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Abstract: In the recent era of research, the field of integral inequalities has earned more recognition
due to its wide applications in diverse domains. The researchers have widely studied the integral
inequalities by utilizing different approaches. In this present article, we aim to develop a variety
of certain new inequalities using the generalized fractional integral in the sense of multivariate
Mittag-Leffler (M-L) functions, including Griiss-type and some other related inequalities. Also,
we use the relationship between the Riemann-Liouville integral, the Prabhakar integral, and the
generalized fractional integral to deduce specific findings. Moreover, we support our findings by
presenting examples and corollaries.

Keywords: fractional integrals; generalized fractional integrals; Prabhakar integral; Mittag-Leffler
function; inequalities

1. Introduction

The field of fractional calculus is the branch of mathematical analysis which deals
with the study of arbitrary order integrals and derivatives. In the last few years, this
field has gained more recognition and significance due to its wide applications in diverse
domains. The researchers have considered that this field is the most powerful tool in
determining the anomalous kinetics and its wide applications in diverse domains. Several
problems such as statistical, mathematical, engineering, chemical, and biological can
be easily modelled by employing ordinary differential equations containing fractional
derivatives. The researchers have extensively studied a variety of types of fractional
integrals and derivatives operators such as Riemann-Liouville, Caputo, Riesz, Hilfer,
Hadamard, Erdélyi-Kober, Saigo, Marichev-Saigo-Maeda and so on. We suggest the readers
to see [1-4].

Khalil et al. [5] proposed the notion of fractional conformable derivatives operators.
Abdeljawad [6] gave the properties of the fractional conformable derivative operators.
Jarad et al. [7] proposed the fractional conformable integral and derivative operators.
Anderson and Unless [8] propose the idea of the conformable derivative by considering
local proportional derivatives. Abdeljawad and Baleanu [9] investigated certain monotonicity
results for fractional difference operators with discrete exponential kernels. In [10], Abdeljawad
and Baleanu proposed the fractional derivative operator involving an exponential kernel
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and their discrete version. Atangana and Baleanu [11] proposed a new fractional derivative
operator with the non-local and non-singular kernel. Fractional derivative without a
singular kernel can be found in the work of Caputo and Fabrizio [12].

Recently, the researchers have studied the field of fractional calculus extensively and
developed certain new and interesting fractional integral and derivative operators. These
new operators have gained more attention from researchers due to their wide applications
in the field of both applied and pure. Inequalities are well recognised to have potential uses
in technology, scientific research, and analysis as well as in a wide range of mathematical
topics including approximation theory, statistical analysis, and the social sciences; see for
example [13-15]. Regarding wider uses, these versions have received a lot of attention.
Authors have now presented a new version of these inequalities, which may be useful in
the research of various integro-differential and difference equation forms. Sousa et al. [16]
presented Griiss-type and some other integral inequalities by employing the Katugampola
fractional operator. In particular, many remarkable inequalities, properties and applications
for the fractional conformable integrals and generalized proportional integrals can be found
in the literature [17-19].

Alzabut et al. and Rahman et al. [20-23] explored the modified proportional derivative
and integral operators recently, and they produced certain Gronwall inequality and the
Minkowski inequalities that include the above proportional fractional operators.

2. Preliminaries

In this section, recalling the following well-known results:

Theorem 1. [24] Let fiy,hp : [r, 8] — R be two positive functions with m < Ty (&) < M and
n < hy(g) <N forall & € [r,s], then the following inequality holds:

1
s—r

[ m@m@de - L [l [ < jo-me-w,

where M, m, N',n € R and } is the best constant such that the inequality (1) is sharp.

Definition 1 ([25,26]). A function 1 () is said to be in the Ly, [0, c0) space if

Lp,[0,00) = {Fu Pl 0,00) = </rs |h1(§)|’”§rd§)p <oo, 1<p<oor> 0}. )

If we apply (2) for r = O, then it follows

Lp[0,00) = {hl 1Pl 0,00) = (/rs hl(C)pdC>p <o, 1<p< 00}'

Definition 2 ([27]). Letn € N, {1,01,7 € C, R(Z1) > 0, R(01) > 0and R(y1) > 0O, then the
three parameter M-L function is given by

() )Il

‘71 o Z 0111+Cl)

Definition 3 ([28]). The multivariate M-L function is defined as

,2j) = 5((;];22 v )?é(zl,zz,...zj)

(YD) m (¥2)my -+ (0j)m; (20)™ . (2)™
_o Dloumy +oamy +...ojmj + O)my ! .omit”

(7))
5(;])%(21,22, ...

®)

|
S
Mz
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where z;,0;, 0,7 € C;i=1,2,...,j, R(0;) > 0, R(Z) > 0and R(v;) > 0.

The M-L functions with different parameters that have been extensively studied
by [29-31] and the references cited therein.

Definition 4 ([1,2]). The Riemann-Liouville (R-L) fractional integral (left and right sided) , 7
and y,Z¢ of order { > 0, is defined by

<x11€h2> (v) = 1"(15) /}:(v — v)gflhz(v)dv, x1 <0,

and
g 1o -1
(xZI hz)(v) = @ /U (v—0v)"""ha(v)dv, x3 > v.

Definition 5 ([27]). The Prabhakar type fractional integral is defined by

v
(T3f 1)) = [ (0= )EED (A0 = 1) (v)dv.
X1
Definition 6. The one-sided Prabhakar type fractional integral is defined by

v

(@2 a)(0) = [ (v =) TEL (Mo = 1) ha(v)dv. @)
0

Definition 7 ([28,32]). The Prabhakar integral operator having multivariate M-L function in the
kernel is defined by

( )'/()‘)' ( A ')/(/\ r"'r)")
(w2 )@ = (nZeyofi™ ) @
¢ 1) - -
= [ @ G MG )7 (e ) (),
where {, 0, A, vi € C, R(0;) >0, R(Z) >0, R(y;) >0fori=1,2,...,].

Definition 8. The one-sided Prabhakar integral operator having multivariate M-L function in the
kernel is defined by

(M) o), (A, A
(2 ) @ = (M ) @)
= [ e @ -0 A E - D@y, 6)

/!

where {,0;, A, vi € C, R(0;) >0, R(Z) >0, R(y;) >0fori=1,2,...,].

Remark 1. i. If we take m; = 0 fori = 2,3,..., ], then (5) reduce to (4). ii. If we consider one of
A; = 0, then (5) reduce to the classical R-L fractional integral T({) (+,Z%hs) (v).

The objective of this article is to establish integral inequalities such as Griiss-type
and several other related inequalities by employing the generalized Prabhakar fractional
integral (5). The mentioned inequalities via the Prabhakar operator containing the three
parameters M-L function are discussed. Also, some examples and corollaries are discussed
which are the special cases of our main results.
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3. Griiss-Type Inequalities via Generalized Fractional Integral

In this section, we present generalization of certain inequalities by utilizing the integral
operator (5) having the multi-parameters M-L function.

Theorem 2. Let the function hy be integrable on [0,00). If the two functions Ny and R, be
integrable on [0, 00) such that

R1(§) < 7(8) < Na(G), ¢ € [0, 00). (6)

Then, for ¢ >0, 0;,0,1,A; > 0 (wherei =1,2,...,j), we have

m(©)I,,), @) )
(@)jm
Proof. Applying (6) for all ¢ > 0 and v > 0, we have
(Ra2(e) —1(e))(f1(v) — Ry (v)) = 0.
It follows that

Nz ()h1(v) + Ny (v)h1(0) > V(@) N1 (v) + Ti1 ()1 (v)- ®)

Taking the product of (¢ — Q)g,16(71,~-,73)§()\1 (&—0)7---Aj( —¢)%) with (8) and
i),

(01, 0
then the integration of the obtained inequality with respect to ¢ from 0 to ¢ gives

g ey ., .
m(v) [ =0 e T (M@= 0) - A (E = 0T Na(o)de
¢ 170070 log o
#R(0) [ = TEN T (ME - ) Ai(E — @) (o)de
¢ Ly I 0;
>R (0) [1(@ - @ e (@ - @) 4 (E - )T Rale)do

(

+ (v) /0 (= e)gfls(;{i'{j,;jg?m<<: — )7+ A€ — 0)7)(0)de,

"m(g). ©)
Again, taking the product of (¢ — v)”‘lg((;l’,',fgg)g()\l(g —0)7 - A& —v)7) with (9)
’ 7 ] s
and then the integration of the obtained inequality with respect to v from 0 to § gives

R (€)
Wiy (), (10)

which proves the inequality (7). O
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Corollary 1. Let the function hy be defined and integrable on & € [0,00) and satisfying
m <hy(¢) <M, ¢ e€l0,00). Then, for& >0,0;,,1n,A; > 0 (wherei =1,2,...,j), we have

/\ A);
gt g1 g - AT () + mng o g - AT i @)
>mamgt e g Aé»g )(NAéﬁ-~A§f%+f”“”%u@I”V“Wn@>
)i+1 )i+ j (0); (0)id

Example 1. Let the function hy be integrable on & € [0, 00) and satisfying ¢ < h1(§) < ¢ +1,
¢ € [0,00). Then, for £ > 0, 0;,,A; > 0 (wherei = 1,2,...,j) and put { = 1 in Theorem 2,
we have

Iy A (M)
s )+ e A ]

\

2| e g g A + DN gt e | (e e - aiem))

Theorem 3. Let the two functions hy & hy be positive and integrable on [0, c0). Assume that (6)
holds and the functions Y1, Yo are integrable on [0, 00) such that

Y1(¢) < h2(8) <Y2(E), ¢ € [0,00). (1)

Then for ¢ > 0and ,1,0;, A; > 0, then the following four inequalities hold:

M) (7).(A); (M (A 7))
I(Z)]_],g /Nz(g)I(Z)].],W ]h2(§)+z( )il ]hl(g) (“r)]],ﬂ Yl(g)
(M) (A); () (A); )i (A)j (7)-,()\)'
ZI(J)]-],g ]NZ(C)I(U')]-]IW ]Yl(‘:) +I( )ik ]h (6) (a)]-],vy ]h2(§)/ (12)
('Y)jr(/\)] ('Y)jr()‘)] (7)]7( ) ('Y)] (A)/
I(g)].,” Nl (g)I(U')j’C hZ(C) I( ) Y (g)I(g) n h (C)
M) (M A); (M (A) 7
2T O Y2 (@) + T m@T ) E), (13)

Wi oy D), WD 1),
Loz Ne@Z), Y @)*I(«r),»,g M0 ) 2(E)
(Wi 217D WD 1)),
ST g @70 (@) + 20 (T (@), 19
WMy 1), WD) 1)),
I(g)jlg Nl (g)z(g)jrn Yl(‘:) +I(U)j,g h (@Z(g)jrn hZ(C)
M Wig. 2y MW WD 1)),
2 @2 (@) + 70 T v @) (15

Proof. To derive (12), we use (6) and (11) for g, v € [0, o0) yield

(Ra(0) — 11(0)) (ha(v) — Ya(v)) > 0.

It follows that

Nz (0)h2(v) +h1(@)Y1(v) > Na(0)Y1(v) + h1(@)h2(v). (16)
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Multiplying (& — ¢)¢~ 18((;1 (Al (E—0)™ - Aj(¢ —0)7) with (16) and then taking
the integration with respect to ¢ from 0to ¢, we have

o) [ (@~ @D (e~ o)+ A (E — o) ale)de
() [ @ e - 9 - AE - @ 0)de
2Y1(0) [[(6 - o) e (M@ - @) - AT - (e
o) [ (@ QP ETTT (@ - @) - 41(E ~ o) m(ede
which in view of (5) follows
()T Ra(@) + Ya ()T I (@) = )0 Ne(@) + o)) i (@), a7)
%))

Again, multiplying (¢ — U)Wflg((;bj...';.) é-(/\1(§ —0)7 - Ai(& —v)7) with (17), taking
0 07),
the integration with respect to v from 0 to ¢ and utilizing (5) gives

. (A);
Mm@z @)
. (M)
Mm@z (@)

which completes the inequality (12). Similarly, one can prove (13)—-(15) by utilizing the
following results:

(Y2(0) — 112(0)) (71 (v) — N1 (v)) > 0,

(N2(0) —71(0)) (f2(v) — Y2(v)) <0

and

(N1(e) — 11 (e))(2(v) = Y1(v)) <0,

respectively. [

Corollary 2. Let the two functions hy & hy be integrable and positive on [0, c0) and satisfying

m < 7(§) < Mandn < (&) < MM, ¢ € [0,00). Then, for § > 0, 03,{,n,A; > 0 (where
i=1,2,...,j), we have

mete ) e gz ) (é) gt (gt AT (@)
zmtné“’?s(( D g Aé"f)«‘:” gt a8 + T @70 (@),
mgn g e AT ) é”’h (5)+m€55” e ATl @)
>t e “’fféil( 180 AENED A Aé"f)+1(( i @) (@),
MR E ] (g -2 )5”) ,;H(A e A + g (é)zg;jfy)jhz(é>
=gtV e AL )fhz@)mé"s ,7+1<A c"l AT (@),
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(7). (Mj (1)

mang g uger - agE e A + T @) V(@)
(A); (1A 7)j (1) (1) (A);
>m§€5 ]]§+1j ()\1601 /\]'617])1-(0);’,7 712(5) +n§'75(,7)].,,7+1 (Alégl “Aj C ])I(U)]jlg ]hl(@'

4. Some Other Related Inequalities via the Generalized Prabhakar Integral

In this section, we establish certain other inequalities which involve the generalized
Prabhakar integral (5) containing multivariate perimeters.

Theorem 4. Let the two functions hy and hy be positive and integrable on [0, 00). If p1,q1 > 1 be
such that % + qll = 1. For ¢ > 0, we have

L @z o+ L2 @zt @
> (©ha(@) 70, @ @), -
m g T ) + = 2 g @z @)
>70 g @ @7 (@), (19)
e
2 @nd @ (@)@ 20)
and
1@z g + 1) ) @)
ZI((Z))]],( i 1(5)@171(5)18));,@% W (@R (2), 1)

where Ti, /\i/ gr Yi > 0.

Proof. To prove (18), we use the following Young’s inequality [33] given by:

ium + lU‘h > uv, u,v >0, r + 1 =1 (22)
p1 q1 p1 q1

Applying (22) for u = hy(0)hz(v) and v = f1(v)ha(0), 0,v > 0, we have

pll(hl(@)hz(v))p1 + 6111(7511(11)7512(0))"1 > (11(e)hiz(v)) (1 (v)2 (@) (23)

Multiplying (& — Q)gflg((;]/'_'_:'/gg?g()\l((;‘ —0)7 -+ - Aj(& — @)7) with (23) and taking the

integration with respect to ¢ from 0 to ¢ gives
hPl (, 100 7) - -
/ E- )18 M@ =) A - @) (o)de
hzl g 1) - ol
+T/o C—)f e (A(E = Q) A& 0))h (o)dg

¢ ey
> (0)ha(v) /O - e>€*15§;ii..gg?g<m<a: — )7+ Ai(& — @)% (e)ha(e)de
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which in view of (5) follows

(V) (7)) AN (W) (), 0); L0,
Loy @)+ T =T S (@) 2 m(0)ha(0)T ) i (E)a(2). (24

~

Now, multiplying (& — 0)77715((;11',1... 1:.3),7(/\1@ —0)7 -+~ Aj(E — v)7) with (24), taking
)

the integration with respect to v from 0 to ¢ and using (5), we have

MiWjppr (a7
plz(g)] WO

>0 (@ (@)1,))

(A )I P1 (7)] (/\)j ql ( ) (A )] 0
7)j
0);j

(A);

Y ]hl ((:)hZ ((:)’

which gives the inequality (18). The inequalities (19), (20) and (21) can be easily derived by
substituting the following identities in (22), respectively.

_m(e) . Mm(o)
u= (o) v= o (0’ iy (v), ha(v) #0, (25)
u ="ty (o))" (v), v =Hh{"(v)h(o) (26)
and
= n{" (o) (v), v="nh3 (o)ha(v). 27)
O

Theorem 5. Let the two functions hy and hy be positive and integrable on [0, 00). If p1,q1 > 1 be
such that % + ‘%1 = 1. Then for § > 0 and 1, > 0, the following inequalities hold:

)‘)j )/ ()\

il e
AL (E
(A

(1), (V) ( )js
>Z 1 (@) 7))

(1) (A)j

"ha(@) + ) @1

jhz(‘f) (o )] ]711(6)

P1 (( )
(@ (@), (28)

T @ T (@8 @) + T g @z (R @ma(@))
=20, T @), @)
it @ i @ ) @ng) @
>1) I @ (@) 7)) @ @) (30)
and
I @ @) 20y )+ 2y @ T @ @
=1 R E). ey

Proof. Recall the arithmetic mean and geometric mean inequality (AM-GM) given by

pru+qro > uPton Yu,0>0,p1+q; =1 (32)
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By substituting u = f11(0)h2(v) and v = h1 (v)h2(0), 0, v > 01in (32), we have
pihn(0)2(v) + ahn (v)2(e) = (M (Q)h2(v))™ (i (v)2(e)) ™ (33)

Multiplying (& — Q)gflé’((;l' ;:f)')g()\l(g —0)7 -+ Aj(& — @)7) with (33) and taking the
s s ] s

integration with respect to ¢ from 0 to ¢ yields
pifa(v) | ‘e - QEIEL T (MG~ )+ A4(E — )T ()do
+qm(o) [ “o- QELEL T (M~ )+ A(E — 0))a(e)do
S ) 0) [ (6~ eI (0@ - @)% A(E - @)Y (@ (@)1 (0)de
which in view of (5) follows,
pra(0)Z0) (@) + i ()7 e (@) = 1 R )20 (W @nd @) (34)

Again, multiplying (¢ — v)”ilé'(( )) (A (§—0)7 -+~ Ai(¢ —v)7) with (34), taking

the integration with respect to v from O to C and using (5), we obtain (28) as,

7)j '7 ) ( )
> é” (h”l( Wl( >) Zf,j ) (h’ﬂl(f:)h?(@)),

which completes the desired inequality (28). One can derive the inequalities (29), (30) and (31)
by substituting the following identities in (32), respectively.

_(v)  ha(e)
u= hi 0 " hi(v), h1(0), ha(v) # 0, (35)
u=ni(o)h]" (v), v="nh{"(v)h(o) (36)
and
e m )
u= r?z(v) L, v= hlz(e) , ha(0),ha(v) # 0. (37)
O

Theorem 6. Let the two functions hy and hy be positive and integrable on [0, 00). If p1,q1 > 1 be
such that % + q% = 1. Suppose

.7 11 (o) .7 f1(e)
K:= 012912[: 72 (0) H = Olggag: Ta(o)’ (38)

Then for & > 0, the following inequalities hold:

(A K+H)? (A)j 2
o<z e < S (1) mon©) 69
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(M)j(A) (1)) 7 VH — VK [ (7))
o<z @20 e - (0 mon©) < R (0 nen@)  w)
and
() L(A); A 2 H-K (A 2
o <7 ) e - (20 mem@ ) < Lo () mone) @)

Proof. From (38), we have

(28 - ’C) ('H - Z;Eg;)hﬁ(e) >0,0<0<¢

It follows that
ni(e) + KHN (o) < (K + H)i()ha(0)- (42)
Multiplying (& — 0)¢~ 15((71 a)g(Al(‘; 0)7 -+ Aj(& — 0)7) with (42) and taking the

integration with respect to ¢ from 0 to ¢ and using (5), we get

(v
(¢

Ty )j
)j

7 MI3(E) + KHT

0 DR E) < (K +HT (@ (@), (43)

Now, since LH > 0 and

2
(M A); (M (A)
( I(Z)j],q () — \/’CHI( o ]h2(5)> >0,

which follows that

A i,(A); A
2\/ o) \/ oHT (@) < 7)) + KoHT @) @
Hence, by using (43) and (44), we have

(1) (A);

207 Wiy 2 L) 2
sz @z < o (10 )

which gives the inequality (39).
Now, from (45), we have

(1)j,(M)j 22 (1)js(MNj 12 K+H ( )i(A)j
JEO R e < R (20 enate)). (o)

Now, subtracting (I(( )) Wi (C)h2(§)> from (46) gives the inequality (40). Also, one

can easily derive the inequality (41) by applying (39). O

5. Special Cases

In this section, we present certain new inequalities via the Prabhakar fractional integral
which are the special cases of inequalities proved in Sections 3 and 4 by applying certain
conditions on parameters.

If we consider m; = 0 fori = 2,3,...,jin Theorem 2, we get the following inequality
for (4) having the three parameters M-L function.
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Theorem 7. Let the function hy be positive and integrable on [0, 00) and let the two functions Ny
and Ry be integrable on [0, 0) such that

R1(§) < (8) < Na(E), ¢ € [0,00).

Then, for ¢ > 0,0, A > 0 (wherei =1,2,...,j), we have

T ()T 1 (€) + T (@) TN ()

/! ’

>IN (E) TV (E) + TV (§) T 1 (£).

Corollary 3. Let the function hy be positive and integrable on [0, co) and satisfyingm < hy (&) < M,
¢ € [0,00). Then, for & > 0, 0,¢,11,A > 0, we have the following inequality for the Prabhakar
fractional integral (4) as:

MECE N (MET) TR I (E) +mET €L (eI (€)

A A A A
>mIEETIETIM, (AT ENM (MED) + T (§) T (8).

Example 2. Let the function hy be positive and integrable on [0, co) and satisfying & < h1(&) <
¢+1, ¢ € [0,00). Then, for & > 0, 0;,(,A; > 0 (wherei = 1,2,...,j) and put { = 5 in
Theorem 7, we have

[zgé—s-l gnM (AE) + (;"5571’/\1 (Ag™ )} I;ll,g\lhl (€)

0'1,§+2 (7'1,§+1
> (€0, (00g) + DM ()] (EF1€281, (M)
2
+(Znm @)

Remark 2. i. If we take m; = 0 fori = 2,3,...,j in Theorems 3—6, we get the inequalities via the
Prabhakar fractional integral (4) having the three parameters M-L function. ii. If we consider one of
Ai=0fori=2,3,...,j, then we get the result derived by Tariboon et al. [34].

6. Conclusions

In this present investigation, we established certain new Griiss type and other AM-GM
inequalities for the generalized fractional integral having multivariate M-L function in the
kernel. We also presented the mentioned inequalities for the fractional integral containing
the three parameters M-L function. Additionally, we discussed some special cases and
support our finding with examples. In any case, we hope that these results continue to
sharpen our understanding of the nature of fractional calculus and their applications in
different fields. For future developments, we will derive several new interesting inequalities
via Holder-Iscan, Chebyshev, Markov, Young and Minkowski inequalities using fractional
calculus for the generalized fractional integral having multivariate M-L function in the
kernel. Moreover, the interested reader can consider the mathematical equivalence (see
e.g., [35]) among these proposed results.
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