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Abstract: This paper investigates the synchronizability of multilayer directed Dutch windmill
networks with the help of the master stability function method. Here, we propose three types
of multilayer directed networks with different linking patterns, namely, inter-layer directed net-
works (Networks-A), intra-layer directed networks (Networks-B), and hybrid directed networks
(Networks-C), and rigorously derive the analytical expressions of the eigenvalue spectrum on the
basis of their supra-Laplacian matrix. It is found that network structure parameters (such as the
number of layers and nodes, the intra-layer and the inter-layer coupling strengths) have a significant
impact on the synchronizability in the case of the two typical synchronized regions. Finally, in order
to confirm that the theoretical conclusions are correct, simulation experiments of multilayer directed
network are delivered.

Keywords: Dutch windmill networks; multilayer directed networks; supra-Laplacian matrix;
synchronizability

1. Introduction

The emergence of small-world networks and scale-free networks [1,2] has been the
beginning of a large amount of significant research outcomes that have been obtained in
complex networks. They are widely used in information networks, biological networks,
neural networks, social networks, power grids, and other frontier fields [3–7]. It is rec-
ognized that most networks in reality do not exist independently but are composed of
multiple networks coupling and interacting with each other [8,9]. With the development
of network theory, many innovative advances in the field of multilayer networks have
been gained, for instance, the control and synchronization of systems [10–14], the diffusion
and superdiffusion in networks [15–17], consensus problems and robustness of multilayer
networks [18–20].

Synchronization, such as clapping in unison and chorus cicadas, is a significant col-
lective behavior on complex networks. Previous research has been conducted on different
synchronization effects of single network, such as complete synchronization, generalized
synchronization, phase synchronization, and finite-time synchronization [21–24]. Based
on the asymptotic analysis, Fan et al. [25] provided some criteria of synchronization about
complex dynamical networks that allowed us to infer the behavior of dynamics. In terms of
the master stability function method, Xu et al. [26] focused on the two-layer star networks
and studied that network parameters are important roles in affecting the synchronization
capabilities of multilayer networks with more than two layers. Zhang et al. [27] derived an
analytic expression for the eigenvalue spectrum of a multiplex k-nearest neighbor coupled
network, and discussed the relationship between structure parameters and the synchroniz-
ability. Li et al. [28] analyzed the synchronization of dumbbell networks with two layers,
comparing two interlink patterns between layers, and found that the coupling patterns is a
discussion point for exploring the multilayer networks. It is necessary to study more types
of networks with more than two layers to study the synchronizability. There are many
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regular and typical network structures; windmill network is one of them, and common
windmill network types are the Dutch windmill network [29] and the French windmill
network. Estrada [30] proved that the clustering coefficient was divergent with the network
size increasing to infinity, as well as the transitivity. In addition, Kooij [31] considered three
generalizations of windmill graphs, and studied topological properties and eigenvalue
spectrum for all three types. Sun et al. [32] employed the first two generalized noisy wind-
mill networks to study the consensus and robustness, quantifying all eigenvalues of their
matrixes, about the leaderless model and the leader–follower model. Zhu et al. [33] de-
rived all eigenvalues of two different variable coupling multilayer windmill-type network
models and gave numerical experiments to demonstrate that the synchronizability can be
improved by changing the structural parameters. Research on windmill networks have
been dedicated to network structures and synchronizability with only one layer, and there
are relatively few results of multilayer networks which are closer to the actual situation.
Moreover, systems in the real world are more likely to be weighted directed networks.
The direction and coupling weights make it difficult to obtain analytical expressions of
eigenvalues of the Laplacian matrix.

Summarizing the above findings, it was found that the master stability function
(MSF) method [34], used in this paper, is a particularly useful approach to investigate
complex networks. We have the following innovations about multilayer directed Dutch
windmill networks.

(1) We propose three kinds of multilayer directed Dutch windmill networks with differ-
ent inter-layer and intra-layer connection pattern.

(2) With the help of graph spectra methods, we obtain the supra-Laplace matrix based on
the structure of these networks. It is obvious that the expressions for the eigenvalues
are expressed.

(3) It is worth exploring to know that the synchronizability is associated with topological
structure parameters (for example, network size N, the number of layers M, intra-
layer coupling weights a, and inter-layer coupling weights d), which is studied by
MSF when the synchronized regions are bounded and unbounded.

(4) Under the given initial conditions, numerical experiments are conducted to show that
the state trajectory of nodes could achieve synchronization. In addition, we verify
the correctness of analytical results and offer a theoretical support for strengthening
their ability of reaching synchronization.

This paper has the following section arrangement. Section 2 gives essential prelim-
inaries and the models of multilayer directed networks. The eigenvalue spectrum of
Networks-A, B, and C are rigorously derived in Section 3 and numerical examples are
performed in Section 4 for interpreting the realizability of theoretical findings. Lastly,
Section 5 draws the summarized comments.

2. Preliminaries
2.1. The Dynamic Models of Multilayer Networks

For a multilayer network consisting of M layers and N nodes each layer, the dynamics
of xα

i can be described as [35]:

dxα
i

dt
= f (xα

i )− a
N

∑
j=1

wα
ijΓ1(xα

j )− d
M

∑
β=1

dαβ
i Γ2(xβ

i ), (1)

where xα
i ∈ Rs is the state of the ith node in the αth layer, 1 ≤ i ≤ N, 1 ≤ α ≤ M.

f : Rs → Rs is a nonlinear vector function governing the dynamics of the ith node in
the αth. a denotes intra-layer coupling strength inside each layer and Γ1 : Rs → Rs

is the corresponding inner coupling function. d respects inter-layer coupling strength
between replicas and Γ2 : Rs → Rs is the inter-layer coupling function. For simplicity, let
Γ1(xα

j ) = Γ1xα
j , Γ2(xβ

i ) = Γ2xβ
i and Γ1 = Γ2 = Γ. For an undirected network, if there is an
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edge connecting the ith node and the jth node in the αth layer (i 6= j), wα
ij = −1, otherwise

wα
ij = 0 with wα

ii = −∑N
j=1,j 6=i wα

ij. Thus, the intra-layer Laplacian matrix of the αth layer

is described as L(α) = (awα
ij) ∈ RN×N . Similarly, if there is a link connecting the ith node

and its replica across layers, dαβ
i = −1, otherwise dαβ

i = 0, and dαα
i = −∑M

β=1,β 6=α dαβ
i .

LI = (ddαβ
i ) ∈ RM×M is the inter-layer Laplacian matrix. In particular, when a node is

unidirectionally connected to its other replica nodes, LI may be an upper triangular matrix
or a lower triangular matrix.

For simplicity, we denote

x(α) =


xα

1
xα

2
...

xα
N

, X =


x(1)

x(2)
...

x(M)

,

f̃ (x(α)) =


f (xα

1)
f (xα

2)
...

f (xα
N)

, F(x) =


f̃ (x(1))
f̃ (x(2))

...
f̃ (x(M))

.

(2)

It follows that Equation (1) has a concise matrix form, namely,

Ẋ = F(X)−
(
(LL + LI )⊗ Γ

)
X, (3)

where
⊗

is the Kronecker product. The intra-layer supra-Laplacian matrix LL, reflecting
the coupling relationships within each layer, is the direct sum of L(α). In detail,

LL =


L(1) 0 · · · 0

0 L(2) · · · 0
...

...
. . .

...
0 0 · · · L(M)

 =
M
⊕

α=1
L(α). (4)

LI = LI ⊗ IN represents the links across layers, where IN stands for the identity matrix
of N-dimensional. The supra-Laplacian matrix L of the multilayer network is replaced by
LI and LL [36]:

L = LI + LL. (5)

2.2. Synchronized Regions of Multilayer Networks

L represents the supra-Laplacian matrix of multilayer networks, having one zero
eigenvalue and all other eigenvalues are positive: 0 = λ1 < λ2 ≤ · · · ≤ λmax. Based on
the concept of MSF, it is general to group the synchronized region (SR) in four cases as
follows [37]:

(1) SR = (α1,+∞) denotes the unbounded synchronized region, where α1 is a finite
positive real number. If λ2 is greater than the threshold α1, which portrays the
synchronizability of the network, and all larger eigenvalues will be included in the
SR. Therefore, the larger λ2 is, the stronger the synchronizability is.

(2) SR = (α1, α2) denotes the bounded synchronized region, where α1 and α2 are finite
positive real numbers and α1 < α2. In order to make all values fall within the
synchronization field, it is obvious that after deformation the eigenratio can be found,
which satisfies r = λmax/λ2 < α2/α1. Moreover, the lower ratio r demonstrates
higher capability of achieving synchronization.

(3) The synchronized region is the union of several intervals. For instance, in the
form of SR = (α1, α2) ∪ (α3, α4). If all λi are restricted to the range of SR, then the
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synchronization can be realized and the states of all nodes in the network converge
to a steady state.

(4) The synchronized region is an empty set. In this case, synchronization is not possible
regardless of the variation of the coupling function and coupling strength.

Which type of synchronization domain a network belongs to is primarily decided by
the inner coupling function Γ and dynamics functions f . Here, the study of the first two
scenarios, the bounded and unbounded synchronous regions, is representative. When it
comes to the synchronizability, it is of vital simplicity for us to derive the second smallest
eigenvalue and eigenratio of its Laplacian matrix for directed Dutch windmill networks.

2.3. Multilayer Directed Dutch Windmill Networks

This paper gives the eigenvalue expression and studies the synchronizability for
multilayer directed Dutch windmill networks. It can be supposed simply that multiplex
networks has M layers and the network size N is identical for each layer. One possible type
of inter-layer connections means the each node is one-to-one connected into its replicas that
are not on the same layer. Generally, a windmill graph contains η copies of the complete
network Kk [38] and windmill networks are rule networks. In this article, the nodes on each
layer, related to the multilayer directed Dutch windmill networks, satisfies N = 2η + 1.
It is quite easy to see that N is proportional to η.

The two interlayer connection methods of each node, undirected one-to-one connec-
tion and unidirectional one-to-one coupling, are considered. For the former, undirected
links, or bidirectional, exist between the nodes of each two layers. For the latter, nodes
within a layer are unidirectionally connected to replicated nodes in other layers, without
duplicating. Moreover, there are different types of linking patterns, occurring among
nodes within each layer: directed with the same sequence and undirected. Because of the
aim of studying the synchronizability of directed networks, three kinds of multilayer di-
rected Dutch windmill networks, multilayer inter-layer directed Dutch windmill networks
(Networks-A), multilayer intra-layer directed Dutch windmill networks (Networks-B), and
multilayer both inter-layer and intra-layer directed Dutch windmill networks (Networks-C)
are defined. For Networks-A, the inter-layer interconnection method is unidirectional
coupling between replica nodes, and the intra-layer interconnection method is undirected.
On the contrary, Networks-B means that the nodes are directionally connected in the same
sequence within each layer but undirected between replica nodes across layers. In ad-
dition, Networks-C is a combination of Networks-A and Networks-B which is directed
connected within layers and unidirectional coupling between layers. Figure 1 shows the
corresponding structure with two layers.

Figure 1. Schematic diagram of multilayer directed Dutch windmill networks. (a) Networks-A with
two layers; (b) Networks-B with two layers; (c) Networks-C with two layers.

To make convenient the following theoretical derivation, useful lemmas are presented
as follows:
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Lemma 1 ([39]). If Aii is a square matrix, i = 1, . . . , k, then∣∣∣∣∣∣∣∣∣
A11 A12 · · · A1k
0 A22 · · · A2k
...

...
. . .

...
0 0 · · · Akk

∣∣∣∣∣∣∣∣∣ = |A11| · |A22| · · · |Akk|. (6)

Lemma 2 ([40]). Let S be a square matrix and T have the same size, then∣∣∣∣∣∣∣∣∣
S T · · · T
T S · · · T
...

...
. . .

...
T T · · · S

∣∣∣∣∣∣∣∣∣
M×M

= |S− T|M−1 · |S + (M− 1)T|. (7)

3. The Synchronizability of Multilayer Directed Dutch Windmill Networks
3.1. The Eigenvalues of Networks-A

This section considers the generalized Networks-A with M layers each is made up of
N nodes whose diagram is shown in Figure 2. The corresponding supra-Laplacian matrix
is obtained, expressed as LA:

LA =


aLA + (M− 1)dIN −dIN · · · −dIN

0 aLA + (M− 2)dIN · · · −dIN
...

...
. . .

...
0 0 · · · aLA


M×M

, (8)

where

LA =



2η −1 −1 −1 −1 · · · −1 −1
−1 2 −1 0 0 · · · 0 0
−1 −1 2 0 0 · · · 0 0

...
...

...
...

...
. . .

...
...

−1 0 0 0 0 · · · 2 −1
−1 0 0 0 0 · · · −1 2


N×N

.

(b)
3

2 n

1

5

6

7

3

2

2 n

1

5

6

7

4

2 1n +

3

2 n

3

2

2 n

1

4
5

6

72 1n +

1

4

4

5

6

7

2

2

2 1n +

2 1n +

L1

L2

L3

LM

Figure 2. Structure schematic diagram of Networks-A with M layers.
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In accordance with Lemma 1 introduced earlier, the characteristic polynomial of LA
can be given:

|λIMN −LA|

=

∣∣∣∣∣∣∣∣∣
[λ− (M− 1)d]IN − aLA −dIN · · · −dIN

0 [λ− (M− 2)d]IN − aLA · · · −dIN
...

...
. . .

...
0 0 · · · λIN − aLA

∣∣∣∣∣∣∣∣∣
|[λ− (M− 1)d]IN − aLA| ·

∣∣∣∣∣∣∣
[λ− (M− 2)d]IN − aLA · · · −dIN

...
. . .

...
0 · · · λIN − aLA

∣∣∣∣∣∣∣
=|λIN − aLA| · |(λ− d)IN − aLA| · |(λ− 2d)IN − aLA|

· · · |(λ− (M− 2)d)IN − aLA| · |(λ− (M− 1)d)IN − aLA|.

(9)

Let |λIN − aLA| = 0, the undirected Dutch windmill network has the eigenvalues:

0, a, · · ·, a︸ ︷︷ ︸
η−1

, 3a, · · ·, 3a︸ ︷︷ ︸
η

, (2η + 1)a.

Let |(λ− kd)IN − aLA| = 0, k = 1, 2, · · ·, M− 1, it follows that:

kd, a + kd, · · ·, a + kd︸ ︷︷ ︸
η−1

, 3a + kd, · · ·, 3a + kd︸ ︷︷ ︸
η

, (2η + 1)a + kd.

Therefore, LA has the following eigenvalues:

0, a, · · ·, a︸ ︷︷ ︸
η−1

, 3a, · · ·, 3a︸ ︷︷ ︸
η

, (2η + 1)a,

d, a + d, · · ·, a + d︸ ︷︷ ︸
η−1

, 3a + d, · · ·, 3a + d︸ ︷︷ ︸
η

, (2η + 1)a + d,

2d, a + 2d, · · ·, a + 2d︸ ︷︷ ︸
η−1

, 3a + 2d, · · ·, 3a + 2d︸ ︷︷ ︸
η

, (2η + 1)a + 2d, · · ·,

(M− 1)d, a + (M− 1)d, · · ·, a + (M− 1)d︸ ︷︷ ︸
η−1

, 3a + (M− 1)d, · · ·, 3a + (M− 1)d︸ ︷︷ ︸
η

,

(2η + 1)a + (M− 1)d.

(10)

Deduced from the preliminary knowledge, we get the minimum non-zero eigenvalue

λ2 = min{a, d} , (11)

and the maximum eigenvalues

λmax = (M− 1)d + (2η + 1)a. (12)

Then we have

r =
(M− 1)d + (2η + 1)a

min{a, d} =


(M− 1)

d
a
+ 2η + 1, a < d,

(M− 1) + (2η + 1)
a
d

, a ≥ d.

(13)
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From Equation (11), we can get that λ2 is only related to coupling strength a and d, not
to M and η. This means that λ2 changes with increasing a or d, and keeps invariant with
increasing M or η. In Equation (13), for example, when a < d, r is proportional to η, M, d
respectively, and inversely proportional to a. This means that when η, M, d (controlling for
only one parameter change) becomes larger, r increases; when a becomes larger, r decreases.
For the sake of brief overview, Table 1 summarises the changes of λ2, r.

Table 1. Changes of λ2, r with a, d, M, η of multilayer Networks-A.

Increase of a d M η

λ2
a < d λ2 = a ↑ − − −
a ≥ d λ2 = d − ↑ − −

r =
λmax

λ2

a < d r = 2η + 1 + (M− 1)
d
a

↓ ↑ ↑ ↑

a ≥ d r = (2η + 1)
a
d
+ (M− 1) ↑ ↓ ↑ ↑

↑: increase; ↓: decrease; −: unchange.

3.2. The Eigenvalues of Networks-B

According to the structural definition of M-layer Networks-B having N nodes each
layer, the supra-Laplacian matrix LB is:

LB =


aLB + (M− 1)dIN −dIN · · · −dIN

−dIN aLB + (M− 1)dIN · · · −dIN
...

...
. . .

...
−dIN −dIN · · · aLB + (M− 1)dIN


M×M

, (14)

where

LB =



η −1 0 −1 0 · · · −1 0
0 1 −1 0 0 · · · 0 0
−1 0 1 0 0 · · · 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · 1 −1
−1 0 0 0 0 · · · 0 1


N×N

.

By the second lemma mentioned earlier, the eigenpolynomial of LB is:

|λI2N −LB|

=

∣∣∣∣∣∣∣∣∣
[λ− (M− 1)d]IN − aLB dIN · · · dIN

dIN [λ− (M− 1)d]IN − aLB · · · dIN
...

...
. . .

...
dIN dIN · · · [λ− (M− 1)d]IN − aLB

∣∣∣∣∣∣∣∣∣
=|λIN − aLB| · |(λ−Md)IN − aLB|M−1.

(15)
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The eigenvalues of LB are:

0, a, · · ·, a︸ ︷︷ ︸
2(η−1)

,
(η + 2) +

√
η(η − 4)

2
a,
(η + 2)−

√
η(η − 4)

2
a,

Md, · · ·, Md︸ ︷︷ ︸
M−1

, a + Md, · · ·, a + Md︸ ︷︷ ︸
2(η−1)(M−1)

,

(η + 2) +
√

η(η − 4)
2

a + Md, · · ·, (η + 2) +
√

η(η − 4)
2

a + Md︸ ︷︷ ︸
M−1

,

(η + 2)−
√

η(η − 4)
2

a + Md, · · ·, (η + 2)−
√

η(η − 4)
2

a + Md︸ ︷︷ ︸
M−1

.

(16)

The secondary smallest eigenvalue λ2 is not related to η and the maximum eigenvalue
λmax is affected by all parameters which are respectively shown as:

λ2 = min{a, Md} , λmax =
(η + 2) +

√
η(η − 4)

2
a + Md, (17)

where η ≥ 4. The relations between the structural parameters variables and the indicators,
λ2 and r = λmax/λ2, are summarized in Table 2.

Table 2. Changes of λ2, r with a, d, M,η of multilayer Networks-B.

Increase of a d M η

λ2
a < Md λ2 = a ↑ − − −
a ≥ Md λ2 = Md − ↑ ↑ −

r =
λmax

λ2

a < Md r = (η+2)+
√

η(η−4)
2 + Md

a ↓ ↑ ↑ ↑
a ≥ Md r = (η+2)+

√
η(η−4)

2
a

Md + 1 ↑ ↓ ↑ ↑
↑: increase; ↓: decrease; −: unchange.

3.3. The Eigenvalues of Networks-C

Similar to the analysis of Networks-A and Networks-B, the Laplacian matrix of
Networks-C consisting of M layers is shown:

LC =


aLC + (M− 1)dIN −dIN −dIN −dIN

0 aLC + (M− 2)dIN −dIN −dIN
...

...
. . .

...
0 0 0 aLC


M×M

, (18)

where LC = LB, and we can get the characteristic polynomials of LC:

|λIMN −LC|
=|λIN − aLC| · |(λ− d)IN − aLC| · |(λ− 2d)IN − aLC|

· · · |(λ− (M− 2)d)IN − aLC| · |(λ− (M− 1)d)IN − aLC|
=|λIN − aLB| · |(λ− d)IN − aLB| · |(λ− 2d)IN − aLB|

· · · |(λ− (M− 2)d)IN − aLB| · |(λ− (M− 1)d)IN − aLB|.

(19)
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Then, the eigenvalue spectrum of LC can be written as:

0, a, · · ·, a︸ ︷︷ ︸
2(η−1)

,
(η + 2) +

√
η(η − 4)

2
a,
(η + 2)−

√
η(η − 4)

2
a,

d, a + d, · · ·, a + d︸ ︷︷ ︸
2(η−1)

,
(η + 2) +

√
η(η − 4)

2
a + d,

(η + 2)−
√

η(η − 4)
2

a + d,

2d, a + 2d, · · ·, a + 2d︸ ︷︷ ︸
2(η−1)

,
(η + 2) +

√
η(η − 4)

2
a + 2d,

(η + 2)−
√

η(η − 4)
2

a + 2d,

· · ·, (M− 1)d, a + (M− 1)d, · · ·, a + (M− 1)d︸ ︷︷ ︸
2(η−1)

,

(η + 2) +
√

η(η − 4)
2

a + (M− 1)d,
(η + 2)−

√
η(η − 4)

2
a + (M− 1)d.

(20)

It is apparently possible for us to obtain λ2 and λmax,

λ2 = min{a, d} , λmax =
(η + 2) +

√
η(η − 4)

2
a + (M− 1)d. (21)

Changes of λ2 and the eigenratio r = λmax/λ2 are summarized in Table 3.

Table 3. Changes of λ2, r with a, d, M, η of multilayer Networks-C.

Increase of a d M η

λ2
a < d λ2 = a ↑ − − −
a ≥ d λ2 = d − ↑ − −

r =
λmax

λ2

a < d r = (η+2)+
√

η(η−4)
2 + (M− 1) d

a ↓ ↑ ↑ ↑
a ≥ d r = (η+2)+

√
η(η−4)

2
a
d + (M− 1) ↑ ↓ ↑ ↑

↑: increase; ↓: decrease; −: unchange.

4. Numerical Simulation

This section provides simulation experiments and explanation of results to investi-
gate the synchronizability of three kinds of directed Dutch windmill M layer networks,
which are performed by Matlab. First, we study the state trajectory of nodes in a specific
directed networks with given dynamical equations. By calculating the synchronized region
and selecting appropriate values of coupling strength, it can be seen that the network
can achieve synchronization. Then, the variation of synchronizability, keeping one pa-
rameter variable while the others are constant, can be explained by the curves in figures.
Finally, an optimization scheme in these experiments and optimal solution for general case
are obtained.

Taking a concrete structure of Network-C (see Figure 1c) as an example, having two
layers and seven nodes in each layer, we can analyze its synchronization. It can expressed
that the dynamical equations of nodes in this network is

dxα
i

dt
= arctan(xα

i )− a
N

∑
j=1

wα
ijx

α
j − d

M

∑
β=1

dαβ
i xβ

i , (22)

where xα
i is the state of nodes for i = 1, 2, · · ·, 7, α, β = 1, 2. In accordance with the

master stability equation of Equation (22), the synchronized region can be calculated as
SR = (1,+∞). Let a = 1.5, d = 2, we get the eigenvalue λ2 = min{a, d} = 1.5 ∈ SR.
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Randomly select the initial state of the nodes in this system and display the evolution of
state in Figure 3. It can be seen that the synchronization is achieved.
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x
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i
(t)

x
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i
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Figure 3. State trajectories of the two-layer Networks-C with 7 nodes in each layer. The trajectories of
the first layer are plotted as red dashed lines, and the trajectories of the second layer are plotted as
blue solid lines.

4.1. The Synchronizability of Networks-A

(1) Let M = 2, η = 100, d = 1, Figure 4a,b show the ralationship between synchronizabil-
ity of Networks-A and the intra-layer coupling strength a. When the synchronized
region is unbounded, it is clear that the value of λ2 grows linearly with increasing a
(a < a∗ = d), and then remains unchanged at λ2 = 1 (a ≥ a∗). This means that the
synchronizability of Networks-A is first strengthened and then remains unchanged
with increasing a. When the synchronized region is bounded, the value of r decreases
slowly with small a (a < a∗) and then increases linearly with ever-increasing a. This
indicates the synchronizability is strengthened firstly, and gets diminished contin-
uously after reaching the maximum with increasing intra-layer coupling weight a.
The synchronizability of inter-layer directed Networks-A is optimum at a∗ = d = 1.

(2) Let M = 2, η = 100, a = 1, the relationship between the synchronizability and
the inter-layer coupling strength d is shown in Figure 4c,d. When it comes to the
unbounded synchronized region, Figure 4c depicts that the value of λ2 = d increases
linearly when d ≤ d∗ = a. When d > d∗, it remains an invariant value λ2 = 1. This
implies with improving a, the synchronizability of Networks-A is strengthened firstly
and then remains unchanged. When it comes to the bounded synchronized region,
Figure 4d depicts that the value of r decreases firstly (d ≤ d∗) and then enlarges
slowly (d > d∗). This implies that the synchronizability is improved at the begining,
and then continuously reduced after reaching the optimum at d∗ = a = 1.

(3) Let a = 2, d = 1, M = 2, the relationship between the number of leaves η and the
synchronizability of Networks-A is shown in Figure 5a,b. Because each layer has
N nodes, satisfying N = 2η + 1, we can plot λ2 and r changing with η to analyze
the impact of the number of leaves η on network synchronizability. From Figure 5a,
when talking about the unbounded synchronized region, it is clear that the value of
λ2 remains invariant with the increase of η. This indicates that the network size N
does not take into account the synchronizability of Networks-A. Figure 5b shows
that the synchronizability, the bounded synchronized region, is weakened because r
increases as η increases.

(4) Let a = 2, d = 1, η = 50, the relationship between the value of M and the synchro-
nizability is shown in Figure 5c,d. In the unbounded synchronized region, λ2 of
the supra-Laplacian matrix does not change with the increase of M which means
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that the capacity of synchronization is unaffected by the number of layers. In the
bounded synchronized region, the value of r increases and the network synchroniz-
ability is eroded when M increases from 2 to 50, indicating that synchronizability is
diminished as the layers increases.
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Figure 4. The synchronizability of Networks-A. Panel (a) depicts λ2 vs. a and (b) depicts r vs. a when
M = 2, η = 100, d = 1; Panel (c) depicts λ2 vs. d and (d) depicts r vs. d when M = 2, η = 100, a = 1.
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Figure 5. The synchronizability of Networks-A. Panel (a) depicts λ2 vs. η and (b) depicts r vs. η when
a = 2, d = 1, M = 2; Panel (c) depicts λ2 vs. M and (d) depicts r vs M when a = 1, d = 1, η = 50.
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4.2. The Synchronizability of Networks-B

(1) Let M = 2, η = 100, d = 1. Figure 6a,b show the variation of λ2 and r relative to
different values of the intra-layer coupling strength a. For the unbounded synchro-
nized region, it clearly shows that the value of λ2 increases linearly at first with a
(a < a∗ = 2d ), and then remains invariant at λ2 = 2 (a ≥ a∗). This implies that the
synchronizability of Networks-B is first strengthened and then holds constant with
the increase of intra-layer coupling strength a. For the unbounded synchronized re-
gion, panel (b) shows that the value of r firstly decreases slowly and indicates that the
synchronizability of Networks-B is enlarged when a < a∗. It increases monotonically
when a > a∗, representing the capacity becoming weaker. The synchronizability,
reaching the optimum with the increase of a, is maximized at a∗ = Md = 2.

(2) Let M = 2, η = 100, a = 1, the influence of the inter-layer coupling strength d on
the synchronizability of Networks-B is display in Figure 6c,d. When d increases
from 0 to 0.5 (d ≤ d∗), the smallest nonzero eigenvalue λ2 increases, the eigenratio
r decreases sharply, and the network synchronizability is strengthened. When d
increases from 0.5 to 5 (d > d∗), λ2 remains a fixed value at 1 means that the
capability of synchronization is not influenced by d. While r increases slightly
showing a weakening in synchronizability of intra-layer directed networks. The
optimal solution of Networks-B is derived at d∗ = a/2 = 0.5.

(3) Let a = 0.5, d = 1, M = 2, η ≥ 4. In the case of the unbounded synchronized region,
panel (a) in Figure 7 shows that the value of λ2 does not vary with the increase
of η, which indicates that the number of nodes N does not show any effect on the
synchronization ability of Networks-B. In the bounded synchronized region, panel
(b) shows that the synchronizability is weakened because r becomes larger when η
changes from 1 to 100.

(4) Let a = 1, d = 0.1, η = 50. Unlike the analysis result of Networks-A for the number
of layers, panel (c) shows that λ2 monotonically increases from 0.2 to 1, and then
keeps invariant at 1. panel (d) shows that the eigenratio r, determined with λmax and
λ2, decreases and then increases slightly when the number M changes from 2 to 50.
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Figure 6. The synchronizability of Networks-B. Panel (a) depicts λ2 vs. a and (b) depicts r vs. a when
M = 2, η = 100, d = 1; Panel (c) depicts λ2 vs. d and (d) depicts r vs. d when M = 2, η = 100, a = 1.
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Figure 7. The synchronizability of Networks-B. Panel (a) depicts λ2 vs. η and (b) depicts r vs. η when
a = 0.5, d = 1, M = 2; Panel (c) depicts λ2 vs. M and (d) depicts r vs. M when a = 1, d = 0.1, η = 50.

4.3. The Synchronizability of Networks-C

According to the numerical examples shown in Figures 8 and 9, the synchronizability
of Networks-C changing with the increasing network parameters is similar to Networks-A.
In the case of the unbounded synchronized region, λ2 increases firstly and then transforms
into a constant value whether with the intra-layer linking intensity a or the inter-layer
linking intensity d. This property that the synchronizability of multilayer networks first
increases and then remains constant is reflected in the figures. For the number of leaves
η within each layer and the number of layers M, λ2 remains constant. This means that
the synchronization capacity always remains a constant when the network size tends to
infinity. In other words, in the case of the bounded synchronized region, the value of r,
decreasing firstly and then increasing slightly whether for a or d, represents the evolution
of synchronization capacity. When talking about the bounded synchronized region the
synchronizability for this particular network is enhanced firstly, and then is diminished
after achieving the optimum. For η and M, the value of r increases linearly which means
that the network synchronizability gets weaker as the network size increases.
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Figure 8. Cont.
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Figure 8. The synchronizability of Networks-C. Panel (a) depicts λ2 vs. a and (b) depicts r vs. a when
η = 100, d = 1, M = 2; Panel (c) depicts λ2 vs. d and (d) depicts r vs. d when η = 100, a = 1, M = 2.
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Figure 9. The synchronizability of Networks-C. Panel (a) depicts λ2 vs. η and (b) depicts r vs. η when
a = 1, d = 1, M = 2; Panel (c) depicts λ2 vs. M and (d) depicts r vs. M when a = 1, d = 1, η = 50.

5. Conclusions

This paper examined the synchronizability for multilayer directed Dutch windmill
networks. The analytical expressions for all eigenvalues of the three networks have been
rigorously derived and specific relations of synchronizability are given in Tables 1–3
that have been well verified by numerical simulation. By varying a single parameter, we
discussed the impacts of the intra-layer coupling weights a, the inter-layer coupling weights
d, network size N as well as the number of layers M on network synchronizability.

The effects of changes in all structure parameters upon the network synchronizability
for Networks-A and Networks-C are similar. When taking into account the synchronization
region with unbounded range, there are only two coupling weights a and d have remark-
able influence on the synchronizability of Networks-A and Networks-C. However, for
Networks-B, not only the coupling strength but also the number of layers have an influence
on the synchronizability of the network. When taking into account the synchronization
region with bounded range, the fewer nodes, the better the synchronizability. In addition,
we would further discuss methods to improve or weaken the synchronization of multilayer
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directed networks in order to control the synchronization phenomenon in real life. There
are still many problems to be solved in directed Dutch windmill networks. For example,
when the strength of inter-layer coupling between central nodes differs from the strength
of coupling between leaf nodes, we can study the change of synchronizability. Recently,
the diffusion and coherence of networks are challenging and attractive topics, which are
worthy of our further study of multilayer directed windmill networks.
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