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Abstract: The nonlocal boundary value problem, dρ
t u(t) + Au(t) = f (t) (0 < ρ < 1, 0 < t ≤ T),

u(ξ) = αu(0) + ϕ (α is a constant and 0 < ξ ≤ T), in an arbitrary separable Hilbert space H with the
strongly positive selfadjoint operator A, is considered. The operator dt on the left hand side of the
equation expresses either the Caputo derivative or the Riemann–Liouville derivative; naturally, in
the case of the Riemann–Liouville derivatives, the nonlocal boundary condition should be slightly
changed. Existence and uniqueness theorems for solutions of the problems under consideration are
proved. The influence of the constant α on the existence of a solution to problems is investigated.
Inequalities of coercivity type are obtained and it is shown that these inequalities differ depending
on the considered type of fractional derivatives. The inverse problems of determining the right-hand
side of the equation and the function ϕ in the boundary conditions are investigated.

Keywords: nonlocal problems; the Riemann–Liouville and the Caputo derivatives; subdiffusion
equation; inverse problems
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1. Introduction

Let H be a separable Hilbert space with the scalar product (·, ·) and the norm || · ||
and A : H → H be an arbitrary unbounded positive selfadjoint operator in H. Suppose
that A has a complete in H system of orthonormal eigenfunctions {vk} and a countable set
of positive eigenvalues λk. It is convenient to assume that the eigenvalues do not decrease
as their number increases, i.e., 0 < λ1 ≤ λ2 · ·· → +∞.

Using the definitions of a strong integral and a strong derivative, fractional analogues
of integrals and derivatives can be determined for vector-valued functions (or simply
functions) h : R+ → H, while the well-known formulae and properties are preserved (see,
e.g., [1]). Recall that the fractional integration of order σ < 0 of the function h(t) defined on
[0, ∞) has the form

∂σ
t h(t) =

1
Γ(−σ)

t∫
0

h(ξ)
(t− ξ)σ+1 dξ, t > 0, (1)

provided the right-hand side exists. Here Γ(σ) is Euler’s gamma function. Using this definition
one can define the Riemann–Liouville fractional derivative of order ρ, 0 < ρ < 1, as

∂
ρ
t h(t) =

d
dt

∂
ρ−1
t h(t).
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If in this definition we interchange differentiation and fractional integration, then we
obtain the definition of the regularized derivative, that is, the definition of the fractional
derivative in the sense of Caputo:

Dρ
t h(t) = ∂

ρ−1
t

d
dt

h(t).

Note that if ρ = 1, then fractional derivatives coincides with the ordinary classical
derivative of the first order: ∂th(t) = Dth(t) = d

dt h(t).
Let ρ ∈ (0, 1) be a fixed number and let C((a, b); H) stand for a set of continuous

functions u(t) of t ∈ (a, b) with values in H.
The subject of this work is the following two nonlocal boundary value problems:{

Dρ
t u(t) + Au(t) = f (t), 0 < t ≤ T;

u(ξ) = αu(0) + ϕ, 0 < ξ ≤ T
(2)

and 
∂

ρ
t u(t) + Au(t) = g(t), 0 < t ≤ T;

∂
ρ−1
t u(t)

∣∣∣∣
t=ξ

= α lim
t→0

∂
ρ−1
t u(t) + φ, 0 < ξ ≤ T,

(3)

where f (t), g(t) ∈ C((0, T]; H), ϕ, φ ∈ H and α is a constant, ξ-fixed point. These problems
are also called the forward problems.

Definition 1. A function u(t) ∈ C([0, T]; H) with the properties Dρ
t u(t), Au(t) ∈ C((0, T); H)

and satisfying conditions (2) is called the solution of the nonlocal problem (2).

The definition of the solution to the nonlocal problem (3) is introduced in a similar
way.

If α = 0 (and ξ = T), then these problems are called the backward problems. The
backward problems in case (2) were studied in detail, for example, in [2–4]. The work [5] is
devoted to the study of the backward problem in case (3). Therefore, in what follows we
only consider the case

α 6= 0. (4)

The backward problems for the diffusion process are of great importance in engi-
neering fields and are aimed at determining the previous state of a physical field (for
example, at t = 0) based on its current information (see, e.g., [3] and for the classical head
equation see [6]). However, regardless of the fact that the Riemann–Liouville or the Caputo
derivative is taken into the equation, this problem is ill-possed in the sense of Hadamard.
In other words, a small change of u(T) in the norm of space H leads to large changes in
the initial data. As can be seen from the main results of papers [2–5] (note, in these works
0 < ρ < 1), the situation changes if we take the sufficiently smooth function u(T). Since
the problem is ill-posed, many authors have considered various regularization options for
finding the initial condition (see, for one-dimensional elliptical part, Liu and Yamamoto [2],
for the nonlinear case, Tuan, Huynh, Ngoc, and Zhou [7]). In particular, as for numerical
approaches, see Tuan, Long and Tatar [8], Wang and Liu [9] and the references therein.

In the case ρ = 1 these problems are also called (see, e.g., [6], p. 214) the inverse heat
conduction problem with inverse time (retrospective inverse problem). It should also be noted
that, in this case, even the smoothness of the function u(T) does not guarantee the stability
of the solution (see, e.g., Chapter 8.2 of [6]).

As we know, in most models described by differential (and pseudodifferential, see e.g., [10])
equations the initial condition is used. However, in practice, some other models have to use
nonlocal conditions, for example, including integrals over time intervals (see, e.g., [11] for
reaction-diffusion equations or [12] for fractional equations), or connecting the solution at
different times, for instance at the initial time and at the terminal time (see, e.g., [13,14]).
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Note, nonlocal conditions express and explain some full details about natural events
because they consider additional information in the initial conditions.

The following nonlocal boundary value problem for the classical diffusion equation{
u′(t) + Au(t) = f (t), 0 < t ≤ T;

u(ξ) = u(0) + ϕ, 0 < ξ ≤ T
(5)

in an arbitrary Banach space E with the strongly positive operator A, has been extensively
studied by numerous researchers (see, e.g., A. O. Ashyralyev et al. [13,14]). As shown in
these papers, in contrast to the retrospective inverse problem, the problem (5) is coercively
solvable in some spaces of differentiable functions. It should also be noted that various
nonlocal boundary value problems for parabolic equations reduce to the boundary value
problem (5) (see, e.g., [15], Chapter 1).

In the present paper we prove the existence and uniqueness theorems for solutions of
problems (2) and (3). Next, we will study the dependence of the existence of a solution on
the value of the parameter α. We will also prove, in contrast to the backward problems, that
the solutions of problems (2) and (3) continuously depend on the right-hand side of the
equation and on the function ϕ. Inequalities of coercivity type are obtained and it is shown
that these inequalities differ depending on the considered type of fractional derivatives.
The inverse problems of determining the right-hand side of the equation and function ϕ in
the boundary conditions are investigated.

The inverse problem of determining the source function f with the final time observa-
tion has been well studied and much theoretical research has been published for classical
partial differential equations. As a monograph, we should refer to Kabanikhin [6] and
Prilepko, Orlovsky, and Vasin [16]. As for the fractional differential equations, one can
construct theories parallel to [6,16], and the works are now made continuously. We give a
brief overview of work on this inverse problem at the beginning of Section 4.

The inverse problem of defining the function ϕ arises from real-life processes. For
example, when the initial temperature and final temperature for the heat equation are not
indicated immediately, and it is not required to find, but information about the difference
between the initial and final temperatures is sought. To the best of our knowledge, such an
inverse problem was discussed only in the paper [17]. The authors considered this problem
for the subdiffusion equation including the Caputo fractional derivative, the elliptical part
of which is a two-variable differential expression with constant coefficients.

The remainder of this paper is composed of four sections and the Conclusion. In the
next section, we introduce the Hilbert space associated with the degree of operator A and
recall some properties of the Mittag–Leffler functions. Section 3 is devoted to the study
of the nonlocal problem (2). Here, we first investigate problem (2) for the homogeneous
equation, and then move on to the main problem. In Section 4, we study the inverse
problem of determining the right-hand side of Equation (2). In this case, we assume that
the unknown function f does not depend on t. The next section is devoted to the study of
the inverse problem for the determination of the boundary function ϕ. Since problems (2)
and (3) are studied in a similar way, in Section 6 we present only the main points of the
proof of the theorem on the existence and uniqueness of the solution to problem (3). Inverse
problems for Equation (3) are considered in the same way as inverse problems for Equation
(2). Therefore, we omit these details.

2. Preliminaries

In this section, we introduce the Hilbert space of “smooth” functions related to the
degree of operator A and recall some properties of the Mittag–Leffler functions, which we
will use in what follows.
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Let τ be an arbitrary real number. We introduce the power of operator A, acting in H
according to the rule

Aτh =
∞

∑
k=1

λτ
k hkvk,

where hk are the Fourier coefficients of a function h ∈ H: hk = (h, vk). Obviously, the
domain of this operator has the form

D(Aτ) = {h ∈ H :
∞

∑
k=1

λ2τ
k |hk|2 < ∞}.

For elements of D(Aτ) we introduce the norm

||h||2τ =
∞

∑
k=1

λ2τ
k |hk|2 = ||Aτh||2,

and together with this norm D(Aτ) turns into a Hilbert space.
For 0 < ρ < 1 and an arbitrary complex number µ, by Eρ,µ(z) we denote the Mittag–

Leffler function with two parameters (see, e.g., [18], p. 12):

Eρ,µ(z) =
∞

∑
n=0

zn

Γ(ρn + µ)
. (6)

If the parameter µ = 1, then we have the classical Mittag–Leffler function: Eρ(z) = Eρ,1(z).
In what follows we need the asymptotic estimate of the Mittag–Leffler function with a

sufficiently large negative argument. The well known estimate has the form (see, e.g., [19],
p. 136)

|Eρ,µ(−t)| ≤ C
1 + t

, t > 0, (7)

where µ is an arbitrary complex number. This estimate essentially follows from the follow-
ing asymptotic estimate (see, e.g., [19], p. 134):

Eρ,µ(−t) =
t−1

Γ(µ− ρ)
+ O

(
t−2). (8)

For the Mittag–Leffler function with two parameters Eρ,ρ(−t) one can obtain a better
estimate than (7). Indeed, using the asymptotic estimate (see, e.g., [19], p. 134)

Eρ,ρ(−t) = − t−2

Γ(−ρ)
+ O(t−3), (9)

and the fact that Eρ,ρ(t) is real analytic, we can obtain the following inequality [5]

|Eρ,ρ(−t)| ≤ C
1 + t2 , t > 0. (10)

We will also use a coarser estimate with positive number λ and 0 < ε < 1:

|tρ−1Eρ,ρ(−λtρ)| ≤ Ctρ−1

1 + (λtρ)2 ≤ Cλε−1tερ−1, t > 0, (11)

which is easy to verify. Indeed, let tρλ < 1, then t < λ−1/ρ and

tρ−1 = tρ−ερtερ−1 < λε−1tερ−1.
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If tρλ ≥ 1, then λ−1 ≤ tρ and

λ−2t−ρ−1 = λ−1+ελ−1−εt−ρ−1 ≤ λε−1tερ−1.

Proposition 1. Let 0 < ρ < 1. Then

Eρ(x) > 0,
d

dx
Eρ(x) > 0, x ∈ R. (12)

Proof. For x ≥ 0 this is obvious; estimates (12) follow from definition (6).
For x < 0 we use the integral representation (see, e.g., [20], p. 54)

Eρ(x) =
sin ρπ

π

∞∫
0

e−t|x|1/ρ

1 + 2tρ cos ρπ + t2ρ
tρ dt > 0.

Then

d
dx

Eρ(x) = |x|(1−ρ)/ρ · sin ρπ

ρπ

∞∫
0

e−t|x|1/ρ

1 + 2tρ cos ρπ + t2ρ
tρ+1 dt > 0.

Using Proposition 1, by virtue of estimates (12) and equality Eρ(0) = 1, we arrive at
(see [20], p. 47).

Proposition 2. The Mittag–Leffler function of the negative argument Eρ(−x) is monotonically
decreasing function for all 0 < ρ < 1 and

0 < Eρ(−x) < 1. (13)

Proposition 3. Let ρ > 0 and λ > 0. Then for all positive t > 0 one has [3]

t∫
0

ηρ−1Eρ,ρ(−ληρ)dη =
1
λ

(
1− Eρ(−λtρ)

)
.

Proof. First, we calculate the derivative of the Mittag–Leffler function

d
dt

Eρ(−λtρ) = −ρλtρ−1
∞

∑
n=1

n(−λtρ)n−1

Γ(ρn + 1)
= −ρλtρ−1

∞

∑
k=0

(k + 1)(−λtρ)k

Γ(ρ(k + 1) + 1)
=

(since Γ(x + 1) = xΓ(x))

= −λtρ−1
∞

∑
k=0

(−λtρ)k

Γ(ρk + ρ)
= −λtρ−1Eρ,ρ(−λtρ).

Note that here the series is termwise differentiable in R.
Now, by virtue of the equality

t∫
0

ηρ−1Eρ,ρ(−ληρ)dη = − 1
λ

t∫
0

d
dη

Eρ(−ληρ)dη,

we obtain the required result.
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Proposition 4. Let 0 < ρ < 1 and λ > 0. Then

d
dt

[
tρEρ,ρ+1(−λtρ)

]
> 0, t > 0,

i.e., tρEρ,ρ+1(−λtρ) strictly increases as a function of t > 0.

Proof. Using (6) and term-by-term integration we arrive at (see [20], formula (4.4.4))

t∫
0

ηρ−1Eρ,ρ(−ληρ)dη = tρEρ,ρ+1(−λtρ), (14)

or by Proposition 3,

tρEρ,ρ+1(−λtρ) =
1
λ

(
1− Eρ(−λtρ)

)
.

It remains to apply Proposition 1.

Proposition 5. Let 0 < ρ < 1 and λ > 0. Then for all positive t one has

∂
ρ−1
t

(
tρ−1Eρ,ρ(−λtρ)

)
= Eρ(−λtρ).

Proof. By the definition of fractional integration (1) we have

∂
ρ−1
t

(
tρ−1Eρ,ρ(−λtρ)

)
=

1
Γ(1− ρ)

t∫
0

ξρ−1Eρ,ρ(−λξρ)

(t− ξ)ρ dξ =

=
1

Γ(1− ρ)

∞

∑
j=0

(−λ)j

Γ(ρj + ρ)

t∫
0

ξρ−1+ρj

(t− ξ)ρ dξ =

=
1

Γ(1− ρ)

∞

∑
j=0

(−λ)j

Γ(ρj + ρ)
tρj

1∫
0

sρ−1+ρj(1− s)−ρds.

On the other hand, using the properties of Euler’s beta function B(a, b), we obtain

B(ρ + ρj, 1− ρ) =

1∫
0

sρ−1+ρj(1− s)−ρds =
Γ(ρ + ρj)Γ(1− ρ)

Γ(ρj + 1)
.

By virtue of the definition of the Mittag–Leffler function Eρ(z) this implies the state-
ment of the proposition.

3. Well-Posedness of Problem (2)

To solve problem (2), we divide it into two auxiliary problems:{
Dρ

t ω(t) + Aω(t) = f (t), 0 < t ≤ T;

ω(0) = 0
(15)

and {
Dρ

t w(t) + Aw(t) = 0, 0 < t ≤ T;

w(ξ) = αw(0) + ψ, 0 < ξ ≤ T,
(16)

where ψ ∈ H is a given function.
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Problem (16) is a special case of problem (2), and the solution to problem (15) is defined
similarly to Definition 1.

If ψ = ϕ− ω(ξ) and ω(t) and w(t) are the corresponding solutions, then it is easy
to verify that function u(t) = ω(t) + w(t) is a solution to problem (2). Therefore, it is
sufficient to solve the auxiliary problems.

For problem (15) we have the following statement.

Theorem 1. Let f (t) ∈ C([0, T]; D(Aε)) for some ε ∈ (0, 1). Then problem (15) has a unique
solution and this solution has the representation

ω(t) =
∞

∑
k=1

 t∫
0

ηρ−1Eρ,ρ(−λkηρ) fk(t− η)dη

vk. (17)

Moreover, there is a constant Cε > 0 such that the following coercive type inequality holds:

||Dρ
t ω(t)||2 + ||ω(t)||21 ≤ Cε max

t∈[0,T]
|| f ||2ε , 0 < t ≤ T. (18)

Proof of Theorem 1. It is not hard to verify that the series (17) is a formal solution to
problem (15) (see, e.g., [20], p. 173, [21]). In order to prove that function (17) is actually a
solution to the problem, it remains to substantiate this formal statement, i.e., to show that
the operators A and Dρ

t can be applied term-by-term to series (17).
Let Sj(t) be the partial sum of series (17). Then

ASj(t) =
j

∑
k=1

 t∫
0

ηρ−1Eρ,ρ(−λkηρ) fk(t− η)dη

λkvk. (19)

Due to the Parseval equality we may write

||ASj(t)||2 =
j

∑
k=1

λ2
k

∣∣∣∣∣∣
t∫

0

ηρ−1Eρ,ρ(−λkηρ) fk(t− η)dη

∣∣∣∣∣∣
2

.

Then, by inequality (11) for 0 < ε < 1 one has

||ASj(t)||2 ≤ C
j

∑
k=1

[ t∫
0

ηερ−1λε
k| fk(t− η)|dη

]2

,

or, by virtue of the generalized Minkowski inequality,

||ASj(t)||2 ≤ C
[ t∫

0

ηερ−1
( j

∑
k=1
|λε

k fk(t− η)|2
) 1

2

dη

]2

≤ Cε max
t∈[0,T]

|| f (t)||2ε .

Hence, we obtain Aω(t) ∈ C([0, T]; H) and in particular ω(t) ∈ C([0, T]; H).

Furthermore, from Equation (2) one has Dρ
t Sj(t) = −ASj(t) +

j
∑

k=1
fk(t)vk, t > 0.

Therefore, from the above reasoning, we have Dρ
t ω(t) ∈ C((0, T]; H) and

||Dρ
t Sj(t)||2 ≤ Cε max

t∈[0,T]
|| f (t)||2ε + || f (t)||2, t > 0.

Thus, we have completed the rationale that (17) is a solution to problem (15). The last
two inequalities imply estimate (18).



Fractal Fract. 2022, 6, 41 8 of 21

The uniqueness of the solution can be proved by the standard technique based on
completeness of the set of eigenfunctions {vk} in H (see, e.g., [5]).

Theorem 1 is completely proved.

If f does not depend on t, then the statement of Theorem 1 is true for all f ∈ H.

Corollary 1. Let f ∈ H. Then problem (15) has a unique solution and this solution has the
representation

ω(t) =
∞

∑
k=1

fktρEρ,ρ+1(−λktρ)vk. (20)

Moreover, there is a positive constant C such that the following coercive type inequality holds:

||Dρ
t ω(t)||2 + ||ω(t)||21 ≤ C|| f ||2, 0 < t ≤ T. (21)

Proof. Since f does not depend on t, then we have the following form for the Fourier
coefficients of ω (see (17))

ωk(t) = fk

t∫
0

ηρ−1Eρ,ρ(−λkηρ)dη. (22)

Application of Formula (14) to the integral shows that the formal solution to prob-
lem (15) has the form (20).

Let Sj(t) be the partial sum of series (20). Then by virtue of estimate (7), we obtain

||ASj(t)||2 ≤ C
j

∑
k=1

∣∣∣∣ λktρ fk
1 + λktρ

∣∣∣∣2 ≤ C|| f ||2.

Now, using this estimate and repeating the arguments similar to the proof of Theorem 1,
it is easy to check that (20) is indeed a solution to problem (15) and estimate (21)
holds true.

We now turn to problem (16). In accordance with the Fourier method, we will look for
a solution to problem (16) in the form of a series:

w(t) =
∞

∑
k=1

Tk(t)vk,

where Tk(t), k ≥ 1, are solutions of the nonlocal problems:{
Dρ

t Tk(t) + λkTk(t) = 0, 0 < t ≤ T;

Tk(ξ) = αTk(0) + ψk,
(23)

where ψk are the Fourier coefficients of function ψ ∈ H.
Let us denote Tk(0) = bk. Then the unique solution to the differential Equation (23)

with this initial condition has the form Tk(t) = bkEρ(−λktρ) (see, e.g., [20], p. 174). From
the nonlocal conditions of (23) we obtain the following equation to find the unknown
numbers bk:

bkEρ(−λkξρ) = αbk + ψk. (24)

By virtue of property (13) of the Mittag–Leffler function, Eρ(−λkξρ) 6= α for all α ≥ 1
and α < 0 (note, ξ > 0 and λk > 0). Therefore, from (24) we have

bk =
ψk

Eρ(−λkξρ)− α
, |bk| ≤ Cα|ψk|, k ≥ 1, and α ≥ 1 or α < 0, (25)
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here and below, by Cβ we will denote a constant depending on β, not necessarily the
same one.

If α = 0, then Eρ(−λkξρ) 6= 0, but the Mittag–Leffler function can asymptotically tend
towards zero (see (8)). Therefore, in this case one has:

bk =
ψk

Eρ(−λkξρ)
, |bk| ≤ Cρλkξρ|ψk|.

This case, as noted above (see (4)), has been studied in detail in [2–4].
Let 0 < α < 1. Then according to Proposition 2, there is a unique λ0 > 0 such that

Eρ(−λ0ξρ) = α. If λk 6= λ0 for all k ≥ 1, then the estimate in (25) holds with some constant
Cα > 0.

Thus, if α /∈ (0, 1) or α ∈ (0, 1), but λk 6= λ0 for all k ≥ 1, then the formal solution of
problem (16) has the form

w(t) =
∞

∑
k=1

ψk
Eρ(−λkξρ)− α

Eρ(−λktρ)vk. (26)

Finally, let 0 < α < 1 and λk = λ0 for k = k0, k0 + 1, . . . , k0 + p0 − 1, where p0 is the
multiplicity of the eigenvalue λk0 . Then the nonlocal problem (23) has a solution if the
boundary function ψ(x) satisfies the following orthogonality conditions

ψk = (ψ, vk) = 0, k ∈ K0; K0 = {k0, k0 + 1, . . . , k0 + p0 − 1}, (27)

and for these k ∈ K0 arbitrary numbers bk are solutions of Equation (24). For all other k
we have

bk =
ψk

Eρ(−λkξρ)− α
, |bk| ≤ Cα|ψk|, k /∈ K0. (28)

Thus, the formal solution of problem (16) in this case has the form

w(t) = ∑
k/∈K0

ψk
Eρ(−λkξρ)− α

Eρ(−λktρ)vk + ∑
k∈K0

bkEρ(−λktρ)vk. (29)

Throughout what follows we will assume that whenever 0 < α < 1 and λk = λ0, then
orthogonality condition (27) is satisfied.

Let us show that the operators A and Dρ
t can be applied term-by-term to series (26);

for series (29) this question is considered in a completely similar way.
Let Sj(t) be the partial sum of series (26). Then

ASj(t) =
j

∑
k=1

λk
ψk

Eρ(−λkξρ)− α
Eρ(−λktρ)vk. (30)

Due to the Parseval equality, we may write

||ASj(t)||2 ≤
j

∑
k=1

λ2
k

∣∣∣∣ ψk
Eρ(−λkξρ)− α

Eρ(−λktρ)

∣∣∣∣2.

Using estimates (7), (25) and (28) we obtain

||ASj(t)||2 ≤ Cα

j

∑
k=1

λ2
k

∣∣∣∣ ψk
1 + λktρ

∣∣∣∣2 ≤ Cαt−2ρ
j

∑
k=1
|ψk|2. (31)
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Therefore if ψ ∈ H, then Au(t) ∈ C((0, T]; H). From Equation (16) one has Dρ
t u(t) =

−Au(t), t > 0, and the above estimates imply

||Dρ
t w(t)||2 ≤ Cαt−2ρ

j

∑
k=1
|ψk|2, (32)

which means Dρ
t w(t) ∈ C((0, T]; H).

For Sj(t), taking into account estimate (7), we obtain

||Sj(t)||2 ≤ Cα

j

∑
k=1
|ψk|2. (33)

Hence w(t) ∈ C([0, T]; H), which was required by the definition of the solution to
problem (16).

Let us investigate the uniqueness of the solution to problem (16). Suppose we have
two solutions: w1(t), w2(t) and set w(t) = w1(t)− w2(t). Then, we have{

Dρ
t w(t) + Aw(t) = 0, 0 < t ≤ T;

w(ξ) = αw(0), 0 < ξ ≤ T.
(34)

Let wk(t) = (w(t), vk). Since the operator A is self-adjoint, one has

Dρ
t wk(t) = (Dρ

t w(t), vk) = −(Aw(t), vk) = −(w(t), Avk) = −λkwk(t) (35)

and the nonlocal condition implies

wk(ξ) = αwk(0). (36)

Let us denote wk(0) = bk. Then the unique solution to the differential Equation (35)
with this initial condition has the form wk(t) = bkEρ(−λktρ) (see, e.g., [20], p. 174). From
the nonlocal conditions of (36) we obtain the following equation to find the unknown
numbers bk:

bkEρ(−λkξρ) = αbk. (37)

Let first α /∈ (0, 1) or α ∈ (0, 1), but λk 6= λ0 for all k ≥ 1. Then Eρ(−λkξρ) 6= α
for all k. Consequently, in this case all bk are equal to zero (therefore wk(t) = 0), and by
virtue of completeness of the set of eigenfunctions {vk}, we conclude that w(t) ≡ 0. Thus,
problem (16) in this case has a unique solution.

Now suppose that α ∈ (0, 1) and λk = λ0, k ∈ K0. Then Eρ(−λkξρ) = α, k ∈ K0 and
therefore Equation (37) has the following solution: bk = 0 if k /∈ K0 and bk is an arbitrary
number for k ∈ K0. Thus, in this case, there is no uniqueness of the solution to problem (16).

Thus, we obtain the following statement:

Theorem 2. Let ψ ∈ H.
If α /∈ (0, 1) or α ∈ (0, 1), but λk 6= λ0 for all k ≥ 1, then problem (16) has a unique solution

and this solution has the form (26).
If α ∈ (0, 1) and λk = λ0, k ∈ K0, then we assume that the orthogonality conditions (27) are

satisfied. The solution of problem (16) has the form (29) with arbitrary coefficients bk, k ∈ K0.
Moreover, there is a constant Cα > 0 such that the following coercive type inequality holds:

||Dρ
t w(t)||2 + ||w(t)||21 ≤ Cαt−2ρ||ψ||2, 0 < t ≤ T. (38)

Note that the proof of the coercive type inequality (38) follows from the estimates (31)
and (32).
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Now let us move on to solving the main problem (2). Let ϕ ∈ H and f (t) ∈
C([0, T]; D(Aε)) for some ε ∈ (0, 1). As noted above, if we put ψ = ϕ − ω(ξ) ∈ H
and ω(t) and w(t) are the corresponding solutions of problems (15) and (16), then function
u(t) = ω(t) + w(t) is a solution to problem (2). Therefore, if α /∈ (0, 1) or α ∈ (0, 1), but
λk 6= λ0 for all k ≥ 1, then

u(t) =
∞

∑
k=1

[
ϕk −ωk(ξ)

Eρ(−λkξρ)− α
Eρ(−λktρ) + ωk(t)

]
vk, (39)

where

ωk(t) =
t∫

0

ηρ−1Eρ,ρ(−λkηρ) fk(t− η)dη.

The uniqueness of the function u(t) follows from the uniqueness of the solutions ω(t)
and w(t).

If α ∈ (0, 1) and λk = λ0, k ∈ K0, then

u(t) = ∑
k/∈K0

[
ϕk −ωk(ξ)

Eρ(−λkξρ)− α
Eρ(−λktρ) + ωk(t)

]
vk + ∑

k∈K0

bkEρ(−λktρ)vk. (40)

The corresponding orthogonality conditions have the form

(ϕ, vk) = (ω(ξ), vk), k ∈ K0; K0 = {k0, k0 + 1, . . . , k0 + p0 − 1}. (41)

In particular, if

(ϕ, vk) = 0, ( f (t), vk) = 0, for all t > 0, k ∈ K0; K0 = {k0, k0 + 1, . . . , k0 + p0 − 1}, (42)

then the orthogonality conditions (41) are satisfied.
Thus we have proved the main result of this section:

Theorem 3. Let ϕ ∈ H and f (t) ∈ C([0, T]; D(Aε)) for some ε ∈ (0, 1).
If α /∈ (0, 1) or α ∈ (0, 1), but λk 6= λ0 for all k ≥ 1, then problem (2) has a unique solution

and this solution has the form (39).
If α ∈ (0, 1) and λk = λ0, k ∈ K0, then we assume that the orthogonality conditions (42) are

satisfied. The solution of problem (16) has the form (40) with arbitrary coefficients bk, k ∈ K0.
Moreover, there are constants Cα > 0 and Cε > 0 such that the following coercive type

inequality holds:

||Dρ
t u(t)||2 + ||u(t)||21 ≤ Cαt−2ρ||ϕ||2 + Cε max

t∈[0,T]
|| f ||2ε , 0 < t ≤ T. (43)

The results of Theorems 2 and 3 are based on the assumption of orthogonality condi-
tions (27) and (42) correspondingly. The question naturally arise, to what extent do these
assumtions limit? In order to answer this question, consider the following example.

Let Ω ⊂ RN be a bounded domain with sufficiently smooth boundary ∂Ω and denote
by A0 the operator in L2(Ω) with domain of definition D(A0) = { f ∈ C2(Ω) ∩ C(Ω) :
f (x) = 0, x ∈ ∂Ω} and acting as A0 f (x) = −4 f (x), where 4 is the Laplace operator.
Then (see, e.g., [22]) A0 has a complete in L2(Ω) system of orthonormal eigenfunctions
{vk(x)} and a countable set of nonnegative eigenvalues λk (→ +∞), and λ1 = λ1(Ω) > 0.

Let A stand for the operator, acting as A f (x) = ∑ λk fkvk(x) with the domain of
definition D(A) = { f ∈ L2(Ω) : ∑ λ2

k f 2
k < ∞}. Then it is not hard to verify, that A



Fractal Fract. 2022, 6, 41 12 of 21

is a positive self-adjoint extension in L2(Ω) of operator A0. Therefore, one can apply
Theorems 2 and 3 to operator A and consequently to the problem:

Dρ
t w(x, t)−4w(x, t) = 0, x ∈ Ω, 0 < t ≤ T;

w(x, ξ) = αw(x, 0) + ψ(x), x ∈ Ω, 0 < ξ ≤ T;

w(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T, ,

(44)

Suppose α ∈ (0, 1) and ξ ∈ (0, T] are such that

Eρ(−λ1ξρ) = α.

Then problem (44) has the unique solution for any function ψ ∈ L2(Ω), which satisfies
the orthogonality condition ∫

Ω

ψ(x)v1(x)dx = 0,

or in other words, for any function

ψ(x) =
∞

∑
k=2

ψkvk(x),

with
∞

∑
k=2
|ψk|2 < ∞.

4. Inverse Problem of Determining the Heat Source Density

The inverse problems of determining the right-hand side (the heat source density) of
various subdiffusion equations have been considered by a number of authors (see, e.g.,
survey papers [23] and the bibliography therein). However, there is no general closed
theory for the abstract case of the source function F(x, t). Known results deal with the
separated source term F(x, t) = h(t) f (x). The appropriate choice of the overdetermination
depends on the choice whether the unknown is h(t) or f (x).

The most difficult to study is the case when the function h(t) is unknown (see the sur-
vey work [3,23] for the case of subdiffusion equations, and, for example, monographs [6,16]
and [24–26] for the classical heat equation). In inverse problems of this type, the condition
u(x0, t) = u0(t) is taken as an additional one, and the operator A does not depend on t. In
all the above-mentioned works on the subdiffusion equations, only the uniqueness of the
solution to the inverse problem was proved.

Uniqueness questions in the inverse problem of finding the function f (x) in fractional
diffusion equations

Dρ
t u + Au = h(t) f (x), (45)

has been studied in, e.g., [27,28]. Paper [27] shows the uniqueness result for f (x) if h(t) > 0
in a case of a self-adjoint operator A with time-independent coefficients. Article [28], Ex-
ample 3.1, shows the non-uniqueness result if h(t) changes its sign. The time- dependent
operator A(t) has been considered in [28], Theorem 3.1, where uniqueness was established
under some monotonic in time assumptions on h(t) and A(t). In paper [29], the author
studies a general multi-dimensional case for a linear time-fractional partial differential
equations with time-dependent coeffitients. The author uses separation of variable tech-
nique combined with the maximum principle to derive the uniqueness result assuming
h ∈ C[0, T] and 0 6≡ h ≥ 0. In this result, we do not need any monotonic premises on
h(t) and/or the coefficients of A(t), which is the new aspect (and highlight) in this area of
inverse problems.

Many authors have considered an Equation (45) in which h(t) ≡ 1 and f (x) is un-
known (see, e.g., [30–48]). Let us mention only some of these works. The case of subdif-
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fusion equations, the elliptic part of A of which is an ordinary differential expression, is
considered in [30–36]. The authors of the articles [37–41] studied subdiffusion equations
in which the elliptic part of A is either a Laplace operator or a second-order operator. The
paper [42] studied the inverse problem for the subdiffusion Equation (2) with the Cauchy
condition. In this article [42] and most other articles, including [37–40], the Caputo deriva-
tive is used as a fractional derivative. The recent articles [43,44] are devoted to the inverse
problem for the subdiffusion equation with Riemann–Liouville derivatives. In [31,41], the
fractional derivative in the subdiffusion equation is a two-parameter generalized Hilfer
fractional derivative; this type of fractional derivative contains a parameter belonging to
the interval [0, 1], and its extreme values correspond to the Caputo and Riemann–Liouville
derivatives. Various models of applied problems leading to Hilfer fractional derivatives are
investigated in [49]. Note also that the papers [31,37,40] contain a survey of papers dealing
with inverse problems of determining the right-hand side of the subdiffusion equation.

In [41,46,47], non-self-adjoint differential operators (with nonlocal boundary condi-
tions) were taken as A, and solutions to the inverse problem were found in the form of
biortagonal series.

In their previous work [48], the authors of this article considered an inverse problem
for simultaneously determining the order of the Riemann–Liouville fractional derivative
and the source function in the subdiffusion equations. Using the classical Fourier method,
the authors proved the uniqueness and existence of a solution to this inverse problem.

It should be noted that in all of the listed works, the Cauchy conditions in time are
considered (an exception is work [45], where the integral condition is set with respect to
the variable t). In the present paper, for the best of our knowledge, an inverse problem for
subdiffusion equation with a nonlocal condition in time (see (46)) is considered for the first
time.

The papers [50,51] deal with the inverse problem of determining the order of the
fractional derivative in the subdiffusion equation and in the wave equation, respectively.

Let us consider the inverse problem{
Dρ

t u(t) + Au(t) = f , 0 < t ≤ T;

u(ξ) = αu(0) + ϕ, 0 < ξ ≤ T,
(46)

with the additional condition

u(τ) = Ψ, 0 < τ ≤ T, τ 6= ξ, (47)

in which the unknown element f ∈ H, characterizing the action of heat sources, does not
depend on t and Ψ, ϕ ∈ H are given elements, α is an arbitrary given constant.

Note that if τ = ξ, then the nonlocal condition in (46) coincides with the Cauchy
condition u(0) = ϕ1 (see (4)). In this case, this inverse problem was studied in [42].

Definition 2. A pair {u(t), f } of functions u(t) ∈ C([0, T]; H) and f ∈ H with the properties
Dρ

t u(t), Au(t) ∈ C((0, T]; H) and satisfying conditions (46), (47) is called the solution of the
inverse problem (46), (47).

In what follows we shall deal only with the case α ≥ 1, since in this case the uniqueness
of the solution is relatively easy to prove.

Theorem 4. Let ϕ, Ψ ∈ D(A) and α ≥ 1. Then the inverse problem (46), (47) has a unique
solution {u(t), f } and this solution has the following form

f =
∞

∑
k=1

[
α− Eρ(−λkξρ)

Eρ(−λkτρ)ξρEρ,ρ+1(−λkξρ) + τρEρ,ρ+1(−λkτρ)[α− Eρ(−λkξρ)]
Ψk+ (48)
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+
Eρ(−λkτρ)

Eρ(−λkτρ)ξρEρ,ρ+1(−λkξρ) + τρEρ,ρ+1(−λkτρ)[α− Eρ(−λkξρ)]
ϕk

]
vk,

u(t) =
∞

∑
k=1

[
Eρ(−λktρ)

Eρ(−λkξρ)− α
[ϕk − fkξρEρ,ρ+1(−λkξρ)] + fktρEρ,ρ+1(−λktρ)

]
vk. (49)

Proof of Theorem 4. Existence. If f is known, then the unique solution of problem (46)
has the form (39), and since f does not depend on t, then, thanks to formulas (22) and (14),
it is easy to verify that the formal solution of problem (46) has the form (49).

By virtue of additional condition (47) and completeness of the system {vk} we obtain:

Eρ(−λkτρ)

Eρ(−λkξρ)− α
[ϕk − fkξρEρ,ρ+1(−λkξρ)] + fkτρEρ,ρ+1(−λkτρ) = Ψk.

After simple calculations, we obtain

fk =
α− Eρ(−λkξρ)

Eρ(−λkτρ)ξρEρ,ρ+1(−λkξρ) + τρEρ,ρ+1(−λkτρ)[α− Eρ(−λkξρ)]
Ψk+ (50)

+
Eρ(−λkτρ)

Eρ(−λkτρ)ξρEρ,ρ+1(−λkξρ) + τρEρ,ρ+1(−λkτρ)[α− Eρ(−λkξρ)]
ϕk ≡ fk,1 + fk,2.

With these Fourier coefficients we have the above formal series (48) for the unknown
function f : f = ∑∞

k=1( fk,1 + fk,2)vk.
Let us show the convergence of series (48). If Fj are the partial sums of series (48), then

by virtue of the Parseval equality we may write

||Fj||2 =
j

∑
k=1

[ fk,1 + fk,2]
2 ≤ 2

j

∑
k=1

f 2
k,1 + 2

j

∑
k=1

f 2
k,2 ≡ 2I1,j + 2I2,j. (51)

Since ξ > 0, then Eρ(−λkτρ)ξρEρ,ρ+1(−λkξρ) > 0. Therefore,

I1,j ≤
j

∑
k=1

∣∣∣∣∣ α− Eρ(−λkξρ)

τρEρ,ρ+1(−λkτρ)[α− Eρ(−λkξρ)]

∣∣∣∣∣
2

|Ψk|2 =
j

∑
k=1

|Ψk|2∣∣τρEρ,ρ+1(−λkτρ)
∣∣2 .

Using the asymptotic estimate (see (8))

Eρ,ρ+1(−t) = t−1 + O(t−2), (52)

we obtain

I1,j ≤
j

∑
k=1

λ2
k |Ψk|2(

1 + O
(
(−λkτρ)−1

))2 ≤ C
j

∑
k=1

λ2
k |Ψk|2 ≤ C||Ψ||21.

Since τ > 0 and α ≥ 1, then τρEρ,ρ+1(−λkτρ)[α− Eρ(−λkξρ)] > 0. Therefore,

I2,j ≤
j

∑
k=1

∣∣∣∣∣ Eρ(−λkτρ)

Eρ(−λkτρ)ξρEρ,ρ+1(−λkξρ)

∣∣∣∣∣
2

|ϕk|2 =
j

∑
k=1

|ϕk|2∣∣ξρEρ,ρ+1(−λkξρ)
∣∣2 .

By virtue of (52),

I2,j ≤
j

∑
k=1

λ2
k |ϕk|2(

1 + O
(
(−λkξρ)−1

))2 ≤ C
j

∑
k=1

λ2
k |ϕk|2 ≤ C||ϕ||21.

Thus, if ϕ, Ψ ∈ D(A), then from estimates of Ii,j and (51) we obtain f ∈ H.
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After finding the unknown function f ∈ H, the fulfilment of the conditions of Defini-
tion 2 for function u(t), defined by series (49) is proved in exactly the same way as with
Corollary 1 and Theorem 2.

Uniqueness. Suppose we have two solutions: {u1(t), f1} and {u2(t), f2}. It is re-
quired to prove u(t) ≡ u1(t)− u2(t) ≡ 0 and f ≡ f1 − f2 = 0. Since the problem is linear,
to determine u(t) and f we have the problem:

Dρ
t u(t) + Au(t) = f , t > 0; (53)

u(ξ) = αu(0), 0 < ξ ≤ T, (54)

u(τ) = 0, (τ 6= ξ). (55)

where ξ—fixed point.
Let u(t) be a solution to this problem and uk(t) = (u(t), vk). Then, by virtue of

Equation (53) and the self-adjointness of operator A,

∂
ρ
t uk(t) = (∂

ρ
t u(t), vk) = −(Au(t), vk) + ( f , vk) = −(u(t), Avk) + ( f , vk) = (56)

−(u(t), λkvk) + fk = −λk(u(t), vk) + fk = −λkuk(t) + fk, t > 0.

Thus, taking into account (54) and (55), we have the following problem

∂
ρ
t uk(t) + λkuk(t) = fk, t > 0; uk(ξ) = αuk(0), uk(τ) = 0.

Suppose that fk is known and use the nonlocal condition to obtain (see, e.g., [20],
p. 174)

uk(t) =
fkξρEρ,ρ+1(−λkξρ)

α− Eρ(−λkξρ)
Eρ(−λktρ) + fktρEρ,ρ+1(−λktρ).

Now apply uk(τ) = 0 to obtain

fk[ξ
ρEρ,ρ+1(−λkξρ)Eρ(−λkτρ) + τρEρ,ρ+1(−λkτρ)(α− Eρ(−λkξρ))] = 0. (57)

Note, that if α ≥ 1 and t > 0 then, α − Eρ(−λktρ) > 0, Eρ(−λktρ) > 0 and
Eρ,ρ+1(−λktρ) > 0. Therefore, for all k one has fk = 0. Hence, from the completeness of
the system of eigenfunctions {vk}, we finally obtain f = 0 and u(t) ≡ 0, as required. The
uniqueness is proved.

In Theorem 3, condition Eρ(−λkξρ) 6= α for all k, ensured the uniqueness of the
solution and no orthogonality conditions were required for its existence. In this inverse
problem, the same condition does not guarantee the uniqueness of the solution. The reason
is that at α < 1 the bracket in (57) can vanish for some k0, and these numbers k0 depend on
α and the location of points ξ and τ. For the existence of an unknown function f in this
case, it is necessary to require the orthogonality conditions (ϕ, vk0) = 0 and (Ψ, vk0) = 0.
Finding out the dependence of k0 on these parameters is the subject of a separate paper.
This is the reason why only case α ≥ 1 is considered in Theorem 4.

On the other hand, in the next two theorems the condition Eρ(−λkξρ) 6= α for all
k ensures the unique solvability of the problems under study. If Eρ(−λkξρ) = α for
some k, then, just as above (see the proof of Theorem 3), there is no uniqueness, and to
ensure the existence of the solution, it is necessary to require the fulfillment of certain
orthogonality conditions.

5. The Inverse Problem of Determining the Boundary Function ϕ

Consider the problem (2) and assume that, together with function u(t), function ϕ in
the nonlocal condition u(ξ) = αu(0) + ϕ is also unknown. To solve this inverse problem, we
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need an additional condition, and as such we again take the condition that was used in the
previous inverse problem:

u(τ) = Ψ, 0 < τ ≤ T, τ 6= ξ. (58)

If τ = ξ, then the nonlocal condition u(ξ) = αu(0) + ϕ coincides with the Cauchy
condition u(0) = ϕ1 (see (4)) and we have the inverse problem, considered in [2–4].

Definition 3. A pair {u(t), ϕ} of function u(t) ∈ C([0, T]; H) and ϕ ∈ H with the properties
Dρ

t u(t), Au(t) ∈ C((0, T); H) and satisfying conditions (2), (58) are called the solution of the
inverse problem (2), (58).

As noted at the end of Section 4, an additional condition is imposed on α, which
simplifies the proof of the uniqueness of the solution.

Theorem 5. Let Ψ ∈ D(A), f ∈ C([0, T]; D(Aε)) for some ε ∈ (0, 1) and Eρ(−λkξρ) 6= α for
all k. Then the inverse problem (2), (58) has a unique solution {u(t), ϕ} and this solution has the
form

ϕ =
∞

∑
k=1

[
Eρ(−λkξρ)− α

Eρ(−λkτρ)
[Ψk −ωk(τ)] + ωk(ξ)

]
vk, (59)

u(t) =
∞

∑
k=1

[
ϕk −ωk(ξ)

Eρ(−λkξρ)− α
Eρ(−λktρ) + ωk(t)

]
vk, (60)

where

ωk(t) =
t∫

0

ηρ−1Eρ,ρ(−λkηρ) fk(t− η)dη.

Proof of Theorem 5. Existence. If ϕ is known, then the solution of problem (3) has the
form (60) (see Theorem 3). Condition (58) implies:

u(τ) =
∞

∑
k=1

[
ϕk −ωk(ξ)

Eρ(−λkξρ)− α
Eρ(−λkτρ) + ωk(τ)

]
vk = Ψ.

Let us expand function Ψ ∈ H in a Fourier series in system {vk}. Then

ϕk −ωk(ξ)

Eρ(−λkξρ)− α
Eρ(−λkτρ) + ωk(τ) = Ψk, k ≥ 1,

or

ϕk =
Eρ(−λkξρ)− α

Eρ(−λkτρ)
[Ψk −ωk(τ)] + ωk(ξ).

Therefore, equality (59) is formally established. It remains to prove that ϕ ∈ H.
Let Φj be the partial sum of series (59). Then due to Parseval’s equality

||Φj||2 =
j

∑
k=1

∣∣∣∣Eρ(−λkξρ)− α

Eρ(−λkτρ)
[Ψk −ωk(τ)] + ωk(ξ)

∣∣∣∣2 ≤ (61)

≤ 3
j

∑
k=1

[∣∣∣∣Eρ(−λkξρ)− α

Eρ(−λkτρ)

∣∣∣∣2[|Ψk|2 + |ωk(τ)|2] + |ωk(ξ)|2
]
≡ Φ1

j + Φ2
j + Φ3

j .

Since |Eρ(−λkξρ)− α| ≤ C, then by virtue of the asymptotic estimate (8), we obtain

Φ1
j ≤ C

j

∑
k=1

λ2
kτ2ρΓ2(1− ρ)(

1 + O
(
(−λkτρ)−1

))2 |Ψk|2 ≤ C
j

∑
k=1

λ2
k |Ψk|2 ≤ C||Ψ||21.
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Similarly, by virtue of the estimate (11) and the definition of ωk, we have

Φ2
j ≤ C

j

∑
k=1

λ2
kτ2ρΓ2(1− ρ)(

1 + O
(
(−λkτρ)−1

))2

∣∣∣∣∣∣
τ∫

0

ηρ−1Eρ,ρ(−λkηρ) fk(τ − η)dη

∣∣∣∣∣∣
2

≤

≤
j

∑
k=1

Cελ
2
k(

1 + O
(
(−λkτρ)−1

))2

∣∣∣∣∣∣
τ∫

0

ηερ−1λε−1
k | fk(τ − η)|dη

∣∣∣∣∣∣
2

≤

≤ Cε

 τ∫
0

ηερ−1

(
j

∑
k=1
|λε

k fk(τ − η)|2
) 1

2

dη


2

≤ Cε max
t∈[0,T]

|| f ||2ε .

For the sum Φ3
j one has

Φ3
j ≤

j

∑
k=1

∣∣∣∣∣∣
ξ∫

0

ηρ−1Eρ,ρ(−λkηρ) fk(ξ − η)dη

∣∣∣∣∣∣
2

≤

≤ C

 ξ∫
0

ηρ−1

(
j

∑
k=1
| fk(ξ − η)|2

) 1
2

dη


2

≤ C max
t∈[0,T]

|| f ||2.

Thus, it is shown that ϕ ∈ H (see (61)).
Fulfillment of the conditions of Definition 3 for function u(t), defined by the series (60)

is proved in exactly the same way as Theorem 3.
Uniqueness. Let us prove that if {u(t), ϕ} is a solution to the homogeneous problem:

Dρ
t u(t) + Au(t) = 0, t > 0; (62)

u(ξ) = αu(0) + ϕ, 0 < ξ ≤ T, (63)

u(τ) = 0, 0 < τ ≤ T, τ 6= ξ, (64)

then u(t) ≡ 0 and ϕ = 0.
Let u(t) be a solution to this problem and let uk(t) = (u(t), vk). Then

Dρ
t uk(t) + λkuk(t) = 0, t > 0; uk(ξ) = αuk(0) + ϕk.

The solution to this problem has the form (this is the same problem as (23))

uk(t) =
Eρ(−λktρ)

Eρ(−λkξρ)− α
ϕk.

Condition (64) implies

uk(τ) =
Eρ(−λkτρ)

Eρ(−λkξρ)− α
ϕk = 0.

Since Eρ(−λkξρ) 6= α for all k ≥ 1, then by virtue of the properties of the Mittag–Leffler
functions (see Proposition 2) we have ϕk = 0 for all k. This, in turn, means uk(t) ≡ 0 for all
k. Therefore, due to the completeness of the system of eigenfunctions {vk}, we have ϕ = 0
and u(t) ≡ 0, as required.

Theorem 5 is completely proved.
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Remark 1. If f does not depend on t, then the statement of Theorem 5 is true for all f ∈ H, and
Ψ ∈ D(A).

Using Corollary 1, this statement can be proved in the same way as above.

6. Well-Posedness of Problem (3)

In the case of fractional Riemann–Liouville derivatives, we consider only the forward
problem for the homogeneous subdiffusion equation. The inhomogeneous equations and
inverse problems considered above are studied in exactly the same way as in the case of
the Caputo derivatives.

Consider the forward problem:
∂

ρ
t u(t) + Au(t) = 0, 0 < t ≤ T;

∂
ρ−1
t u(t)

∣∣∣∣
t=ξ

= α lim
t→0

∂
ρ−1
t u(t) + φ, 0 < ξ ≤ T,

(65)

where φ ∈ H and the number α are given.
As was mentioned above (see Section 4) we will only consider the case Eρ(−λkξρ) 6= α

for all k ≥ 1.

Theorem 6. Let φ ∈ H and Eρ(−λkξρ) 6= α for all k ≥ 1. Then problem (65) has a unique
solution and this solution has the form

u(t) =
∞

∑
k=1

φk
Eρ(−λkξρ)− α

tρ−1Eρ,ρ(−λktρ)vk. (66)

Moreover, there is a constant Cξ > 0 such that the following coercive type inequality holds:

||∂ρ
t u(t)||21 + ||u(t)||22 ≤ Cξ t−2ρ−2||φ||2, 0 < t ≤ T. (67)

Proof. As in the case of problem (2), we will seek a solution to problem (65) in the form of
a series: ∑∞

k=1 Tk(t)vk, where Tk(t) is a solution to the problem:

∂
ρ
t Tk(t) + λkTk(t) = 0, 0 < t ≤ T; (68)

∂
ρ−1
t Tk(t)

∣∣∣∣
t=ξ

= α lim
t→0

∂
ρ−1
t Tk(t) + φk, 0 < ξ ≤ T. (69)

Let us denote lim
t→0

∂
ρ−1
t Tk(t) = bk. Then the unique solution to the differential

Equation (68) with this initial condition has the form Tk(t) = bktρ−1Eρ,ρ(−λktρ) (see,
e.g., [20], p. 173, [52]).

Proposition 5 implies

∂
ρ−1
t Tk(t)

∣∣∣∣
t=ξ

= bkEρ(−λkξρ)

Then from the nonlocal conditions (69) we find the unknown numbers bk:

bk =
φk

Eρ(−λkξρ)− α
.

Hence, function u(t) defined by series (66) is a formal solution to problem (65).
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Now let us show that series (66) is indeed a solution. To do this we denote by Sj(t) the
partial sum of series (66). Then

A2Sj(t) =
j

∑
k=1

λ2
k

φk
Eρ(−λkξρ)− α

tρ−1Eρ,ρ(−λktρ)vk. (70)

Due to the Parseval equality we may write

||A2Sj(t)||2 =
j

∑
k=1

∣∣∣∣λ2
k

φk
Eρ(−λkξρ)− α

tρ−1Eρ,ρ(−λktρ)

∣∣∣∣2.

Estimate (10) of function Eρ,ρ(−t) implies (note, Eρ(−λkξρ) 6= α)

||A2Sj(t)||2 ≤
Ct2ρ−2

|α− Eρ(−λ1ξρ)|2
j

∑
k=1

λ4
k

∣∣∣∣∣ φk

1 + λ2
kt2ρ

∣∣∣∣∣
2

≤ Cξ t−2ρ−2
j

∑
k=1
|φk|2 ≤ Cξ t−2ρ−2||φ||2.

Thus A2u(t) ∈ C((0, T]; H) (and even more so Au(t) ∈ C((0, T]; H)).
Since A∂

ρ
t u(t) = −A2u(t), then from the above estimate we have

||∂ρ
t u(t)||21 ≤ Cξ t−2ρ−2||φ||2.

Thus, (66) is a solution to problem (65). The coercivity inequality follows from the last
two estimates.

The uniqueness is proved in the same way as in the proof of Theorem 2.

Remark 2. Having considered problem (65), we would like to draw the reader’s attention to the
fact that although in the case of the Riemann–Liouville derivatives function Tk(t) is determined
using Mittag–Leffler function with two parameters, but thanks to Proposition 5, the coefficients bk
are determined in exactly the same way as in the case of the Caputo derivatives. It is this fact that
allows us to apply the same reasoning as above to solve the problem for an inhomogeneous equation
with Riemann–Liouville derivatives and inverse problems.

7. Conclusions

We have considered the following three problems: (1) the nonlocal in time forward
problems (2) and (3); (2) the inverse source problem (46) with additional condition (47);
(3) the inverse problem of determining the boundary function ϕ. To the best of the authors′

knowledge, forward problems (2) and (3) with such nonlocal conditions for differential
equations with fractional derivatives have not been discussed before. In the study of
forward problems, we determined the influence of parameter α on the correctness of the
problems under study. It should be noted, as proved above, for some values of α there
is no uniqueness of the solution, and to ensure the existence of a solution, it is necessary
to require orthogonality conditions for the given functions ϕ and f . From the proofs
of Theorems 4 and 5, it can be seen that the same values of the parameter α violate the
uniqueness of solutions to inverse problems.

In [45] nonlocal in time (forward and space-dependent inverse source) problems for a
so-called generalized time fractional diffusion equation were considered. The fractional
derivative used in [45] is the Hilfer derivative, which is a generalization of the well-known
Riemann–Liouville and Caputo fractional derivatives. Indeed, the generalized fractional
derivative interpolates the Riemann–Liouville and Caputo fractional derivatives. The
results presented in this paper can be extended by considering the Hilfer derivative.
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