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Abstract: There are very few papers that talk about the global convergence of iterative methods
with the help of Banach spaces. The main purpose of this paper is to discuss the global convergence
of third order iterative method. The convergence analysis of this method is proposed under the
assumptions that Fréchet derivative of first order satisfies continuity condition of the Hölder. Finally,
we consider some integral equation and boundary value problem (BVP) in order to illustrate the
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1. Introduction

Solutions for nonlinear equations in Banach spaces are widely studied in numerical
analysis and computational mathematics. There are several real life problems that can
reduce into nonlinear equations, the solutions of which can be obtained by using iterative
methods. Generally, we have three types of convergence analysis for iterative methods:
local, semilocal, and global convergence. The assumption of semilocal convergence [2,3] is
based on initial guess and domain estimates, the local convergence [4,5] assumptions are
established on the information surrounding the solution, and the global convergence [1,6]
stands on domain assumptions. The difference between these convergence approaches is
that the condition at initial point x0 is imposed in results of semilocal convergence and
the condition on solution x∗ is imposed in results of local convergence. There is a main
difficulty in the case of local convergence result in the solution x∗ of the equation, which is
usually unknown. On the other hand, semilocal convergence results are a good starting
point for the solution. The semilocal convergence of Newton’s method is established by
Kantorovich [4] under the different assumptions. There is a lot of literature available on
higher order iterative methods to discuss the local and semilocal convergence (for reference
please see [2,4,7–11]).

Let F′ satisfy the condition ‖F′(x) − F′(y)‖ ≤ K‖x − y‖q, x, y ∈ D, q ∈ (0, 1]; this
hypothesis is called Hölder continuity condition. In [4], different types of convergence
analyses have been suggested for a third order family under the first order of Fréchet dif-
ferentiable operator that satisfies different continuity conditions. The convergence analysis
of modified Halley method is presented in [9]. Argyros et al. [8] gave the convergence
analysis of Chebyshev–Halley-type methods with a parameter under the assumption F′

satisfies the Lipschitz condition. In [1,6], the global convergence of the iterative method
proposed under the assumption that Fréchet derivative satisfies the Lipschitz continuity
condition. We look into some examples where F′ satisfies the Hölder continuity condition
but not the Lipschitz condition.
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Example 1.

F(y)(s) = y(s)− 1− 1
3

∫ 1

0
K(s, t)y(t)3/2dt, s ∈ [0, 1],

where, K(s,t) is the Green’s function and F is the functions defined on set of all continuous functions
C[0, 1] with max norm ‖y‖ = maxs∈[0,1] |y(s)|,

F′(y)(s) = u(s)− 1
2

∫ 1

0
K(s, t)u(s)1/2dt.

Therefore,

‖F′(x)− F′(y)‖ ≤ 1
16
‖x− y‖1/2.

Apparently, for q = 1/2, F′ satisfies the Hölder condition where the Lipschitz condition fails.

Example 2.

F(x)(s) = x(s)− f (s)− µ
∫ 1

0

s
s + t

x(t)1+qdt, s ∈ [0, 1], q ∈ (0, 1]

where F is the space of continuous functions on [0, 1] with maximum norm ‖x‖ = maxs∈[0,1] |x(s)|
and µ is a real number. The first order Fréchet derivative is given below:

[F′(x)u](s) = u(s)− µ(1 + q)
∫ 1

0

s
s + t

u(t)q

Therefore,
‖F′(x)− F′(y)‖ ≤ |µ|(1 + q) log 2‖x− y‖q.

Apparently, F′ satisfies the Hölder condition for q ∈ (0, 1) whereas the Lipschitz continuity fails.

Let us consider

F(x) = 0 (1)

to be a nonlinear equation defined on a non-empty open convex set Ω from Banach spaces X
to Y. Typically, we represent the nonlinear Equation (1) as a system of nonlinear equations,
boundary value problems, and integral equations, etc. The third order iterative process for
solving such problems (1), is given by

yn =xn − [F′(xn)]
−1F(xn)

zn =xn + p(yn − xn), p ∈ (0, 1]

xn+1 =yn −
1
p2 [F

′(xn)]
−1((p− 1)F(xn) + F(zn))

(2)

This method was developed by Ezquerro and Hernendez [12], using another method
in [13] to obtain (2). In [12], they proposed the derivative-free method, which reduces the
cost of computing, number of function evaluation, and the convergence order maintained.
At p = 1, the iterative method (2) becomes the Newton frozen two-step method [14].

In this work, we set up the domain of convergence for an iterative method (2) similar
to that obtained from local and semilocal convergence results. The main differences are
that there is no need to look at the situation in the solution x∗ and the initial guesses x0.
Therefore, we are interested in discussing the global convergence of third order iterative
method of the form (2), in this manuscript. The existence of a uniqueness solution x∗ of
(1) is to be established with the assumption that Fréchet differentiable operator of the first
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order satisfies Hölder condition. The globally convergent domain also proposed. Some
examples are designed to discuss the global convergence of the iterative method.

The paper frame is as follows. The introduction constitutes Section 1. In Section 2,
we give some assumptions for the global convergence of iterative method. Additionally,
we discuss the development recurrence relations of proposed method in order to establish
global convergence. In Section 3, the global convergence analysis of the proposed scheme
is discussed. In Section 4, some numerical examples are designed to show the existence
and uniqueness of the solution of our scheme. Section 5 contains concluding remarks.

2. Recurrence Relations

In this section, we develop a system of recurrence relations with the assumptions
C1, C2. We consider the following assumptions to discuss the global convergence of (2).
The assumptions are:

C1. ‖Γ̄‖ ≤ β and ‖Γ̄F(x̄)‖ ≤ η for some x̄ ∈ Ω and Γ̄ = [F′(x̄]−1

C2. ‖F′(x)− F′(y)‖ ≤ K‖x− y‖q, ∀x, y ∈ Ω, q ∈ (0, 1] and K ≥ 0

From the condition C2, we observe that ‖F′(x)− F′(x̄)‖ ≤ K̄‖x− x̄‖q, ∀x ∈ Ω, with
K̄ ≤ K.

Here, we introduce some lemmas that used to derive recurrence relation. This also
helps us to prove convergence Theorem 1.

Lemma 1 (see [12]). Let Fréchet differential operator F be defined on a non empty open convex set
Ω of a Banach space X with values in Banach space Y. Then

(a) F(x0) = F(x̄) + F′(x̄)(x0 − x̄) +
∫ x0

x̄ (F′(x)− F′(x̄))(x0 − x)dx
(b) For xn, zn ∈ Ω, p ∈ (0, 1], we have

F(zn) = (1− p)F(xn) +
∫ zn

xn
(F′(x)− F′(xn))(zn − x)dx.

(c) For xn, xn+1 ∈ Ω, we have

F(xn+1) = F(xn) + F′(xn)(xn+1 − xn) +
∫ xn+1

xn
(F′(x)− F′(xn))dx

=
1
p

∫ 1

0
[F′(xn)− F′(xn + pt(yn − xn))](yn − xn)dt

+
∫ 1

0
[F′(xn + t(xn+1 − xn))− F′(xn)](xn+1 − xn)dt.

(d) For xn ∈ Ω, we have

F(xn) + F′(xn)(x̄− xn) = F(x̄)−
∫ x̄

xn
(F′(x)− F′(xn))(x̄− x)dx.

Lemma 2. If there exists R > 0, for a real valued function f (t) = t
(

pq−1

(q+1)(q+2) +
(1+ t

(q+1)(q+2) )
q+1

(q+1)

)
,

a0 = Kdeq, Γ = F′(x)−1, and a0 ∈ (0.38748, 0.4953], then the following inequalities are true for
n ≥ 1,
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(I) ‖Γn‖ ≤ f (an−1)‖Γn−1‖,
(I I) Kd‖Γn‖ ≤ an,

(I I I)‖yn − x̄‖ ≤ (q + 1)(q + 2)η + KβRq+2

(q + 1)(q + 2)(1− K̄βR)
,

(IV) ‖zn − xn‖ ≤ p f (an−1)‖yn−1 − xn−1‖,

(V) ‖xn+1 − xn‖ ≤
(

1 +
an pq−1

(q + 1)(q + 2)

)
‖yn − xn‖,

(VI) ‖xn+1 − x̄‖ ≤ (q + 1)(q + 2)η + KβRq+2

(q + 1)(q + 2)(1− K̄βR)
+

ane
(q + 1)(q + 2)

≤ R

(3)

Proof. By Banach Lemma and from ‖I − Γ̄F′(x)‖ ≤ ‖Γ̄(F′(x̄)− F′(x))‖, we have

‖Γ‖ = ‖[F′(x)]−1‖ ≤ β

1− K̄βR
= d

and
‖ΓF′(x̄)‖ ≤ 1

1− K̄βR
, (4)

where R > 0 as x ∈ B(x̄, R) ⊂ Ω and K̄βR < 1.
From the condition (a) of Lemma 1 and (4), we have

‖y0 − x0‖ ≤ ‖Γ0F(x0)‖
≤ ‖Γ0F′(x̄)‖Γ̄F(x0)‖

≤ ‖Γ0F′(x̄‖
(
‖Γ̄F(x̄) + Γ̄F′(x̄)(x0 − x̄) + Γ̄

∫ x0

x̄
(F′(x)− F′(x̄))(x0 − x)dx‖

)
≤ ‖Γ0F′(x̄‖

(
‖Γ̄F(x̄)‖+ ‖x0 − x̄‖+ ‖Γ̄‖K̄

∫ x0

x̄
‖x− x̄‖q‖x0 − x‖dx

)
≤ ‖Γ0F′(x̄‖

(
‖Γ̄F(x̄)‖+ ‖x0 − x̄‖+ ‖Γ̄‖K̄

∫ 1

0
tq(1− t)‖x0 − x̄‖q+2

)
≤

η + R + K̄βRq+1

(q+1)(q+2)

(1− K̄βR)

≤ (q + 1)(q + 2)η + (q + 1)(q + 2)R + K̄βRq+1

(q + 1)(q + 2)(1− K̄βR)
= e,

from (2) and the hypothesis (d) of Lemma 1 we find

y0 − x̄ = x0 − x̄− F′(x0)
−1F(x0)

= −Γ0(F(x0) + F′(x0)(x̄− x0))

= −Γ0(F(x̄)−
∫ x̄

x0

(F′(x)− F′(x0))(x̄− x))dx
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Applying norm on both sides, we find

‖y0 − x̄‖ ≤ ‖ − Γ0(F(x0) + F′(x0)(x̄− x0))‖

≤ ‖ − Γ0

(
F(x̄)−

∫ x̄

x0

(F′(x)− F′(x0))(x̄− x)dx
)
‖

≤ ‖Γ0F′(x̄)‖‖F′(x̄)−1F(x̄)‖ (5)

+‖Γ0F′(x̄)‖‖F′(x̄)−1‖
( ∫ x̄

x0

‖F′(x)− F′(x0)‖‖x̄− x‖dx
)

≤ (q + 1)(q + 2)η + KβRq+2

(q + 1)(q + 2)(1− K̄βR)
. (6)

From (2), we have

z0 − x0 = p(y0 − x0), (7)

and

z0 − x̄ = z0 − x0 + x0 − x̄

= p(y0 − x0) + x0 − x̄

= p(y0 − x̄ + x̄− x0) + x0 − x̄

= p(y0 − x̄) + (1− p)(x0 − x̄). (8)

Applying norm on both sides to (7) and (8), we find

‖z0 − x0‖ = p‖y0 − x0‖ ≤ pe,

‖z0 − x̄‖ ≤ (1− p)‖x0 − x̄‖+ p‖y0 − x̄‖ ≤ R. (9)

From (5) and (9), we conclude that y0, z0 ∈ B(x̄, R), with the condition that

(q + 1)(q + 2)η + KβRq+2

(q + 1)(q + 2)(1− K̄βR)
≤ R.
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Furthermore,

‖x1 − x0‖ = ‖y0 − x0 −
1
p2 F′(x0)

−1((p− 1)F(x0) + F(z0))‖

= ‖ − F′(x0)
−1F(x0)−

1
p2 F′(x0)

−1((p− 1)F(x0) + F(z0))‖

= ‖ − F′(x0)
−1
(

F(x0) +
1
p2 ((p− 1)F(x0) + F(z0))

)
‖

= ‖ − 1
p2 Γ0

(
(p2 + p− 1)F(x0) + F(z0)

)
‖

= ‖ − 1
p2 Γ0

(
(p2F(x0) + (p− 1)F(x0) + (1− p)F(x0)

+
∫ z0

x0

(F′(x)− F′(x0))(z0 − x)dx
)
‖

≤ ‖Γ0F(x0)‖+
1
p2 Γ0‖

∫ z0

x0

‖(F′(x)− F′(x0))‖‖(z0 − x)‖dx

≤ ‖Γ0F(x0)‖+
Kd‖z0 − x0‖q+1

(q + 1)(q + 2)p2

≤ e +
Kdpq+1eq+1

(q + 1)(q + 2)p2

≤ (1 +
a0 pq−1

(q + 1)(q + 2)
)‖y0 − x0‖,

and

‖x1 − x̄‖ = ‖y0 − x̄− 1
p2 F′(x0)

−1((p− 1)F(x0) + F(z0))‖

≤ ‖y0 − x̄‖+ ‖ 1
p2 F′(x0)

−1((p− 1)F(x0) + F(z0))‖

≤ (q + 1)(q + 2)η + KβRq+2

(q + 1)(q + 2)(1− K̄βR)
+

a0

(q + 1)(q + 2)
)e ≤ R,

where a0 = Kdeq and x1 ∈ B(x̄, R), provided that

(q + 1)(q + 2)η + KβRq+2

(q + 1)(q + 2)(1− K̄βR)
+

a0

(q + 1)(q + 2)
e ≤ R (10)
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Next, from ‖y1 − x1‖ ≤ ‖Γ1F(x1)‖ and hypothesis (c) of Lemma 1, we see

‖y1 − x1‖ = ‖Γ1‖‖
1
p

∫ 1

0
[F′(x0)− F′(x0 + pt(y0 − x0))](y0 − x0)dt∫ 1

0
[F′(x0 + t(x1 − x0))− F′(x0)](x1 − x0)dt‖

≤ K‖Γ1‖‖
1
p

∫ 1

0
‖pt(y0 − x0)‖q‖y0 − x0‖

+
∫ 1

0
‖x0 + t(x1 − x0)− x0‖q‖x1 − x0‖

≤ K‖Γ1‖
( pq−1

q + 1
‖(y0 − x0)‖q+1 +

‖x1 − x0‖q+1

q + 1

)
≤ K‖Γ1‖

( pq−1

q + 1
‖(y0 − x0)‖q+1 +

(1 + a0
(q+1)(q+2) )

q+1

q + 1
‖y0 − x0‖q+1

)
(11)

≤
(

Kd
pq−1

q + 1
eq + Kd

(1 + a0
(q+1)(q+2) )

q+1

q + 1
eq
)
‖y0 − x0‖

≤ f (a0)‖y0 − x0‖, (12)

where

f (t) = t
( pq−1

(q + 1)(q + 2)
+

(1 + t
(q+1)(q+2) )

q+1

(q + 1)

)
. (13)

For t > 0, the function f is increasing, therefore it follows that

kd‖y1 − x1‖ ≤ a1,

‖y1 − x̄‖ ≤ (q + 1)(q + 2)η + KβRq+1

(q + 1)(q + 2)(1− K̄βR)
,

‖z1 − x1‖ ≤ p f (a0)‖y0 − x0‖,

‖z1 − x̄‖ ≤ R,

‖x2 − x1‖ ≤ (1 + a1 pq−1/(q + 1)(q + 2))‖y1 − x1‖,

‖x2 − x̄‖ ≤
( (q + 1)(q + 2)η + KβRq+1

(q + 1)(q + 2)(1− K̄βR)
+

e
(q + 1)(q + 2)

a0 f (a0)
2
)
≤ R.

We note that last condition holds for f (a0) < 1. By using mathematical induction, we
can prove the above inequalities. The first step is already proven for n = 1, so we continue
same procedure to demonstrate the inequalities.

Now, we define as a1 = a0 f (a0) and define the real sequence

an = an−1 f (an−1), n ≥ 1.

We notice that for f (a0) < 1, for a0 ∈ (0.3774, 0.4953], and for q ∈ (0, 1], the sequence
an is decreasing.

3. Global Convergence

For the global analysis of the iterative method, we followed the same procedure as
in the case of semilocal convergence for different values of the radius R condition (10)
satisfied. We can choose the most appropriate value from these values. We can say that
global convergence gives the largest value and the best location of solution.
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Theorem 1. Let F be a Fréchet differentiable function in an open convex set Ω. Let hypotheses
(C1) and (C2) be satisfied. We denote a0 = Kβeq and 0.3774 < a0 ≤ 0.4953. Then, the sequence of
{xn} is defined in (9) and start point x0 converge to the solution x∗ of (1) in B(x̄, R) from every
point x0 which is in B(x̄, R).

Proof. To establish {xn} convergence, it is enough to show that the sequences from the
method (2) lies in B(x̄, R) and the Cauchy sequence.

‖xn+1 − xn‖ ≤
(

1 +
an pq−1

(q + 1)(q + 2)

)
‖yn − xn‖ (14)

≤
(

1 +
a0 pq−1

(q + 1)(q + 2)

)
f (a0)

n‖y0 − x0‖ (15)

From this, we write,

‖xm+n − xm‖ ≤ ‖xm+n − xm+n−1‖+ . . . + ‖xm+1 − xm‖

≤
n+m−1

∑
j=n

(1 + aj pq−1/(q + 1)(q + 2))‖yi − xi‖

≤ (1 + a0 pq−1/(q + 1)(q + 2)) f (a0)
n‖y0 − x0‖

m−1

∑
j=0

f (a0)
j

≤ (1 + a0 pq−1/(q + 1)(q + 2)) f (a0)
n‖y0 − x0‖

1− f (a0)
m

1− f (a0)
. (16)

From this, {xn} is a Cauchy sequence when we take the limit as n tends to ∞ in
inequality (V). Then, we obtain x∗ ∈ B(x̄, R). Demonstrating x∗ is a F(x) = 0 solution, we
have that ‖F(xn)‖ ≤ ‖F′(xn)‖‖ΓnF(xn)‖ and sequence {‖F′(xn)‖} bounded as

‖F′(xn)‖ ≤ ‖F′(x̄)‖+ KR,

by the continuity of F and taking limit as n tends ∞, we find x∗ is the solution of F(x) = 0.
This is the way of analyzing global convergence results of method (2), which also

allows us to find the solution x∗ in the ball B(x̄, R). Additionally, we define the ball for the
global convergence as B(x̄, R).

Theorem 2. Let F satisfy the assumptions (C1) and (C2), then we have unique solution x∗ in
B(x̄, R) ∩Ω.

We may prove the uniqueness if z∗ is another solution for (1) in B(x0, r) ∩Ω and we
have

0 = Γ̄(F(z∗)− F(x∗)) =
∫ 1

0
Γ̄F′(x∗ + t(z∗ − x∗))dt(z∗ − x∗).

Obviously, z∗ = x∗, if S =
∫ 1

0 F′(x∗ + t(z∗ − x∗))dt is invertible. This follows from

‖I − S‖ ≤ Γ̄
∫ 1

0
[F′(x∗ + t(z∗ − x∗))− F′(x̄)]dt‖

≤ β
∫ 1

0
K̄(‖x∗ + t(z∗ − x∗)− x̄‖q)dt

≤ K̄β
∫ 1

0
((1− t)‖x∗ − x̄‖+ t‖z∗ − x̄‖)qdt

< K̄βRq = 1, (17)

and by Banach Lemma. Therefore, z∗ = x∗.
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4. Numerical Examples

In this section, we discuss the existence and uniqueness of solution for the numerical
problems. Therefore, we choose two real life problems, namely nonlinear integrals of
second kind and a boundary value problem (BVP).

Example 3. Let

x(s) = 1 +
1
3

∫ 1

0
G(s, t)x(t)3/2dt, s ∈ [0, 1], (18)

be defined on the set of all continuity functions on [0, 1] with maximum norm ‖x‖ = maxs∈[0,1] |x(s)|
and the kernel defined as G(s, t),

G(s, t) =
{

(1− s)t, t ≤ s,
s(1− t), s ≤ t.

(19)

Solving (18) is same as solve F(x) = 0, where F : Ω ⊆ C[a, b]→ C[a, b] and

[F(x)](s) = x(s)− 1− 1
3

∫ 1

0
G(s, t)x(t)3/2dt s ∈ [0, 1]. (20)

Now, we find the First order Fréchet derivative of (18),

F′(x)u(s) = u(s)− 1
2

∫ 1

0
G(s, t)x(t)1/2u(t)dt.

Then, we have

‖F′(x)− F′(y)‖ ≤ 1
16
‖x− y‖1/2.

Here, we see that F′ satisfies the continuity condition of Hölder but fails to satisfy
the Lipschitz continuity condition for all x, y ∈ Ω. Therefore, we see K = K̄ = 1/16
and q = 1/2. For x̄(s) = 1, we have β = 16/15, η = 4/37. Now, we see that the
condition (10) is guaranteed by R ∈ (0.110557, 12.5122). For all these values, KβRq < 1.
However, the condition a0 < 1 holding R ∈ (0.110557, 10.418). Therefore, both conditions
are satisfactory, and the iterative method is obviously converge to x∗ of F(x) = 0 in the
B(x̄, R) domain for R ∈ (0.110557, 10.418). Therefore, the best ball of existence solution is
B(1, 0.110557) and the best ball of global convergence of the iterative process is B(1, 10.418).
The uniqueness of solution is in the ball B(1, 10.418) ∩Ω.

Example 4. Consider the following BVP

u′′ + uq+1 = 0, q ∈ (0, 1], u(0) = u(1) = 0 (21)

First, the interval [0, 1] divided into N subintervals by points tj = jk, j = 0, 1, 2, . . . N
and k = 1/N. By using central divided difference formula we approximate the second

derivative in u′′j ≈
uj−1−2uj+uj+1

k2 for j = 0, 1, 2, . . . N − 1. From (21), we find

−uj−1 + 2uj − uj+1 − k2uq+1
j = 0. (22)
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This can be written as F(x) = Hx − h2l(x) = 0, where F : RN−1 → RN−1, x =

(x1, x2, . . . xN−1), l(x) = (xq+1
1 , xq+1

2 , . . . xq+1
N−1)

t and the matrix given by
2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
...

...
...

. . .
0 0 0 . . . 2


Here, F′(x) = H − (1 + q)h2M(x), where M(x) = diag(xq

1, xq
2, . . . xq

N−1) and ‖F′(x)−
F′(y)‖ ≤ (1 + q)k2‖x− y‖q. We choose k = 1/10 and q = 1/4 and

x̄ = (33 : 5739; 65 : 2025; 91 : 566; 109 : 168; 115 : 363; 109 : 168; 91 : 566; 65 : 2025; 33 : 5739)t.

Here, we see that F′ satisfies the Hölder continuity condition but not the Lipschitz
continuity condition for all x, y ∈ Ω. From the assumptions C1 and C2, we find K =
K̄ = 0.015, β = 26.5888, and η = 3.7570× 10−4. Now, we observe that the condition (10)
is verified for R ∈ (0.408242, 0.804083). For all these values KβRq < 1. However, the
condition a0 < 1 holds for R ∈ (0.408242, 0.804083). Hence, both the conditions are
satisfied, and the iterative process is well defined and converges to x∗ of F(x) = 0 in
B(x̄, R) for R ∈ (0.408242, 0.804083). Therefore, the best ball of existence for the location of
the solution is B(1, 0.408242) and the best ball for the global convergence for the iterative
process is B(1, 0.804083). The uniqueness of solution in the ball B(1, 0.804083) ∩Ω.

5. Conclusions

In this manuscript, we have used the global convergence of method (2) under the
assumption that the Fréchet differentiable operator of first order satisfies the Hölder condi-
tion. We also demonstrated the existence and uniqueness of the required solution. Two real
life examples have been discussed for the convergence regions.
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