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Abstract: This study presents an extended dissipative analysis of fractional order fuzzy networked
control system with uncertain parameters. First, we designed the network-based fuzzy controller for
the considered model. Second, a novel Lyapunov-Krasovskii functional (LKF) approach, inequal-
ity techniques, and some sufficient conditions are established, which make the proposed system
quadratically stable under the extended dissipative criteria. Subsequently, the resultant conditions are
expressed with respect to linear matrix inequalities (LMIs). Meanwhile, the corresponding controller
gains are designed under the larger sampling interval. Finally, two numerical examples are presented
to illustrate the viability of the obtained criteria.

Keywords: Lyapunov-Krasovskii functionals; network control system; Takagi-Sugeno (T-S) fuzzy
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1. Introduction

In recent years, fractional order (FO) differential equations have received considerable
attention due to their extensive applications in real life. By exploiting the theory and
measures of dynamics, qualitative and quantitative discussions of the behaviour of the
fractional order system are implemented. It is important to realize that fractional order
differential equation applied widely in nature [1–3]. The dynamics of the fractional-order
model have always been concerned. Researching the strange behavior of dynamical systems
in physics, biology, chemistry, electrical, and chaotic systems makes use of fractional-order
systems [4,5]. The most effective methods for describing these cases are the Mittag-Leffler
functions. No significant geometrical interpretation, such as the trend of functions or their
convexity, is related to the idea of fractional calculus. Due to their extensive memory,
fractional order differential equations can store the complete function’s information. Many
researchers are currently conducting research that is ahead of this field, and they have
produced several impressive results, both theoretically and numerically. In [6], the authors
have investigated synchronization control for the Riemann-Liouville fractional competitive
network systems. The problem of optimal control for the nonlinear fractional-order systems
with multiple time-varying delays has been studied in [7]. Stability analysis of neutral-
type fractional order systems with nonlinear perturbations and input saturation has been
researched in [8].

Takagi-Sugeno (T-S) fuzzy models aim for the expression of nonlinear dynamics by
linear models with fuzzy membership functions. We know that T-S fuzzy systems have
been successfully used to articulate practical systems since they are straightforward and
convenient to use when faced with complex nonlinearity [9,10]. As an outcome, numerous
results regarding T-S fuzzy model stability and stabilization issues have been published.
However, due to the difficulty of modern systems, several practical models, including
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viscoelastic and biological systems, cannot be demonstrated in integer order [11,12]. In
contrast to integer-order derivatives, fractional derivatives have unique characteristics
like inheritance, memory, nonlocality, and others. Control of fractional-order systems,
particularly control of non-linear fractional-order systems, has generally been one of the
rapidly growing research fields. To examine the stability and stabilization of fractional-order
fuzzy systems, different techniques were developed [13–16]. In specific, fractional-order
systems can be constructed to the T-S fuzzy model. For instance, the authors in [13]
investigated the finite-time stability of fuzzy cellular neural networks with fractional orders
and time delays.

Dynamical control of fractional-order differential systems including stabilisation is
a prevalent topic currently and many interesting results have been obtained based on
fault-tolerant control [16], output feedback control [17], observer-based control [3], con-
tainment control [18], and guaranteed cost control [19]. It has been noted that the state
feedback controller is typically unreliable due to the fact that it demands complete state
information and drives up the cost of implementation and the difficulty of connecting
control parameters. Control systems with different components such as sensors, controllers,
and actuators connected via communication networks are known as networked control
systems (NCSs) [20,21]. Compared with standard control systems, NCSs have been increas-
ing research interests due to their advantages in low cost, reduced weight, high reliability,
stability analysis, and wide applications in science and engineering [22,23]. Consequently,
it is crucial to use a sophisticated control approach known as a decentralized static output
feedback controller, which is more successful in real control schemes. There have been
numerous studies on the modeling, stability analysis, and control design of NCSs [20–23].
Several control algorithms have been extensively investigated by researchers to address
the stability and stabilisation analysis of fractional-order NCSs with or without using the
Lyapunov functional theory. Furthermore, the concept of extended dissipative plays a
very important role in performance analysis [24], which unifies H∞ performance, L2 − L∞
performance, passivity performance and (Q− S−R)-dissipativity performance together.
It has received a great deal of attention since it provides an effective way for system perfor-
mance analysis [25–27]. As a result, this research aims to examine the extended dissipative
performance of fuzzy fractional order networked control system (FFONCS). The difficulties
of delayed fractional-order NCSs with extended dissipative approaches were not com-
pletely addressed and continue to be difficult in comparison to previous work. To keep the
stability and stabilization efficiencies of the FFONCS, it is crucial to take into account the
effects of time-varying network delays and the extended dissipative approach in this work.

Encouraged by the above analysis, we shall present the theoretical analysis of the
delayed FFONCS with extended dissipative analysis. The objectives of this paper are
as follows:

1. In this paper, the extended dissipativity and control synthesis is concerned for
FFONCSs with time-varying delay. Up to now, there has been no result on these
problems since solving their needs not only to deal with the extended dissipative
performance for the underlying FFONCS but also to handle the Lyapunov-Krasovskii
functional (LKF) theory.

2. In this study, NCSs with time-varying delays, which takes place in the sensor-to-
controller and controller-to-actuator channels are investigated.

3. For the stabilization analysis of the proposed system model, novel LKF based on
fractional order derivative is constructed, which can fully take more information
about the sampling interval, using novel integral inequality and some new adequate
conditions to ensure the asymptotic stability of FFONCS which are derived with
respect to linear matrix inequalities (LMI).

4. Finally, numerical simulations are proposed to illustrate the effectiveness and applica-
bility of the suggested theories.

Notation: For any matrix X ∈ Rn×m, the notation X > 0 or X ≥ 0 indicates that X is
positive definite or positive semidefinite, Q−1 and QT are noted as inverses and transposes
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of Q, respectively. I stands for identity matrix with the corresponding dimensions. ∗ is
used to indicate the symmetric terms in the symmetric matrix. Rn and Rn×m denote the n
dimensional Euclidean space and the set of n×m real matrices.

2. Problem Formulation and Preliminaries

Now, we consider the nonlinear fractional-order systems with time-varying delay,
which is of the form { C

0 Dα
t x(t) = f (x(t), x(t− τ(t)), u(t), w(t)),

x(s) = ϕ(s), s ∈ [−τ, 0], α ∈ (0, 1),
(1)

where α ∈ (0, 1), x(t) ∈ Rn is the pseudo-state vector, u(t) ∈ Rm is the control input, w(t)
is the external input, and τ(t) is a time-varying delay which needs to satisfy 0 ≤ τ(t) ≤ τ
and τ̇(t) ≤ µ with τ > 0, µ > 0, and ϕ(s) is a continuous vector-valued initial function on
the [−τ, 0]. Nonlinear delayed fractional-order system (1) can be modeled by the respective
T-S fuzzy delay fractional-order uncertain system with r rules.

Rule i: If θ1(t) is Mi1, θ2(t) is Mi2, · · · , θp(t) is Mip, then{ CDαx(t) = Ai(t)x(t) + Adi(t)x(t− τ(t)) + Bi(t)u(t) + w(t), t ≥ 0,
x(s) = ϕ(s), s ∈ [−τ, 0],

(2)

where θ1(t), θ2(t), · · · , θp(t) are the known premise variables, and Mil(i = 1, 2, · · · , r, l =
1, 2, · · · , p) are fuzzy sets, Ai(t) = Ai + ∆Ai, Adi(t) = Adi + ∆Adi, and Bi(t) = Bi + ∆Bi
are known real constant matrices with suitable dimensions, and ∆Ai, ∆Adi, and ∆Bi
are unknown matrices with the real values representing uncertainties of time-varying
parameters and are considered to be in the form

[ ∆Ai ∆Adi ∆Bi ] = YiFi(t) [ξ1i ξ2i ξ3i ], (3)

where Yi, ξ1i, ξ2i and ξ3i are known real constant matrices and Fi(t) is the unknown
time-varying matrix function holds

FT
i (t)Fi(t) ≤ I. (4)

The resultant fuzzy model can be defined as follows{ CDαx(t) = ∑r
i=1 hi(θ(t)){Ai(t)x(t) + Adi(t)x(t− τ(t)) + Bi(t)u(t) + w(t)},

x(s) = ϕ(s), s ∈ [−τ, 0], t ≥ 0,
(5)

where fuzzy weighting functions are written as

hi(θ(t)) =
∏

p
l=1 Mil(θ(t))

∑r
i=1 ∏

p
l=1 Mil(θ(t))

, i = 1, 2, · · · , r.

The term Mil(·) is the grade of membership of Mil . We consider that

p

∏
l=1

Mil(θ(t)) > 0,
r

∑
i=1

p

∏
l=1

Mil(θ(t)) > 0, i = 1, 2, · · · , r,

for any θ(t), then we get {
∑r

i=1 hi(θ(t)) = 1,
hi(θ(t)) ≥ 0, i = 1, 2, · · · , r.

Furthermore, the output system of (5) is written by

y(t) = x(t) + x(t− τ(t)). (6)
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Next, we consider that the network will be used to control the system (5). The network
control structure for a fractional order system with induced delays is shown in Figure 1.
The building of a state feedback controller to stabilize the system is the emphasis of this
section. Moreover, it is expected that the states of the system (5) are mostly not attainable for
measurement; this is why we accomplish an output feedback control. For each subsystem
in (5), the control scheme type parallel distributed compensation (PDC) will be considered.
The input signal in system (5) for tk ≤ t ≤ tk+1 comes from zero-order-hold (ZOH)
as follows

u(t) =
r

∑
i=1

hi(θ(tk))Kix(tk − τki). (7)

Figure 1. Schematic diagram for fractional order networked control system.

A communication delay between sensors and controllers τsci, a communication delay
between the controller and actuators τcai, and the computational time on the controller
τc can all be incorporated into the delay from the controller to the actuator in NCSs. A
reasonable assumption on τki can be expressed as

0 < τmi ≤ τki ≤ τMi. (8)

Packet dropouts are network-induced effects that might occur as a result of a connec-
tion breakdown. When this is done on purpose, the most recent information is presented in
order to reduce congestion. Despite the fact that most network protocols have transmission-
retry capabilities, they only can re-transmit for a certain amount of time. The packets are
dropped once this time has passed. Feedback controllers can often endure a particular
degree of packet loss. Consecutive packet losses, on the other hand, have a negative impact
on overall performance.

tk+1 − tk = λiTe + max
i
{τ(k+1)i} −min

i
{τki}, (9)

where Te is the sample period, tk is the sampling instant, and λi is the maximum number of
packet dropouts during the update periods. Moreover, by defining h(t) = t− tk + τk, tk ≤
t ≤ tk+1, we have

τk ≤ h(t) ≤ λTe + max{τ(k+1)}.
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Then, we get ĥ1 ≤ h(t) ≤ ĥ2, ḣ(t) ≤ µ1 and ĥ1 = τm and ĥ2 = λTe + max{τM}. Then,
the system (5) can be given by:

CDαx(t) =∑r
i=1 hiθ(t)∑r

j=1 hjθ(tk){Ai(t)x(t)
+Adi(t)x(t− τ(t))+Bi(t)Kjx(t− h(t)) + w(t)},

x(s) = ϕ(s), s ∈ [−τ, 0], t ≥ 0.
(10)

Assumption 1. Each subsystem’s real input ui(t) is a piecewise constant function represented via
a ZOH. Since the sample period of a sensor is determined for the design of control algorithms, it is
fair to assume that the sensor is clock-driven. When compared to an actuator, which modifies its
output to the controlled plant only when given a new control signal, an actuator is event-driven.

Assumption 2. Matrices χ1, χ2, χ3, and χ4 satisfy the following conditions:
1. χ1 = χT

1 ≤ 0, χ3 = χT
3 > 0, χ4 = χT

4 ≥ 0.
2. (||χ1||+ ||χ2||).||χ4|| = 0.

The following Lemmas and Definitions are used in the main results.

Definition 1 ([24]). For input matrices χ1, χ2, χ3, and χ4 fulfilling the assumption (A3), the
system (10) with (6) is termed as extended dissipative, and a scalar δ > 0 for which the subsequent
relation holds for all t f ≥ 0.

∫ t f

0
J(t)dt ≥ sup yT(t)χ4y(t) + δ, 0 ≤ t ≤ t f , (11)

where J(t) = yT(t)χ1y(t) + 2yT(t)χ2w(t) + wT(t)χ3w(t).

Definition 2 ([24]). Assume that w(t) = 0. The system (10) is quadratically stable if a scalar
v > 0 exists for which the derivative of the Lyapunov function concerning time t fulfills V̇(t) ≤
−v|x(t)|2.

Definition 3 ([28]). The Riemann-Liouville fractional integral is represented as (12).

t0 Iα
t f (t) =

1
Γ(α)

∫ t

t0

(t− τ)α−1 f (τ)dτ, α ∈ R+, (12)

where Γ(·) is defined as the gamma function.

Definition 4 ([28]). The Caputo fractional order derivative (CFOD) is introduced as.

C
t0

Dα
t f (t) =

1
Γ(n− α)

×
∫ t

t0

(t− τ)n−α−1 f n(τ)dτ, (13)

where n− 1 ≤ α ≤ n.

Lemma 1 ([29]). For a function F(t) =
∫ β(t)

α(t) f (s, t)ds, where α4(t), α2(t) are differentiable,
f (s, t) is continuous concerning s and differentiable in relation to t, equality (14) holds.

dF(t)
dt

= β̇(t) f (β(t), t)− α̇(t) f (α(t), t) +
∫ β(t)

α(t)

∂ f (s, t)
∂t

ds. (14)
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Lemma 2 ([30]). Let M ∈ Rn×n be a positive definite constant matrix and ˜̃Υ > 0 is a scalar, if a

vector function ˜̃ω : [0, ˜̃Υ]→ Rn exists such that the integrals
∫ ˜̃Υ

0
˜̃ωT(s)M ˜̃ω(s)ds and

∫ ˜̃Υ
0

˜̃ωT(s)ds
are well defined, then inequality (15) holds.

˜̃Υ
∫ ˜̃Υ

0
˜̃ωT(s)M ˜̃ω(s)ds ≥

(∫ ˜̃Υ

0
˜̃ωT(s)ds

)
M

(∫ ˜̃Υ

0
˜̃ω(s)ds

)
. (15)

Lemma 3 ([31]). Assume that x(t) ∈ Rn is a vector of differentiable functions. Inequality (16)
holds for any time instant t > t0.

1
2

C
t0

Dα
t

(
xT(t)Px(t)

)
≤ xT(t)PC

t0
Dα

t x(t), ∀α ∈ (0, 1), (16)

where P ∈ Rn×n is a constant, square, and positive definite matrix.

Remark 1. Based on the Definition 1, we can provide the subsequent analysis
(1) L2 −L∞ performance: χ1 = 0, χ2 = 0, χ3 = γ̃2 I, χ4 = I, and δ = 0.
(2) H∞ performance: χ1 = −I, χ2 = 0, χ3 = γ̃2 I, χ4 = 0, and δ = 0.
(3) Passivity performance: χ1 = 0, χ2 = I, χ3 = γ̃I, χ4 = 0, and δ = 0.
(4) Mixed H∞ and Passivity performance: χ1 = −γ̃−1α̃I, χ2 = (1− α̃)I, χ3 = γ̃I, χ4 = 0 with
α̃ = 0.5.
(5) (Q− S−R) Dissipativity performance: χ1 = Q, χ2 = S, χ3 = R− γ̃I, and χ4 = 0.

3. Main Results

In this section, an extended dissipativity investigation for delayed FFONCS (10) in the
form of LMIs will be established for all nonzero w(t) and without uncertain parameters in
the following Theorem 1.

Theorem 1. For the given positive scalars τ, µ, µ1, ĥ1, ĥ2, given control gains Kj, and 0 < ε < 1,
matrices χ1, χ2, χ3, and χ4 satisfying the Assumption 2, FFONCS (10) is quadratically stable and
extended dissipative, such that there exist symmetric matrices P > 0,Q > 0, R > 0, W > 0, W1 > 0,
W2 > 0, and T > 0, any matrix of compatible dimension H1, satisfying the subsequent LMIs:

Ξij =

[
Ξ11 Ξ12

∗ Ξ22

]
< 0, (17)

Π =

[
εP− χ4 −χ4
∗ (1− ε)P− χ4

]
> 0, (18)

where

Ξ11 =


Ξ̂11 PAdi − χ1 AT HT

1 0

∗ −(1− µ)Q− χ1 AT
d HT

1 0

∗ ∗ Ξ̂33 0

∗ ∗ ∗ −R

,

Ξ22 =



−W1 0 0 0 0

∗ −(1− µ)W2 0 0 0

∗ ∗ −W 0 0

∗ ∗ ∗ −T 0

∗ ∗ ∗ ∗ −χ3


,

Ξ12 = [ΞT
aa ΞT

bb ΞT
cc ΞT

dd ΞT
ee], Ξaa = Ξdd = [0 0 0 0],
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Ξbb = [(PBiKj)
T 0 (H1BiKj)

T 0], Ξcc = [0 0 0 0],

Ξ̂11 = 2PAi + Q+W+W1 +W2 − χ1,

Ξ̂33 = τ2R+ ĥ2
2T − 2H1, Ξee = [−χ2 − χ2 0 0].

Furthermore, from Definition 1 the scalar δ assigned as δ = −V(0)− ||P||sup−max(τ,ĥ2)≤s≤0

|φ(s)|2.

Proof. Construct the functional candidate with LKF:

V(t) =
4

∑
c=1

Vc(t), (19)

where

V1(t) = xT(t)Px(t),

V2(t) =
t∫

t−τ(t)

xT(s)Qx(s)ds + τ

0∫
−τ

t∫
t+θ

CDαxT(s)RCDαx(s)dsdθ,

V3(t) =
t∫

t−ĥ2

xT(s)Wx(s)ds + ĥ2

0∫
−ĥ2

t∫
t+θ

CDαxT(s)TCDαx(s)dsdθ,

V4(t) =
t∫

t−ĥ1

xT(s)W1x(s)ds +
t∫

t−h(t)

xT(s)W2x(s)ds.

By using Definitions 3 and 4, the derivatives of Vl(t), l = 1, 2, · · · , 4 in connection to t
as well as the trajectories of system (10), we get

V̇(t) ≤ V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t),

= xT(t)P CDα
t x(t) + xT(t)Qx(t)− (1− µ)xT(t− τ(t))Qx(t− τ(t))

+ τ2 CDαxT(t)RCDαx(t)− τ

t∫
t−τ

CDαxT(s)RCDαx(s)ds

+ xT(t)Wx(t)− xT(t− ĥ2)Wx(t− ĥ2) + ĥ2
2

C
to Dα

t xT(t)TCDαx(t)

− ĥ2

t∫
t−ĥ2

CDαxT(s)TCDαx(s)ds + xT(t)W1x(t)− xT(t− ĥ1)W1x(t− ĥ1)

+ xT(t)W2x(t)− (1− µ1)xT(t− h(t))W2x(t− h(t)),

with Lemma 2 & 3, we get

≤ 2xT(t)PAix(t) + 2xT(t)PAdix(t− τ(t)) + 2xT(t)PBiKjx(t− h(t)) + xT(t)Qx(t)

− (1− µ)xT(t− τ(t))Qx(t− τ(t)) + τ2C
t0

Dα
t xT(t)RCDαx(t)− xT(t− ĥ2)Wx(t− ĥ2)

−
( t∫

t−τ

CDαxT(s)ds
)
R

( t∫
t−τ

CDαx(s)ds
)
+ xT(t)Wx(t) + ĥ2

2
CDαxT(t)TCDαx(t)

−
( t∫

t−ĥ2

CDαxT(s)ds
)
T

( t∫
t−ĥ2

CDαx(s)ds
)
+ xT(t)W1x(t)− xT(t− ĥ1)W1x(t− ĥ1)

+ xT(t)W2x(t)− (1− µ1)xT(t− h(t))W2x(t− h(t)).
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The resulting equation holds for any compatible dimension matrix H1:

0 = 2[CDαxT(t)]H1[−CDαx(t) + Aix(t) + Adix(t− τ(t)) + BiKjx(t− h(t)) + w(t)]. (20)

Now, consolidating (19) and (20), we conclude that

V̇(t)− J(t) ≤ ξT(t)Ξijξ(t), (21)

where Ξij is defined in (17) and

ξT(t) = [xT(t) xT(t− τ(t)) CDαxT(t)
∫ t

t−τ

CDαxT(s)ds

xT(t− ĥ1) xT(t− h(t)) xT(t− ĥ2)
∫ t

t−ĥ2

CDαxT(s)ds wT(t)].

Since Ξ < 0 and the relation to scalar ν > 0, consequently Ξ ≤ νI, then

V̇(x(t))− J(t) ≤ −ν|Γ(t)|2 ≤ −ν|x(t)|2,

i.e., V̇(x(t)) ≤ J(t)− ν|x(t)|2.

Taking into account w(t) = 0 yields

J(t) = yT(t)χ1y(t).

Observing χ1 ≤ 0 with respect to Assumption 2 produces V̇(t) ≤ −ν|x(t)|2.
We conclude that (10) is quadratically stable. Now, we analyze the system’s extended

dissipativity condition. It is clear that

V̇(x(t))− J(t) ≤ 0. (22)

Integrating (22) with limits 0 to t on both sides, yields that∫ t

0
J(t)dt ≥ V(x(t))−V(0) ≥ xT(t)Px(t) + δ. (23)

The aforementioned scenarios are required to manifest the validity of (11). As a result,
we investigate two circumstances: ‖χ4‖ = 0 and ‖χ4‖ 6= 0. To proceed, if ‖χ4‖ = 0 and
t f ≥ 0 (23) indicates that

∫ t f

0
J(t)dt ≥ xT(t f )Px(t f ) + δ ≥ δ. (24)

which demonstrates that Theorem 1 is true. Assuming ‖χ4‖ 6= 0, as stated in Assumption 2,
we may deduce that χ1 = 0, χ2 = 0, and χ3 > 0. If t f ≥ t ≥ 0, yields that

∫ t f

0
J(t)dt ≥

∫ t

0
J(t)dt ≥ xT(t)Px(t) + δ. (25)

Also, t > τ(t), we get 0 < t− τ(t) ≤ t f .
Therefore, ∫ t f

0
J(t)dt ≥ xT(t− τ(t))Px(t− τ(t)) + δ. (26)

In addition to, if t ≤ τ(t), then −τ ≤ t− τ(t) ≤ 0, it is possible to confirm that

δ + xT(t− τ(t))Px(t− τ(t)) ≤ δ + ‖P‖|x(t− τ(t))|2

≤ δ + ||P||sup|φ(ν)|2,
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−V(0) ≤
∫ t f

0
J(t)dt. (27)

The above equation shows that (26) achieves for every t f ≥ t ≥ 0. Consequently, we
know from above inequalities (25) and (26), and belongs to scalar 0 < ε < 1 such that∫ t f

0
J(t)dt ≥ δ + εxT(t)Px(t) + (1− ε)xT(t− τ(t))Px(t− τ(t)). (28)

Observing the concept that

yT(t)χ4y(t) = −
[

x(t)
x(t− τ(t))

]T

Π
[

x(t)
x(t− τ(t))

]
+ εxT(t)Px(t) + (1− ε)xT(t− τ(t))Px(t− τ(t)),

for Π > 0, then

yT(t)χ4y(t) ≤ εxT(t)Px(t) + (1− ε)xT(t− τ(t))Px(t− τ(t)).

This demonstrates that for every t ≥ 0, t f ≥ 0, with t f ≥ t,

∫ t f

0
J(t)dt ≥ yT(t)χ4y(t) + δ.

As a result, (11) holds for any t f ≥ 0. As per the foregoing analysis, the system studied
in (6) is extended dissipative for ‖χ4‖ = 0 and ‖χ4‖ 6= 0 concerning Definition 1, which
completes the proof.

Now, the following Theorem 1 extends the criterion of Theorem 2 to obtain a extended
dissipative analysis for uncertain system (10) (i.e., ∆Ai 6= ∆Adi 6= ∆Bi 6= 0).

Theorem 2. For given positive scalars τ, µ, µ1, ĥ1, ĥ2, Kj, and 0 < ε < 1, matrices χ1, χ2, χ3, and
χ4 acceptable Assumption 2, robust FFONCS (10) is quadratically stable and extended dissipative,
such that there exist matrices P > 0,Q > 0,R > 0,W > 0,W1 > 0,W2 > 0,T > 0, any
compatible dimensioned matrix H1, scalar $ > 0, and the following LMIs hold:

Ξ̂ij =


Ξ11 Ξ12 Ȳ $λT

∗ Ξ22 0 0

∗ ∗ −$I 0

∗ ∗ ∗ −$I

 < 0, (29)

Π =

[
εP− χ4 −χ4
∗ (1− ε)P− χ4

]
> 0, (30)

where

Ξ11 =


Ξ̂11 PAdi − χ1 AT

i HT
1 0

∗ −(1− µ)Q− χ1 AT
di H

T
1 0

∗ ∗ Ξ̂33 0

∗ ∗ ∗ −R

,
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Ξ22 =



−W1 0 0 0 0

∗ −(1− µ)W2 0 0 0

∗ ∗ −W 0 0

∗ ∗ ∗ −T 0

∗ ∗ ∗ ∗ −χ3


,

Ξ12 = [ΞT
aa ΞT

bb ΞT
cc ΞT

dd ΞT
ee], Ξaa = Ξdd = [0 0 0 0],

Ξbb = [(PBiKj)
T 0 (H1BiKj)

T 0], Ξcc = [0 0 0 0],

Ξ̂11 = 2PAi + Q+W+W1 +W2 − χ1,

Ξ̂33 = τ2R+ ĥ2
2T − 2H1, Ξee = [−χ2 − χ2 0 0].

Furthermore, from Definition 1 the scalar δ assigned as δ = −V(0)− ||P||sup−max(τ,ĥ2)≤s≤0

|φ(s)|2.

Proof. Replace Ai, Adi, and Bi in LMI (17) by Ai = Ai + ∆Ai, Adi = Adi + ∆Adi, and
Bi = Bi + ∆Bi respectively. Following the identical proof of Theorem 1, we obtain

Ξij + ȲF(t)λ + (ȲF(t)λ)T < 0, (31)

where, Ȳ = [(YiP) 0 Yi H1

6 times︷︸︸︷
0 0 0 ]T and λ = [ξ1i ξ2i 0 0 0 ξ3i 0 0 0]. By Lemma 4 in [25], we

know that (31) is equivalent to

Ξij + $−1ȲȲT + $λTλ. (32)

Utilizing Schur complement Lemma demonstrates that (32) is identical to (29).

4. Robust Stabilisation for Extended Dissipative Criteria

Theorem 3. For given positive scalars τ, µ, µ1, ĥ1, ĥ2, and 0 < ε < 1, matrices χ1, χ2, χ3, and χ4
fulfilling Assumption 2, robust FFONCS (10) is quadratically stable and extended dissipative, such
that there exist matrices X > 0, Q̄ > 0, R̄ > 0, W̄ > 0, W̄1 > 0, W̄2 > 0, T̄ > 0, any compatible
dimensioned matrix H1, scalar $ > 0, and the subsequent LMIs hold:

Ξ̄ij =


Ξ̄11 Ξ̄12 Ȳ $λT

∗ Ξ̄22 0 0

∗ ∗ −$I 0

∗ ∗ ∗ −$I

 < 0, (33)

Π̄ =


εX 0 χ4XT χ4XT

∗ (1− ε)X 0 χ4XT

∗ ∗ χ4 0
∗ ∗ ∗ χ4

 > 0, (34)

where

Ξ̄11 =


ˆ̄Ξ11 AdiX− χ1 εXT AT

i 0

∗ −(1− µ)Q̄− χ1 εXT AT
di 0

∗ ∗ ˆ̄Ξ33 0

∗ ∗ ∗ −R̄

,
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Ξ̄22 =



−W̄1 0 0 0 0

∗ −(1− µ)W̄2 0 0 0

∗ ∗ −W̄ 0 0

∗ ∗ ∗ −T̄ 0

∗ ∗ ∗ ∗ −χ3


,

Ξ̄12 = [Ξ̄T
aa Ξ̄T

bb Ξ̄T
cc Ξ̄T

dd Ξ̄T
ee], Ξ̄aa = Ξ̄dd = [0 0 0 0],

Ξ̄bb = [(2BiYJ)
T 0 (εYjBi)

T 0], Ξ̄cc = [0 0 0 0],
ˆ̄Ξ11 = 2AiX + Q̄+ W̄+ W̄1 + W̄2 − χ1,
ˆ̄Ξ33 = τ2R̄+ ĥ2

2T̄ − 2εX, Ξ̄ee = [−χ2 − χ2 0 0],

Ȳ = [(XYi) 0 ε(YiX)

6 times︷︸︸︷
0 0 0 ]T ,

λ = [Xξ1i Xξ2i 0 0 0 Xξ3i 0 0 0],

and the control gain matrix Kj = YjX−1(j = 1, 2, . . . , r).

Proof. Let X = P−1, H1 = εP, Q̄ = XQXT , R̄ = XRXT , W̄ = XWXT , T̄ = XTXT , W̄1 =

XW1XT , W̄2 = XW2XT . Pre- and post multiplying (29) by diag{
8 times︷ ︸︸ ︷

X, X, . . . , X, I, I, I}, (30) by
diag{X, X}, and its transpose, we can get (33) and (34). This completes the proof.

Remark 2. The observations in [32–34] presented various results about fractional order systems
with extended dissipative analysis. Nevertheless, they have all explored the straightforward Lya-
punov functional method. The author was prompted by these findings to investigate the FFONCSs
with extended dissipative evaluation. In the recommended Theorem 3, we have consolidated a unique
LKF including some inequality strategies rather than the traditional approach. Furthermore, the LKF
technique of delayed FFONCS includes not just stability characteristics but also other dynamical
methods, which were demonstrated in the simulation examples.

Remark 3. It is noteworthy that in many industrial processes, the dynamical behaviors are generally
complex and non-linear and their genuine mathematical models are always difficult to obtain.
How to model the extended dissipative analysis for fuzzy fractional order derivative with respect
to networked control systems has become one of the main themes in our research work. More
particularly, some pioneering works have been done in fuzzy fractional order systems with some
disturbances. In [35,36], the problem of fractional order fuzzy systems have been studied for
output feedback stabilization with asymptotic stability performance. Stabilization of T-S fuzzy
singular fractional-order systems subject to actuator saturation has been discussed in [37]. Recently,
Positivity and stability analysis for fractional-order delayed systems was proposed in [38] based
on the T-S fuzzy approach. The model considered in the present study is more practical than that
proposed by [35–38], because they consider only fractional order system has been studied with T-S
fuzzy approach based on stabilization conditions, but in this paper, we consider a networked control
system with the combination of extended dissipative approach. Due to the many real-life application,
the combined study of extended dissipative effects fractional order networked control system model is
more important. The purpose of this study is to establish stabilization conditions for fractional order
fuzzy systems by applying the Lyapunov functional theory. In addition, the proposed dissipative
analysis is the relation of applied energy to the system with energy started in the system, that is
why we analyze NCSs and have many applications background, which is another advantage of our
paper. Therefore the analysis technique and system model proposed in this paper is more general
than [35–38], which differentiates our work more effectively and this was demonstrated by the
numerical simulation examples.
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5. Simulation Results

In this part, numerical examples of FFONCS will be supplied for validation.

Example 1. Let us consider the following dynamical delayed FFONCS:

CDαx(t) =
r

∑
i=1

hiθ(t)
r

∑
j=1

hjθ(tk){Ai(t)x(t) + Adi(t)x(t− τ(t))

+ Bi(t)Kjx(t− h(t)) + w(t)}, (35)

where

A1 =

[
−5 0.2

0 −4

]
, A2 =

[
−4 0.1

0 −3

]
, Ad1 =

[
1 0.4

−0.3 0.1

]
,

Ad2 =

[
1 0.1

−0.1 0.2

]
, B1 =

[
0.5 0.7

0.7 0.4

]
, B2 =

[
0.3 0.2

0.1 0.6

]
,

Y1 = Y2 =

[
0.5 0

0 0.5

]
, ξ11 = ξ21 = ξ31 = diag{0.1, 0.1},

ξ12 = ξ22 = ξ32 = diag{0.2, 0.2}.

and the fuzzy membership functions are h1 = 1
1+e−2x1(t)

, h2 = 1− h1. Suppose that τ(t) = 1 +

0.2sint and the related time-delays are chosen as τ = 1.2, µ = 0.2, ĥ1 = 0.1, ĥ2 = 0.2, µ1 = 0.1,
and the external disturbance w(t) is chosen as 0.5 ∗ e−t. Using these values and solving the LMIs
in Theorem 3 by standard software (MATLAB LMI toolbox), succeeding sections of the extended
dissipative conditions for the FFONCS (35) are established. Furthermore, the extended dissipative
condition includes L2 −L∞ execution, passivity, H∞ execution, mixed passivity and H∞ execution
and (Q− S−R)-dissipativity as unique instance. The weighting matrices χ1, χ2, χ3, and χ4 are
used in the extended dissipative study of system (35).

L2 −L∞ performance: χ1 = 0, χ2 = 0, χ3 = γ̃2 I, χ4 = I, and δ = 0. Using the aforemen-
tioned parameters, we can get the subsequent gain by solving Theorem 3 and utilizing the standard
software.

K1 =

[
0.2630 0.0072

0.0103 0.0422

]
, K2 =

[
0.2475 0.0241

0.0145 0.3014

]
.

Employing the effect of control gains and state variable responses of the system (35) under
the randomized initial conditions which are depicted in Figure 2. It is easy to see that the states
of the system are capable of keeping stable, behave L2 − L∞ performance in accordance with the
above-indicated parameter values, as shown in Figure 2a–c. Furthermore, the uncontrolled system
state response curves are depicted in Figure 2d, indicating the performance of the proposed controller.
We can notice that the numerical simulation results deliver better stability performance.

H∞ execution: χ1 = −I, χ2 = 0, χ3 = γ̃2 I, χ4 = 0, and δ = 0, it is simple to estimate the
LMIs in Theorem 3, and the following gains are

K1 =

[
0.3487 0.0032

0.0142 0.0533

]
, K2 =

[
0.5421 0.0714

0.0514 0.1632

]
.

Simultaneously, the numerical simulation results are sketched in Figure 3a–c, which analyzes
the following history of the state variable curves concerning the obtained gain matrices. The
instability of the open-loop system (35) is depicted in Figure 3d. As a result, the system under
examination operates admirably.
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Figure 2. The panels (a–c) contain the trajectories of the state variable x1(t) and x2(t) for L2 −L∞

performance with distinct FO circumstances α = 0.85, 0.9, 0.99. Moreover, panel (d) is the trajectories
of the open loop system in Example 1.
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Figure 3. Cont.
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Figure 3. The panels (a–c) contain the curves of the state variable x1(t) and x2(t) for H∞ performance
with distinct FO circumstances α = 0.85, 0.9, 0.99. Moreover, the panel (d) is the trajectories of the
open loop system in Example 1.

Passivity performance: χ1 = 0, χ2 = I, χ3 = γ̃I, χ4 = 0, and δ = 0. The coordinated
system analysis now shifts to passivity performance. To test the feasibility in Theorem 3, we generate
the subsequent gain using the MATLAB LMI toolkit.

K1 =

[
0.4511 0.0143

0.0326 0.0431

]
, K2 =

[
0.6541 0.0245

0.1224 0.1121

]
.

Numerical simulation is given in Figure 4a–d. The resultant state response curves under
random initial conditions with different fractional order conditions 0.85, 0.9, 0.99, and distraction
w(t) that converge to zero coupled with the passivity performance and the consistency of available
parameters has been shown in the Figure 4a–d. Figure 4d demonstrates the performance of the
open-loop system (i.e., without control inputs). Which verifies the validation of the control strategy.

Mixed H∞ and Passivity behavior: χ1 = −γ̃−1α̃I, χ2 = (1− α̃)I, χ3 = γ̃I, χ4 = 0 with
α̃ = 0.5. The prolonged dissipativity behavior is reduced to a combination of H∞ and passivity
behavior at this stage. By adopting the known parameter values and generating the gain value with
Theorem 3 LMIs is

K1 =

[
0.0854 0.1123

0.1431 0.3267

]
, K2 =

[
0.1254 0.5541

0.6255 0.8741

]
.
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Figure 4. The panels (a–c) contain the curves of state variable x1(t) and x2(t) for passivity execution
with distinct FO circumstances α = 0.85, 0.9, 0.99. Moreover, panel (d) is the trajectories of the open
loop system in Example 1.

The behavioral reactions of the system’s state response curves (35) with the control gain
matrices given above are pictured in Figure 5a–c with the randomized initial conditions and therefore
exhibit mixed H∞ and passive behavior fulfilling the aforementioned mentioned requirements. It is
discovered that controllers have a major impact on the unstable system nature.
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Figure 5. The panels (a–c) contain the curves of state variable x1(t) and x2(t) for mixed H∞ and
Passivity performance with distinct FO circumstances α = 0.85, 0.9, 0.99. Moreover, panel (d) is the
trajectories of the open loop system in Example 1.
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(Q− S−R) Dissipativity: χ1 = Q, χ2 = S, χ3 = R− γ̃I, and χ4 = 0 with

Q =

[
−1 0
0 −1

]
, S =

[
0.3 0
0.4 0.25

]
, R =

[
0.3 0
0 0.3

]
.

Similarly, solving the Theorem 3 inequalities and applying the aforesaid parameters, the
resultant gain matrices are as follows:

K1 =

[
0.6069 −0.0237
−0.0414 1.1034

]
, K2 =

[
0.7071 −0.8274
−1.0323 2.0124

]
,

and the performance of the dissipativity parameter is α̃ = 0.0072. Meanwhile, the equivalent
numerical simulation curves are presented in Figure 6a–d. Figure 6a–c represents the corresponding
state response curves with the impact of u(t) under the randomised initial condition. Moreover,
the Figure 6a–c are simulated with different α values 0.85, 0.9, 0.99. From Figure 6d, we can see
that the unforced system and it is not stable. In the numerical simulation behavior, it is pointed out
that the considered unforced system is unstable but the forced system is stable through the designed
control law. Thus, the results show that the designed feedback controller is suitable for stabilizing the
system (35). As a result, the (Q− S−R) dissipativity performance demand is fulfilled. Moreover,
Figure 6a–d reveals that our stabilization conditions.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

t/sec

-8

-6

-4

-2

0

2

4

6

x
(t

)

x
1
(t), =0.85

x
2
(t), =0.85

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

t/sec

-8

-6

-4

-2

0

2

4

6

x
(t

)

x
1
(t), =0.9

x
2
(t), =0.9

(b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

t/sec

-12

-10

-8

-6

-4

-2

0

2

4

6

8

x
(t

)

x
1
(t), =0.99

x
2
(t), =0.99

(c)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

t/sec

-30

-20

-10

0

10

20

30

x
(t

)

x
1
(t)

x
2
(t)

(d)

Figure 6. The panels (a–c) contain the curves of state variable x1(t) and x2(t) for (Q − S − R)

dissipativity efficacy with distinct FO circumstances α = 0.85, 0.9, 0.99. Moreover, panel (d) is the
trajectories of the open loop system in Example 1.

Example 2. Consider the single-link robot arm (SLRA) model and it can be described as follows:

ϕ̈(t) =
MG L

J
sin(ϕ(t))− D

J
ϕ̇(t) +

1
J

u(t) +
1

J
w(t), (36)
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where ϕ(t) is the arm angle position, u(t) is the system’ s input, and disturbance noted as w(t).
Mass of the payload is defined as M , a moment of inertia says as J , acceleration of gravity, length
of the arm, and coefficient of viscous friction can be denoted as G , L , D respectively. We choose
α = 0.5, and create state variables as

x(t) = [x1(t) x2(t) x3(t) x4(t)]T ,

= [θ(t) CDαx(t) θ̇(t) CDαx(t)]T .

The nonlinear function sin(x1(t)) may be represented using the same way as in [4] as

sin(x1(t)) = h1(x1(t))x1(t) + νh2(x1(t))x1(t),

the membership function h1(x1(t)) and h2(x1(t)) are obtained by

h1(x1(t)) =

{
sin(x1(t))−νx1(t)

x1(t)(1−ν)
, x1(t) 6= 0,

1, x1(t) = 0,

h2(x1(t)) =

{
x1(t)−sin(x1(t))

x1(t)(1−ν)
, x1(t) 6= 0,

1, x1(t) = 0,

with the impact of time delay, we may describe the model (41) through the fuzzy approach.
Plant Rule 1: IF x1(t) is about 0 rad, THEN

CDαx(t) = (A1(t)x(t) + Ad1(t)x(t− τ(t))

+ B1Kjx(t− h(t)) + w(t)),

Plant Rule 2: IF x1(t) is about −π or π rad, THEN

CDαx(t) = (A2(t)x(t) + Ad2(t)x(t− τ(t))

+ B2Kjx(t− h(t)) + w(t)),

where

A1 =


0 1 0 0
0 0 1 0
0 0 0 1

G L 0 −D 1

, A2 =


0 1 0 0
0 0 1 0
0 0 0 1

νG L 0 −D 1

,

Ad1 =


0.001 1 0 0

0 −0.001 0.1 0
0 0 0.01 1
0 0 0 0.1

, B1 = B2 =


0
0
0
1

,

Ad2 =


0.001 1 0 0

0 −0.001 0.1 0
0 0 0.01 0.1
0 0 0 0.1

, ∆Ai = YiFi(t)ξ1i,

∆Adi = YiFi(t)ξ2i, F1(t) = F2(t) = cos t,Y1 = [0.5 0 1 0]T ,

Y2 = [1 0.5 0 0]T , ξ11 = ξ12 = [0.1 0.1 0.1 0.15],

ξ21 = ξ22 = [0.2 − 0.1 0.2 0.1].

We choose the parameters as G = 9.8, M = 1, J = 1, ν = 1/100π, L = 0.5, D = 0.2,
and time-varying delay τ(t) = 0.2sint + 0.1, ĥ1 = 0.1, ĥ1 = 0.2, µ1 = 0.1, and the external
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disturbance w(t) is chosen as 0.1 ∗ sint. In light of the conditions in Theorem 3, ensures the
subsequent fuzzy control gains:

K1 = [1.3842 − 12.6732 − 3.7503 − 1.8672],

K2 = [4.8131 − 10.7312 − 1.3712 − 0.9732].

The following simulation results are shown through the assumed initial conditions x(0) =
[−1.5 0.5 1.1 − 2.5]T . The state response curve of the closed-loop system in Example 2 by the
controller designed in this study is shown in Figure 7. It becomes apparent that the developed fuzzy
control stabilizes the system (36).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t/sec

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 7. Stability behavior for FO condition α = 0.85 in Example 2.

6. Conclusions

This research investigates the extended dissipativity analysis of a robust fuzzy delayed
fractional-order network control system. The results have been developed to verify the
quadratic stability and extended dissipativity of the investigated system by creating a
suitable Lyapunov-Krasovskii functional and applying various inequality approaches. By
giving appropriate simulation data, the usefulness of the controller design process has
been established. Moreover, the results can be extended to the dynamic execution of FO
discrete-time neural networks with event-triggered sampled data control [26,39–41] with
imperfect communication, such as packet dropouts and quantization is worth further
investigation in the future.
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