied. Additionally, certain coefficient inequalities, the radius of q-convexity, growth and
distortion theorem, the covering theorem and some applications of fractional q-calculus for these new
classes are investigated, and some interesting special cases are also included.
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1. Introduction

Quantum calculus is basically usual calculus without the notion of limits. It has wide
applications in mathematics and physics. The q-derivative and q-integral are the main
tools introduced by Jackson [1,2] in a systematic way. The linear q-difference equation,
and q-differential equations, are studied in [3,4]. Mansour [5] investigated linear sequential
q-differential equation of fractional order. Using the q-derivative, Ismail [6] introduced the
class of q-starlike functions. In the recent past, the theory of q-calculus operators has been
applied in general fractional calculus. Al-Salam [7] and Agarwal [8] introduced several
types of fractional q-integral operators and fractional q-derivatives. Rajkovi’c [9] investi-
gated fractional integral and derivatives in q-calculus. Additionally, q-integral operators
for certain analytic functions by using the concept and theory of fractional q-calculus that
was studied by Selvakumaran et al. [10]. Recently, researchers proposed q-version of well
known operators like Baskakov Durrmeyer operator, Picard integral operator, Bernardi
integral operator and the Gauss–Weierstrass integral operator, see [11–15]. Furthermore,
Purohit and Raina [16] applied q-operators on subclasses of analytic functions. Ismail [6] in-
troduced the well known class of q-starlike functions related to q-derivative operator [16,17].
Wingsaijai and Sukantmala [18] presented the class S∗q (α) of q-starlike functions of order α,
(0 ≤ α < 1), Certain Coefficient Estimate Problems for Three-Leaf-Type Starlike Functions .
Sahoo and Sharma [17] defined and studied q− analogue of a close-to-convex function.
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The starlikeness of normalized bessel functions with symmetric points is studied
in [19]. Recently, certain generalized classes of q-starlike functions have been investi-
gated, see [20,21]. Zainab et al. [22] defined a new class of q-starlike functions by using
q-Ruscheweyh differential operator. The recent contributions on fractional derivatives
by several researchers are also worth reading, see [23–25]. Sokół [26] introduced a one-
parameter family of functions p̃α(z), as shown in (5). Using this family of functions, he
defined a classes of starlike functions, and certain properties of these functions were in-
vestigated. However, p̃α(z) has not been studied under the q-analogue of analytic and
univalent functions of negative order, which has vital applications in different zones of
mathematics. This was the main motivation behind Definitions 1 and 3 and their related
results, and to keep in mind recent developments on starlike functions and their associated
functions, we have categorized our main results into two sections. In the first section,
we have investigated some interesting properties for our new class S̃∗q (α), q ∈ (0, 1) of
q-starlike functions of order α, α ∈ (−3, 1], which is introduced in Definition 1. We primar-
ily focus on q-integral representation of functions belonging to this class, and its related
results. Further, we have investigated distortion bounds and order of starlikeness in class
of convex functions. In the second section, we have defined the class T̃∗q (α) of q-starlike
functions of order α ( α ∈ [−1, 1]) with negative coefficients. It is investigated that functions
belonging to this class are preserved under q-Bernardi integral operator and its radius of
univalence is also determined. Several other properties such as coefficient inequities, radius
of q-convexity, growth and distortion theorem, covering result and some applications of
fractional q-calculus for the said class are presented. It is noted that obtained results are the
advancement of several known results, proved by researchers in their research articles.

Let A consist of the analytic functions of the form

f (z) = z +
∞

∑
n=2

anzn, z ∈ E = {z : |z| < 1}. (1)

Let S ⊂ A be the class of univalent functions in E = {z : |z| < 1}. The classes S∗(γ) of
starlike functions of order γ and C(γ) of convex functions of order γ, which are subclasses
of S are defined as:

S∗(γ) =
{

f ∈ A : <
{

z f ′(z)
f (z)

}
> γ, 0 ≤ γ < 1, z ∈ E

}
(2)

C(γ) =
{

f ∈ A : <
{
(z f ′(z))′

f ′(z)

}
> γ, 0 ≤ γ < 1, z ∈ E

}
(3)

When γ = 0, we have the well-known class S∗ of starlike functions and the class C of
convex functions, see [27]. Let fi ∈ A, i = 1, 2. Then, we say that f1 is subordinate to f2,
written as f1 ≺ f2, if there exists a function w, analytic in E with w(0) = 0 and |w(z)| < 1,
z ∈ E, such that f1(z) = f2(w(z)). If f2 ∈ S, it is known that the above subordination is
equivalent to f1(0) = f2(0) and f1(E) ⊂ f2(E), see [27].

Let T denote the subclass of S consisting of the analytic and univalent functions, whose
functions can be expressed as

f (z) = z−
∞

∑
n=2
|an|zn, z ∈ E. (4)

Silverman [28] introduced and studied the classes T∗(γ) and K(γ) of starlike functions
of order γ and convex functions of order γ, (0 ≤ γ < 1) in the open unit disc E = {z :
|z| < 1}. He defined these classes as follows:

T∗(γ) =
{

f ∈ T : <
(

z f ′(z)
f (z)

)
> γ, 0 ≤ γ < 1, z ∈ E

}
,
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K(γ) =
{

f ∈ T : <
(
(z f ′(z))′

f ′(z)

)
> γ, 0 ≤ γ < 1, z ∈ E

}
.

When γ = 0, the above classes reduce to the classes T∗ and K, of starlike and convex
functions of negative coefficients, respectively, see [28].

Our work is related to a one-parameter family of functions defined and studied by
Sokół [26]. We recall the properties of these functions, which we shall need to derive
our results.

Remark 1. Let

p̃α(z) =
1

3 + (α− 3)z + αz2 =
3

3 + α

{
1

1− z
+

α

αz + 3

}
, α ∈ (−3, 1]. (5)

Then, the following assertions are true.

1. p̃α is univalent in E.

2. 9(1+α)
2(3+α)2 ≤ <{ p̃α(z)} ≤ <

{
−3

(z−1)(αz+3)

}
> 3

2(3−α)

3. When α ∈ [−1, 1], p̃α is convex univalent function in E.

Now, we include some basic definitions and concepts of q-calculus, which are used in
this work.

The q-derivative of a function f ∈ A is defined by

Dq f (z) =
f (qz)− f (z)
(q− 1)z

, (z 6= 0), (6)

and Dq f (0) = f ′(0), where q ∈ (0, 1), see [2]. For a function g(z) = zn, the q-derivative is

Dqg(z) = [n]qzn−1, (7)

where

[n]q =
1− qn

1− q
. (8)

We note that as q → 1−, Dq f (z) → f ′(z), here f ′(z) is ordinary derivative and
[n]q → n as q→ 1−. From (4), one can deduce that

Dq f (z) = 1 +
∞

∑
n=2

[n]qanzn. (9)

Jackson [1] introduced the q-integral of a function f , which is given by

∫ z

0
f (t)dqt = z(1− q)

∞

∑
n=0

qn f (qnz), (10)

provided that series converges.

In [18], Wongsaijai and Sukantamala introduce the class S∗q (γ) of q-starlike functions
of order γ as follows:

S∗q (γ) =
{

f ∈ A : <
{

zDq f (z)
f (z)

}
> γ, 0 ≤ γ < 1, z ∈ E

}
. (11)
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The corresponding class Cq(γ) of q-convex functions is defined as

Cq(γ) =

{
f ∈ A : <

{
Dq(zDq f (z))

Dq f (z)

}
> γ, 0 ≤ γ < 1, z ∈ E

}
. (12)

By seting γ = 0 in above definitions, we get Cq of q-convex functions and S∗q of
q-starlike functions introduced in [6].

Then, we define a new class S̃∗q (α) ⊂ S, which is the refinement of the above known
classes of starlike functions. Results related to this class will be derived in Section 2.

Definition 1. A function from the class A is said to be in the class S̃∗q (α) if and only if it satisfies
the condition

zDq f (z)
f (z)

≺ p̃α(z), α ∈ (−3, 1], z ∈ E, (13)

where p̃α is given by (5).

From the Remark 1, we have

<
{

zDq f (z)
f (z)

}
>

9(1 + α)

2(3 + α)2 , (α ∈ (−3, 1], z ∈ E), (14)

when f ∈ S̃∗q (α).
Our aim is to investigate geometric properties of class S̃∗q (α) of q-starlike functions

of order α. It deals with several ideas and techniques used in geometric function theory.
The order of starlikeness in the class of convex functions of negative order and distortion
bounds is also formulated. It provides an interesting connection of our above-defined class
with well known classes in the form of following special cases.

Special Cases

1. When α = −2, we have

<
{

zDq f (z)
f (z)

}
>
−9
2

, (z ∈ E).

2. For α = − 3
2 , we obtain

<
{

zDq f (z)
f (z)

}
> −1, (z ∈ E).

3. Let α ∈ [−1, 1], and taking q → 1−, we get the class of starlike functions, which is
univalent in E, see [27].

4. If α = −1, then f belongs to the class S̃∗q (−1) ⊂ S∗q of q-starlike functions, which is
defined and studied in [6].

5. For α = 0, we have the known class S̃∗q (0) ⊂ S∗q (
1
2 ) of q-starlike functions of order 1

2 ,
see [27].

6. When α = 1, then f belongs to the class S̃∗q (1) ⊂ S∗q (
9

16 ) of starlike function with
order 9

16 .

Now we define another class S∗q [M], a subclass of S∗q . This class will be used in
derivation of Theorems 1 and 8.

Definition 2. For −1 ≤ M ≤ 1, M 6= 0, the class S∗q [M] is defined as follows.

S∗q [M] =

{
f ∈ A :

zDq f (z)
f (z)

≺ 1
1 + Mz

}
, (15)
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We note that, for M = 1, then the function p(z) = 1
1+Mz maps the unit disc E onto half

plane <(w) > 1
2 and onto the disc with center 1

1−M2 and radius |M|
1−M2 , for M 6= 0.

Next, we define the class T̃∗q (α) ⊂ T of q-starlike functions of order α with negative
coefficients. Results regarding this class are presented in Section 3.

Definition 3. A function from the class T is said to be in the class T̃∗q (α) if and only if it satisfies
the condition

<
{

zDq f (z)
f (z)

}
>

9(1 + α)

2(3 + α)2 , (α ∈ [−1, 1], z ∈ E). (16)

Special Cases

1. If α = −1, we have

T∗q =

{
f ∈ A : <

{
zDq f (z)

f (z)

}
> 0, z ∈ E

}
,

which contains q-starlike functions with negative coefficients, and taking q→ 1−, we
obtain the known class T∗ introduced in [28].

2. For α = 0, we have

T∗q (0) =
{

f ∈ A : <
{

zDq f (z)
f (z)

}
>

1
2

, z ∈ E
}

,

of q-starlike functions of order 1
2 with negative coefficients, and taking q → 1−, we

obtain the known class K of convex functions defined and studied in [28].
3. When α = 1, we obtain

T∗q (1) =
{

f ∈ A : <
{

zDq f (z)
f (z)

}
>

9
16

, z ∈ E
}

,

of starlike function of order 9
16 with negative coefficients.

Next, we define the corresponding class C̃q(α) of q-convex functions of order α and
having negative coefficients. An application of this class will be shown in investigating the
radius problem as given in Theorem 10.

Definition 4. A function from the class T is said to be in the class C̃q(α) if and only if it satisfies
the condition

<
{

Dq(zDq f (z))
Dq f (z)

}
>

9(1 + α)

2(3 + α)2 , (α ∈ [−1, 1], z ∈ E). (17)

We require following lemma to obtain our main results.

Lemma 1 (q-Jack’s Lemma, [29]). Let φ(z) be analytic in E with φ(0) = 0. Then, if |φ(z)|
attains its maximum value on the circle |z| = r at a point zo ∈ E, then we have

zoDqφ(zo) = mφ(zo),

m ≥ 1 real number.

2. The Class S̃∗
q(α)

In this section, we obtain some results related to newly defined class S̃∗q (α) of q-starlike
functions of order α. For the following results, we consider α ∈ (−3, 1], q ∈ (0, 1), z ∈ E,
unless otherwise stated. To prove our main results, we first prove the following lemma.
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Lemma 2. Let h be analytic in E with h(0) = 1. A function G is in the class

Sq(h) =
{

f ∈ A :
zDq f (z)

f (z)
≺ h(z)

}
z ∈ E, (18)

if and only if there exists an analytic function pq, pq ≺ h, such that

G(z) = z
(

exp
∫ z

0

pq(t)− 1
t

dqt
) lnq

1−q

, z ∈ E. (19)

Proof. Consider

pq(z) =
zDqG(z)

G(z)
, (20)

where pq is analytic and pq(0) = 1 in E. Using q-integral properties, we get

∫ z

o

pq(t)− 1
t

dqt =
∫ z

o

tDqG(t)− G(t)
tG(t)

dqt

=

(
1− q
lnq

)
log(G(z))−

(
1− q
lnq

)
log(z)

= log
(

G(z)
z

) 1−q
lnq

.

It follows that

z
(

exp
∫ z

o

pq(t)− 1
t

dqt
) lnq

1−q

= G(z),

which is (19). Now conversely, let (19) hold, that is

G(z)
z

=

(
exp

∫ z

o

pq(t)− 1
t

dqt
) lnq

1−q

, (21)

The Logarithmic q-differentiation of (21) gives us

Dq(ln(G(z))− Dq(ln(z)) =
lnq

1− q
Dq

∫ z

o

pq(t)− 1
t

dqt.

Using the formulation Dq(ln f (z)) =
(

lnq
1−q

)(
Dq f (z)

f (z)

)
, and the fundamental theorem

of q-calculus, see [30], we get

lnq
1− q

(
DqG(z)

G(z)

)
− lnq

1− q

(
1
z

)
=

lnq
1− q

(
pq(z)− 1

z

)
,

which implies that

zDqG(z)
G(z)

= pq(z);

it follows that pq ≺ h, and this implies that G ∈ Sq(h) in E. This completes the proof.

By taking q→ 1− in Lemma 2, we obtain the known result proved by Sokół [26].

Then, by using the class S∗q [M] given by (15), we derive the following theorem for the

function f ∈ S̃∗q (α), α ∈ (−3, 1].
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Theorem 1. Let f ∈ A, α ∈ (−3, 1]\{0}. If f ∈ S̃∗q (α), then there exists a function F1 ∈ S∗q (
1
2 )

and the function F2 ∈ S∗q
[

α
3
]
, such that

f (z) = [F1(z)]
3

3+α [F2(z)]
α

3+α , z ∈ E.

(We note that, if α = 0; then, S̃∗q (0) = S∗q (
1
2 )).

Proof. Let f ∈ S̃∗q (α). Then, by Lemma 2, there exists an analytic function w(z) with
w(0) = 0 and |w(z)| < 1, z ∈ E, such that

f (z) = z
(

exp
∫ z

0

p̃α(w(t))− 1
t

dqt
) lnq

1−q
, (22)

and from (5), we have

f (z) = z

exp
∫ z

0

3
3+α

{
1

1−w(t) +
α

αw(t)+3

}
− 1

t
dqt


lnq
1−q

,

which implies that

f (z) = z

exp
∫ z

0

3
3+α

(
1

1−w(t)

)
+ α

3+α

(
1

1+ α
3 w(t)

)
− 1

t
dqt


lnq
1−q

.

It follows that

f (z) = z

exp
∫ z

0

3
3+α

(
1

1−w(t)

)
+ α

3+α

(
1

1+ α
3 w(t)

)
− 1

t
dqt


lnq
1−q

.

This implies that

f (z) =

z exp
∫ z

0

[
1

1−w(t) − 1
]

t
dqt

( 3
3+α )

(
lnq
1−q

)
×

z exp
∫ z

0

[
1

1+ α
3 w(t) − 1

]
t

dqt

( α
3+α )

(
lnq
1−q

)
.

Using the Lemma 2, we have

f (z) = [F1(z)]
3

3+α [F2(z)]
α

3+α ,

which shows that the functions F1 and F2 satisfy F1 ∈ S∗q
(

1
2

)
and F2 ∈ S∗q

[
α
3
]
, and this

completes the proof.

Theorem 2. Let f ∈ A, α ∈ (−3, 1]. If there exists a function F1 ∈ S∗q
(

1
2

)
and F2 ∈ S∗q

[
α
3
]
,

such that

zDqF1(z)
F1(z)

=
1

1− w(z)
, (23)
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and

zDqF2(z)
F2(z)

=
1

1 + α
3 w(z)

, z ∈ E, (24)

for analytic function w(0) = 0, and |w(z)| < 1, z ∈ E, then the function

f (z) = [F1(z)]
3

3+α [F2(z)]
α

3+α ∈ S̃∗q (α), z ∈ E. (25)

Proof. From (23) and (24), we find that F1 ∈ S∗q
(

1
2

)
and F2 ∈ S∗q

[
α
3
]

are generated by (19)
wih the same function w, so by using Theorem 1 and Lemma 2, we have

[F1(z)]
3

3+α [F2(z)]
α

3+α = z
(

exp
∫ z

0

p̃α(w(t))− 1
t

dqt
) lnq

1−q
.

Hence, we have

f (z) = [F1(z)]
3

3+α [F2(z)]
α

3+α ∈ S̃∗q (α),

which is the required result.

Next, we obtain distortion result for our class S̃∗q (α), α ∈ (−3, 1], by using
Theorems 1 and 2.

Theorem 3. If f ∈ S̃∗q (α), α ∈ (−3, 1], and |z| < r, 0 ≤ r < 1, then

[(
r

1 + r

) 3
1+α
(

r
1 + αr

3

) α
3+α

] 1−q
log q−1

≤ | f (z)| ≤
[(

r
1− r

) 3
3+α
(

r
1− αr

3

) α
3+α

] 1−q
log q−1

Proof. Let f ∈ S̃∗q (α). Then, by Theorem 1, there exist F1 ∈ S∗q
(

1
2

)
and F2 ∈ S∗

[
α
3
]
, such

that (25) holds.
Let F1 ∈ S∗q

[
α
3
]
. Then, we have

zDqF1(z)
F1(z)

≺ 1
1− z

,

which implies that ∣∣∣∣ zDqF1(z)
F1(z)

− 1
1− r2

∣∣∣∣ < r
1− r2 .

Using q-differential properties and partial q-derivatives, we get

1
r(1 + r)

≤
∂q

∂r
log |F1(reiθ))| ≤ 1

r(1− r)
.

The q-integration gives us

(
r

1 + r

) 1−q
log q−1

≤ |F1(z)| ≤
(

r
1− r

) 1−q
log q−1

. (26)



Fractal Fract. 2022, 6, 30 9 of 23

Raising (26) to power 3
1+α , we get

(
r

1 + r

)( 1−q
log q−1

)
( 3

1+α )
≤ |F1(z)|

3
1+α ≤

(
r

1− r

)( 1−q
log q−1

)
( 3

1+α )
. (27)

Now, we suppose that F2 ∈ S∗q
[

α
3
]
, so we can write

zDqF2(z)
F2(z)

≺ 1
1 +

[
α
3
]
z

.

It follows that ∣∣∣∣∣ zDqF2(z)
F2(z)

− 1

1−
(

α
3
)2r2

∣∣∣∣∣ ≤
∣∣ α

3

∣∣r
1−

(
α
3
)2r2

,

as the linear transformation 1
1+[ α

3 ]z
maps |z| = r onto disc of center 1

1−( α
3 )

2
r2

and radius

| α3 |r
1−( α

3 )
2
r2

. Additionally, we know that

<
[

zDqF2(z)
F2(z)

]
= r

∂q

∂r
log |F2(reiθ)|,

so, we have

1
r
(
1− α

3 r
) ≤ ∂q

∂r
log |F2(reiθ)| ≤ 1

r
(
1 + α

3 r
) .

The q-Integration on both sides gives us

(
r

1− αr
3

) 1−q
log q−1

≤ |F2(z)| ≤
(

r
1 + αr

3

) 1−q
log q−1

. (28)

Raising (28) to the power α
3+α , we get

(
r

1 + αr
3

)( α
3+α )

(
1−q

log q−1

)
≤ |F2(z)|

α
3+α ≤

(
r

1− αr
3

)( α
3+α )

(
1−q

log q−1

)
, (29)

because
(

α
3+α

)
< 0, when α ∈ (−3, 0]. Multiplying (29) and (27), we obtain our required

result.

Next, we will obtain the order of starlikeness in the class of convex functions.

Theorem 4. Let f ∈ A, and let β = 9(1+α)
2(3+α)2 , for α ∈ [−1, 1],

<
{

Dq(zDq f (z)
Dq f (z)

}
> β− 1

2
− β(1− 2β)

2(1− β)2 . (30)

Then,

<
{

zDq f (z)
f (z)

}
> β, z ∈ E.

Proof. Consider

zDq f (z)
f (z)

=
1 + (1− 2β)φ(z)

(1− φ(z))
, (31)
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where φ is analytic with φ(0) = 1 in E. The q-logarithmic differentiation of (31) gives us(
lnq

1− q

){
Dq(zDq f (z))

Dq f (z)
−

zDq f (z)
f (z)

}
=

{
(1− 2β)zDqφ(z)
1 + (1− 2β)φ(z)

+
zDqφ(z)
1− φ(z)

}(
lnq

1− q

)
.

On contrary, we assume zo ∈ E, such that m ≥ 1, |φ(zo)| = 1 and φ(zo) = eiθ ,
zoDqφ(zo) = mφ(zo); thus, we have

<
{

Dq(zoDq f (zo))

Dq f (zo)

}
= <

{
zoDq f (zo)

f (zo)
+

(1− 2β)zoDqφ(zo)

1 + (1− 2β)φ(zo)
+

zDqφ(zo)

1− φ(zo)

}
.

Using (31), we have

<
{

Dq(zoDq f (zo)

Dq f (zo)

}
= <

{
1 + (1− 2β)φ(zo)

1− φ(zo)

}
+

<
{
(1− 2β)zoDqφ(zo)

1 + (1− 2β)φ(zo)
+

zoDqφ(zo)

1− φ(zo)

}
= <

{
1 + (1− 2β)eiθ

1− eiθ

}
+

<
{

(1− 2β)meiθ

1 + (1− 2β)eiθ +
meiθ

1− eiθ)

}
=

1− β1 − cosθ(1− β1)

2(1− 2cosθ)
+

mβ1cosθ + mβ2
1

1− 2β1 cos θ + β1
2 −

m
2

,

where β1 = 1− 2β. If θ = π, we have

<
{

Dq(zoDq f (zo))

Dq f (zo)

}
=

1− β1

2
+

mβ1(β1 − 1)
(1 + β1)2 − m

2
.

Re-substituting β1 = 1− 2β, and since m ≥ 1, so we have

<
{

Dq(zoDq( f (zo))

Dq f (zo)

}
≤ β− β(1− 2β)

2(1− β)2 −
1
2

.

where β = 9(1+α)
2(3+α)2 , α ∈ [−1, 1], which is contraction to our given hypothesis. Thus, the

required result follows.

We note that by substituting various values to the parameters involved in above result,
we get known and new results, as shown in the following corollaries.

Corollary 1. Let f ∈ A, and α = 0. Then, if

<
{

Dq(zDq f (z)
Dq f (z))

}
> 0,

then

<
{

zDq f (z)
f (z)

}
>

1
2

.

By further taking q→ 1−, we obtain the well known result that a convex function of order zero is
starlike of order one-half, see [27].
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Corollary 2. Let f ∈ A, and α = −1. Then,

<
{

Dq(zDq f (z)
Dq f (z))

}
>
−1
2

,

implies that

<
{

zDq f (z)
f (z)

}
> 0, z ∈ E.

Corollary 3. Let f ∈ A and α = 1. Then, if

<
{

Dq(zDq f (z)
Dq f (z))

}
> 0.0692,

then

<
{

zDq f (z)
f (z)

}
>

9
16

.

The following theorem shows the coefficients inequality for the functions of the class S̃∗q (α).

Theorem 5. Let f ∈ A, α ∈ [−1, 1]. If

∞

∑
n=2

(
[n]q −

9(1 + α)

2(3 + α)2

)
|an| ≤ 1− 9(1 + α)

2(3 + α)2 , (32)

where [n]q is given by (8), then f ∈ S̃∗q (α).

Proof. It is sufficient to prove that the values for zDq f
f lie in a circle centered at 1 and radius

1− 9(1+α)
2(3+α)2 . For this, consider∣∣∣∣ zDq f (z)

f (z)
− 1
∣∣∣∣ =

∣∣∣∣ zDq f (z)− f (z)
f (z)

∣∣∣∣ (33)

=

∣∣∣∣∣∣
∑∞

n=2

(
[n]q − 1

)
anzn

z + ∑∞
n=2 anzn

∣∣∣∣∣∣
≤

∑∞
n=2

(
[n]q − 1

)
|an||z|n−1

1−∑∞
n=2 |an|z|n−1

≤
∑∞

n=2

(
[n]q − 1

)
|an|

1−∑∞
n=2 |an|

. (34)

As (34) is bounded by
(

1− 9(1+α)
2(3+α)2

)
if

∞

∑
n=2

(
[n]q − 1

)
|an| ≤

(
1− 9(1 + α)

2(3 + α)2

)(
1−

∞

∑
n=2
|an|

)
,

which is equivalent to

∞

∑
n=2

(
[n]q −

9(1 + α)

2(3 + α)2

)
|an| ≤ 1− 9(1 + α)

2(3 + α)2 . (35)
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However, (35) is true by hypothesis. Thus, we have
∣∣∣ zDq f (z)

f (z) − 1
∣∣∣ ≤ 1 − 9(1+α)

2(3+α)2 ,
and this gives us the required result.

Taking q→ 1− and α = −1 in Theorem 5, we get the following known result.

Corollary 4 ([31]). Let f ∈ A, α = −1. Then, if

∞

∑
n=2

n|an| ≤ 1, (36)

then f ∈ S∗.

Taking q→ 1−, and α = 0 in Theorem 5, we obtain a result proved by Schild [32], as shown
in the following corollary.

Corollary 5 ([32]). Let f ∈ A. Then, if

∞

∑
n=2

(
n− 1

2

)
|an| ≤

1
2

, (37)

then f ∈ S∗( 1
2 ) ⊂ C.

Set α = −1 in Theorem 5, this gives us the following result.

Corollary 6. Let f ∈ A. Then, if

∞

∑
n=2

n|an| ≤ 1, (38)

then f ∈ S∗q .

3. The Class T̃∗
q (α)

In this section, we shall study the properties of the class T̃∗q (α) shown in Definition 3.
For the following results, we have α ∈ [−1, 1], q ∈ (0, 1), z ∈ E unless otherwise stated.

3.1. Coefficient Inequalities

Coefficient inequalities for functions belong to the class T̃∗q (α) are derived in
following theorem.

Theorem 6. Let f be given by (4). Then, f ∈ T̃∗q (α), if and only if

∞

∑
n=2

(
1− qn

1− q
− 9(1 + α)

2(3 + α)2

)
|an| < 1− 9(1 + α)

2(3 + α)2 , z ∈ E. (39)

Proof. In view of Theorem 5, it is sufficient to prove the only if part. Let f ∈ T̃∗q (α), that is,

<
{

zDq f (z)
f (z)

}
= <

{
z−∑∞

n=2[n]q|an|zn

z−∑∞
n=2 |an|zn

}
>

9(1 + α)

2(3 + α)2 . (40)
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Choose values of z on real axis so that zDq f (z)
f (z) is real. Upon clearing the denominator

in (40), and letting z→ 1 through real values, we have

1−
∞

∑
n=2

[n]q|an| ≥
9(1 + α)

2(3 + α)2

(
1−

∞

∑
n=2
|an|

)
. (41)

By (8), we have

∞

∑
n=2

(
1− qn

1− q
− 9(1 + α)

2(3 + α)2

)
|an| ≤ 1− 9(1 + α)

2(3 + α)2 ,

and this completes the proof.

Corollary 7. Let f ∈ T. Then, if f ∈ T̃∗q (α), then

|an| ≤
(2α2 + 3α + 9)(1− q)

2(1− qn)(3 + α)2 − 9(1 + α)(1− q)
. (42)

This result is sharp for the extremal function of the form

fn(z) = z− (2α2 + 3α + 9)(1− q)
2(1− qn)(3 + α)2 − 9(1− q)(1 + α)

zn. (43)

3.2. Distortion Theorems

The growth and distortion theorems for the functions in the class T̃∗q (α), for α ∈ [−1, 1].

Theorem 7. Let f ∈ T. If f ∈ T̃∗q (α), then

r− 2α2 + 3α + 9
2(1 + q)(3 + α)2 − 9(1 + α)

r2 ≤ | f (z)| ≤ r +
2α2 + 3α + 9

2(1 + q)(3 + α)2 − 9(1 + α)
r2 (|z| = ±r).

Equality holds for the extremal function g0(z), given as

g0(z) = z− 2α2 + 3α + 9
2(1 + q)(3 + α)2 − 9(1 + α)

z2 (|z| = ±r). (44)

Proof. From Theorem 6, we have(
1− q2

1− q
− 9(1 + α)

2(3 + α)2

) ∞

∑
n=2
|an| ≤

∞

∑
n=2

(
1− qn

1− q
− 9(1 + α)

2(3 + α)2

)
|an| ≤ 1− 9(1 + α)

2(3 + α)2 .

That is,

∞

∑
n=2
|an| ≤

2α2 + 3α + 9
2(1 + q)(3 + α)2 − 9(1 + α)

. (45)

Consider

| f (z)| ≤ r +
∞

∑
n=2
|an|rn

≤ r + r2
∞

∑
n=2
|an|

≤ r +
2α2 + 3α + 9

2(1 + q)(3 + α)2 − 9(1 + α)
r2, (46)
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by (45). Similarly, we have

| f (z)| ≥ r−
∞

∑
n=2
|an|rn

≥ r− r2
∞

∑
n=2
|an|

≥ r− 2α2 + 3α + 9
2(1 + q)(3 + α)2 − 9(1 + α)

r2. (47)

From (46) and (47), we get our desired result.

Theorem 8. Let f ∈ T. If f ∈ T̃∗q (α), then

1− 2(2α2 + 3α + 9)r
2(1 + q)(3 + α)2 − 9(1 + α)

≤ |Dq f (z)| ≤ 1 +
2(2α2 + 3α + 9)r

2(1 + q)(3 + α)2 − 9(1 + α)
, (|z| = ±r).

Equality holds for the function g0(z) given by (44).

Proof. Consider

|Dq f (z)| ≤ 1 +
∞

∑
n=2

[n]q|an||z|n−1

≤ 1 + r
∞

∑
n=2

[n]q|an|. (48)

From Theorem 6, we have∣∣∣∣∣ ∞

∑
n=2

[n]q|an|
∣∣∣∣∣ ≤ 1− 9(1 + α)

2(3 + α)2 +
9(1 + α)

2(3 + α)2

(
(2α2 + 3α + 9)

2(1 + q)(3 + α)2 − 9(1 + α)

)
≤ 2(2α2 + 3α + 9)

2(1 + q)(3 + α)2 − 9(1 + α)
. (49)

By substituting (49) in (48), we get the right hand side of required inequality.

Similarly, we have

|Dq f (z)| ≥ 1−
∞

∑
n=2

[n]q|an||z|n−1

≥ 1− r
∞

∑
n=2

[n]q|an|

≥ 1− 2(2α2 + 3α + 9)
2(1 + q)(3 + α)2 − 9(1 + α)

r. (50)

This completes the proof.

Setting q → 1− and α ∈ [−1, 1] in Theorems 7 and 8, we get the results, derived by
Silverman [28].

3.3. Covering Results

Following is the covering result deduced by letting r → 1 in Theorem 7.
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Theorem 9. Let Let f ∈ T, and let f ∈ T̃∗q (α). Then, f (E) contains an open unit disc of radius

2q(3 + α)2

2(1 + q)(3 + α)2 − 9(1 + α)
.

Equality holds for the function g0(z) given by (44).

3.4. Radius of q-Convexity for T̃q
∗(α)

Now, we investigate the radius of q-convexity for functions in class T̃∗q (α).

Theorem 10. Let f ∈ T and let f ∈ T̃∗q (α). Then, f is q-convex in the disk

|z| < r = r(α) =inf
n

(
2(1− qn)(1− q)(3 + α)2 − 9(1 + α)(1− q)2

(1− qn)2(2α2 + 3α + 9)

) 1
n−1

(51)

This result is sharp. Extremal function g0(z) is given by (44).

Proof. We are required to show that |Dq(zDq f (z))
Dq f (z) | ≤ 1 for |z| < r(α), we have

∣∣∣∣Dq(zDq f (z)
Dq f (z)

∣∣∣∣ =

∣∣∣∣∣−∑∞
n=2 an[n]q([n]q − 1)zn−1

1−∑∞
n=2 an[n]qzn−1

∣∣∣∣∣
=

∑∞
n=2[n]q([n]q − 1)|an||z|n−1

1−∑∞
n=2 |an|[n]q|z|n−1 . (52)

The left side of expression given in (52) is bounded above by 1 if

∞

∑
n=2

[n]q([n]q − 1)|an||z|n−1 ≤ 1−
∞

∑
n=2

[n]q|an||z|n−1,

or

∞

∑
n=2

([n]q)2|an||z|n−1 ≤ 1,

which will be true, if by Theorem 6,

([n]q)2|z|n−1 ≤
2[n]q(3 + α)2 − 9(1 + α)

(2α2 + 3α + 9)
, (n = 2, 3, . . .).

It follows that

|z| ≤
(

2(1− qn)(1− q)(3 + α)2 − 9(1 + α)(1− q)2

(1− qn)2(2α2 + 3α + 9)

) 1
n−1

(n = 2, 3, . . . ).

Set |z| = r(α), we have

r(α) ≤
(

2(1− qn)(1− q)(3 + α)2 − 9(1 + α)(1− q)2

(1− qn)2(2α2 + 3α + 9)

) 1
n−1

(n = 2, 3, . . . ), (53)

which is the required result.

Taking q→ 1− and α ∈ [−1, 1] in Theorem 10, we obtain the known result, see [28].
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3.5. Integral Operators

In [15], q-Bernardi operator is defined as:
Let f (z) = z + ∑∞

n=2 anzn, and let c > −1, q ∈ (0, 1), z ∈ E. Then,

F(z) =
[c + 1]q

zc

∫ z

0
tc−1 f (t)dqt =

∞

∑
n=2

1− q1+c

1− qc+n an. (54)

We note that F(z) is well defined. Next, we prove that the class T̃∗q (α) is closed under
q-Bernardi operator F(z) given by (54) for f ∈ T, and f is defined by (4), and we also
discuss the converse case by investigating the radius of univalence.

Theorem 11. Let f ∈ T be the function defined by (4), and let f ∈ T̃∗q (α) and c be real such that
c > −1. Then, the function F(z) defined by (54) belongs to the class T̃∗q (α).

Proof. From (54), we have

F(z) = z−
∞

∑
n=2

bnzn,

where

bn =
1− q1+c

1− qc+n an, (an ≥ 0). (55)

Consider

∞

∑
n=2

(
[n]q −

9(1 + α)

2(3 + α)2

)
bn =

∞

∑
n=2

(
[n]q −

9(1 + α)

2(3 + α)2

)(
1− q1+c

1− qc+n

)
an

≤
∞

∑
n=2

(
[n]q −

9(1 + α)

2(3 + α)2

)
an

≤ 1− 9(1 + α)

2(3 + α)2 , (56)

as f ∈ T̃∗q (α). Therefore, an application of Theorem 6 leads us to the fact that F ∈ T̃∗q (α),
which is the required result.

Next, we will investigate the radius problem for the function F(z) given in (54). For this
purpose, we prove the following lemma.

Lemma 3. (q-Noshiro–Warchowsky theorem) Let f ∈ T. If for all z belongs to a convex domain D
and some real α, <{Dq f (z)} > 0, , then f is said to be a univalent function in E.

Proof. Let z1 6= z2 ∈ D. Since D is convex domain, so

L = {z : z = (1− t)z1 + tz2, 0 < t < 1},

L lies in D, and

dqz = (z2 − z1)dqt, (57)

consider

f (z2)− f (z1) =
∫

L
Dq f (z)dqz

=
∫ 1

0
Dq( f (z(t))(z2 − z1)dqt, (58)
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by using (57). We have

f (z2)− f (z1) = (z2 − z1)
∫ 1

0
Dq f (z(t))dqt.

Since <{Dq f (z)} > 0, so

∫ 1

0
Dq f (z(t))dqt 6= 0,

and also we have z2 − z1 6= 0; therefore, by Fundamental Theorem of q-Calculus, see [30],
we have f (z2)− f (z1) 6= 0. Thus, f (z) is univalent in D.

Taking q→ 1− in above lemma, we get the well known Noshiro–Warchowsky theorem,
see [27].

Theorem 12. Let c be real number such that c > −1. If F(z) ∈ T̃∗q (α); then, f is defined by (4) is
univalent in |z| < R, where

R = inf
(
(1− qc+1)(2(1− qn)(3 + α)2 − 9(1 + α)(1− q))

(1− qn)(1− qn+c)(2α2 + 3α + 9)

) 1
n−1

, (n ≥ 2). (59)

This result is sharp.

Proof. Let

F(z) = z−
∞

∑
n=2

anzn (an ≥ 0). (60)

Then, from (54), we have

f (z) =
z1−cDq(zcF(z))

[c + 1]q

= z−
∞

∑
n=2

1− qc+n

1− qc+1 anzn, (c > −1).

Consider

|Dq f (z)− 1| =
∞

∑
n−2

1− qc+n

1− qc+1

(
1− qn

1− q

)
|an||z|n−1 < 1. (61)

From Theorem 6, we have

2(1− qn)(3 + α)2 − 9(1 + α)(1− q)
(2α2 + 3α + 9)(1− q)

|an| ≤ 1.

The expression (61) will be satisfied if

(1− qc+n)(1− qn)

(1− qc+1)(1− q)
|z|n−1 ≤ 2(1− qn)(3 + α)2 − 9(1 + α)(1− q)

(2α2 + 3α + 9)(1− q)
, (n ≥ 2).

Solving for |z|, we have

|z| ≤
(
(1− qc+1)(2(1− qn)(3 + α)2 − 9(1 + α)(1− q))

(1− qn)(1− qn+c)(2α2 + 3α + 9)

) 1
n−1

, (n ≥ 2).
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It follows that

|Dq f (z)− 1| < 1 f or |z| < R,

that is,

<{Dq f (z)} > 0, f or |z| < R.

Thus, as an application of Lemma 3 (q-Noshiro–Warchawski theorem), f is univalent
for |z| < R, where R is given by (59).

3.6. Extreme Points for T̃∗q (α)

To investigate the extreme points of T̃∗q (α), we have the following theorem.

Theorem 13. Let f1(z) = z, and n = (2, 3, . . . )

fn(z) = z− (2α2 + 3α + 9)(1− q)zn

2(1− qn)(3 + α)2 − 9(1 + α)(1− q)
. (62)

Then, f ∈ T̃∗q (α) if and only if it has the form

f (z) =
∞

∑
n=1

µn fn(z), (63)

where µn > 0 and ∑∞
n=1 µn = 1.

Proof. Let

f (z) =
∞

∑
n=2

µn fn(z)

= z−
∞

∑
n=2

µn
2α2 + 3α + 9)(1− q)zn

2(1− qn)(3 + α)2 − 9(1 + α)(1− q)
.

Then, from Theorem 6, we have

∞

∑
n=2

µn
(2α2 + 3α + 9)(1− q)

2(1− qn)(3 + α)2 − 9(1 + α)(1− q)

(
2(1− qn)(3 + α)2 − 9(1 + α)(1− q)

(2α2 + 3α + 9)(1− q)

)
=

∞

∑
n=2

µn = 1− µ1 ≤ 1.

Thus f ∈ T̃∗q (α). Conversely, let f ∈ T̃∗q (α); from Corollary 7, we have

|an| ≤
(2α2 + 3α + 9)(1− q)

2(1− qn)(3 + α)2 − 9(1 + α)(1− q)
, (n = 2, 3, . . .).

We may set

µn =
2(1− qn)(3 + α)2 − 9(1 + α)(1− q)

(2α2 + 3α + 9)(1− q)
,

and

µ1 = 1−
∞

∑
n=2

µn.
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It follows that

f (z) =
∞

∑
n=1

µn fn(z),

and this completes the proof.

Corollary 8. The extreme points of T̃∗q (α) are functions fn(z) given by (62), (n = 1, 2, . . . ).
We take q→ 1− and α ∈ [−1, 1], and this leads us the result derived in [28].

Remark 2. We note that our Theorems 6 and 7 can be derived alternatively by analysis of extreme
points shown in above theorem.

3.7. Application of the Fractional Calculus

In recent past years, the theory of q-calculus operators has been applied in the areas of
ordinary fractional calculus, see [3,5,33,34]. Using the concepts of q-theory, Al-Salam [7] and
Agarwal [8] introduced fractional q-integral operator and fractional q-derivatives operator
as follows.

Definition 5. The fractional q-integral operator Î δ̂
q,z of a function f (z) of order δ̂, δ̂ > 0 is given by

Î δ̂
q,z f (z) = D̃−δ̂

q,z f (z) =
1

Γq(δ̂)

∫ z

0
(z− tq)1−δ̂ f (t)dqt, (64)

where f (z) is analytic function in simply connected region of z-plane containing the origin. Here,
the term (z− tq)δ̂−1 is q-binomial function defined by

(z− tq)δ̂−1 = zδ̂−1 ∏

 1−
(

tq
z

)
qk

1−
(

tq
z

)
qδ̂+k−1

. (65)

Definition 6. The fractional q-derivative operator D̃δ̂
q,z of function f (z) of order δ̂, (0 ≤ δ̂ < 1) is

defined by

D̃δ̂
q,z f (z) = Dq Î1−δ̂ f (z) =

1
Γq(1− δ̂)

Dq

∫ z

0
(z− tq)−δ̂ f (t)dqt, (66)

where f (z) is suitably contained and the multiplicity of (z− tq)−δ̂ is removed as in Definition 5.

Definition 7. Fractional q-derivative of order (n + δ̂) is defined by

D̃n+δ̂
q f (z) = Dn

q(D̃δ̂
q f (z)), (67)

where 0 ≤ δ̂ < 1 and n ∈ N0 = N ∪ {0}.

It is noted that, from (64) and (66), and some simple computation, we have

D̃−δ̂
q,z f (z) =

1
Γq(2 + δ̂)

zδ̂+1 −
∞

∑
n=2

Γq(n + 1)

Γq(n + 1− δ̂)
anzn+δ̂ (68)

D̃δ̂
q,z f (z) =

1
Γq(2− δ̂)

z1−δ̂ −
∞

∑
n=2

Γq(n + 1)

Γq(n + 1− δ̂)
anzn+δ̂. (69)
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For details see [7,8].

Next, we use the fractional q-derivative operator and fractional q-integral operator to
prove the following results for the class T̃∗q (α).

Theorem 14. Let f ∈ T, 0 ≤ δ̂ < 0, and the function f defined by (4) be in the class T̃∗q (α). Then,
we have

|D̃δ̂
q,z f (z)| ≥ |z|1−δ̂

Γq(2− δ̂)

{
1− (1− q2)(2α2 + 3α + 9)(1− q)|z|

(1− q2−δ̂)(2(1 + q)(3 + α)2 − 9(1 + α))

}
(70)

and

|D̃δ̂
q,z f (z)| ≤ |z|1−δ̂

Γq(2− δ̂)

{
1 +

(1− q2)(2α2 + 3α + 9)(1− q)|z|
(1− q2−δ̂)(2(1 + q)(3 + α)2 − 9(1 + α))

}
. (71)

Equality holds for the function

D̃δ̂
q,z f (z) =

z1−δ̂

Γq(2− δ̂)

{
1− (1− q2)(2α2 + 3α + 9)(1− q)|z|

(1− q2−δ̂)(2(1 + q)(3 + α)2 − 9(1 + α))

}
. (72)

Proof. From (69), we have

Γq(2− δ̂)zδ̂D̃δ̂
q,z f (z) = z−

∞

∑
n=2

Γq(n + 1)Γq(2− δ̂)

Γq(n + 1− δ̂)
anzn

= z−
∞

∑
n=2

φ(n, δ̂)anzn, (73)

where

φ(n, δ̂) =
Γq(n + 1)Γq(2− δ̂)

Γq(n + 1− δ̂)
, n ≥ 2 (74)

is decreasing in n, so by using the properties of q-gamma function, we have

0 < φ(n, δ̂) ≤ φ(2, δ̂) =
1− q2

1− q2−δ̂
,

and from Theorem 6, we have

Γq(2− δ̂)|zδ̂||D̃δ̂
q,z f (z)| ≥ |z| − φ(n, δ̂)|z|2

∞

∑
n=2

an

≥ |z| − (1− q2)(2α2 + 3α + 9)|z|2

(1− q2−δ̂)(2(1 + q)(3 + α)2 − 9(1 + α))
. (75)

Additionally, we have

Γq(2− δ̂)|zδ̂||D̃δ̂
q,z f (z)| ≤ |z|+ φ(n, δ̂)|z|2

∞

∑
n=2

an

≤ |z|+ (1− q2)(2α2 + 3α + 9)|z|2

(−q2−δ̂)(2(1 + q)(3 + α)2 − 9(1 + α))
. (76)
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From (75) and (76), we have the inequalities (70) and (71).
Equality holds for the function

D̃δ̂
q,z f (z) =

z1−δ̂

Γq(2− δ̂)

{
1− (1− q2)(2α2 + 3α + 9)(1− q)

(1− q2−δ̂)(2(1 + q)(3 + α)2 − 9(1 + α))

}
.

This completes the proof.

Theorem 15. Let f ∈ T, 0 ≤ δ̂ < 1, and the function f defined by (4) be in the class T̃∗q (α). Then,
we have

|D̃−δ̂
q,z f (z)| ≥ |z|δ̂+1

Γq(2 + δ̂)

{
1− (2α2 + 3α + 9)(1− q)|z|

(1− q2+δ̂)(2(1 + q)(3 + α)2 − 9(1 + α))

}
(77)

and

|D̃−δ̂
q,z f (z)| ≤ |z|δ̂+1

Γq(2 + δ̂)

{
1 +

(2α2 + 3α + 9)(1− q)|z|
(1− q2+δ̂)(2(1 + q)(3 + α)2 − 9(1 + α))

}
. (78)

Equality holds for the function

D̃−δ̂
q,z f (z) =

zδ̂+1

Γq(2 + δ̂)

{
1− (2α2 + 3α + 9)(1− q)

(1− q2+δ̂)(2(1 + q)(3 + α)2 − 9(1 + α))

}
. (79)

Proof. From (69), we have

Γq(2 + δ̂)zδ̂D̃−δ̂
q,z f (z) = z−

∞

∑
n=2

Γq(n + 1)Γq(2 + δ̂)

Γq(n + 1− δ̂)
anzn

= z−
∞

∑
n=2

φ1(n, δ̂)anzn, (80)

where

φ1(n, δ̂) =
Γq(n + 1)Γq(2 + δ̂)

Γq(n + 1− δ̂)
, n ≥ 2 (81)

is decreasing in n, so we have

0 < φ1(n, δ̂) ≤ φ1(2, δ̂) =
1− q2

1− q2+δ̂
,

and an application of Theorem 6, we have

Γq(2 + δ̂)|zδ̂||D̃−δ̂
q,z f (z)| ≥ |z| − φ1(n, δ̂)|z|2

∞

∑
n=2

an

≥ |z| − (1− q2)(2α2 + 3α + 9)|z|2

(1− q2+δ̂)(2(1 + q)(3 + α)2 − 9(1 + α)
. (82)

Additionally, we have

Γq(2 + δ̂)|zδ̂||D̃−δ̂
q,z f (z)| ≤ |z|+ φ1(n, δ̂)|z|2

∞

∑
n=2

an

≤ |z|+ (1− q2)(2α2 + 3α + 9)|z|2

(1− q2+δ̂)(2(1 + q)(3 + α)2 − 9(1 + α)
. (83)
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From (82) and (83), we have the inequalities (77) and (78).

Equality holds for the function

D̃−δ̂
q,z f (z) =

zδ̂+1

Γq(2 + δ̂)

{
1− (1− q2)(2α2 + 3α + 9)|z|

(1− q2+δ̂)(2(1 + q)(3 + α)2 − 9(1 + α))

}
.

This completes the proof.

Corollary 9. Let f ∈ T and the function f defined by (4) be in the class T̃∗q (α). Then, we have

|z|2
(1 + q)!

{
1− (1− q2)(2α2 + 3α + 9)|z|

(1 + q + q2)(2(1 + q)(3 + α)2 − 9(1 + α))

}
≤
∣∣∣∣∫ z

0
f (t)dqt

∣∣∣∣
≤ |z|2

(1 + q)!

{
1 +

(1− q2)(2α2 + 3α + 9)|z|
(1 + q + q2)(2(1 + q)(3 + α)2 − 9(1 + α))

}
.

and

|z|
{

1− (2α2 + 3α + 9)|z|
2(1 + q)(3 + α)2 − 9(1 + α)

}
≤ | f (z)|

≤ |z|
{

1 +
(2α2 + 3α + 9)|z|

2(1 + q)(3 + α)2 − 9(1 + α)

}
.

Proof. By Definition 5 and Theorem 15, if we take δ̂ = 1, this gives us D̃−1
q,z =

∫ z
0 f (t)dqt

and the result is true. Additionally, from Definition 6 and Theorem 14, for δ̂ = 0, we have
D̃0

q,z = Dq
∫ z

0 f (t)dqt = f (z), and hence we get the required result.

4. Conclusions

We introduced and studied two classes of starlike functions defined by q-fractional
derivative; one contains negative coefficients and one is of negative order. Both these
classes were discussed in detail, and certain geometrical properties were investigated that
generalized the already known results. We note that results proved in this article are the
q-extension and advancements of several results investigated in [26,28,31,32].
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