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Abstract: We propose a discrete-time, finite-state stationary process that can possess long-range
dependence. Among the interesting features of this process is that each state can have different
long-term dependency, i.e., the indicator sequence can have a different Hurst index for different
states. Furthermore, inter-arrival time for each state follows heavy tail distribution, with different
states showing different tail behavior. A possible application of this process is to model over-
dispersed multinomial distribution. In particular, we define a fractional multinomial distribution
from our model.
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1. Introduction

Long-range dependence (LRD) refers to a phenomenon where correlation decays
slowly with the time lag in a stationary process in a way that the correlation function is no
longer summable. This phenomenon was first observed by Hurst [1,2] and since then it
has been observed in many fields such as economics, hydrology, internet traffic, queueing
networks, etc. [3-6]. In a second order stationary process, LRD can be measured by the
Hurst index H [7,8],

n
H = inf{h : limsup n~2"*1 Z cov(Xq, Xi) < oo}

n—o0 k=1

Note that H € (0,1), and if H € (1/2,1), the process possesses a long-memory
property.

Among the well-known stochastic processes that are stationary and possess long-
range dependence are fractional Gaussian noise (FGN) [9] and fractional autoregressive
integrated moving average processes (FARIMA) [10,11].

Fractional Gaussian noise X; is a mean-zero, stationary Gaussian process with covari-
ance function:

~ var(Xp)
2

7(j) := cov(Xo, Xj) = (I + 127 =227 + [j — 1)

where H € (0,1) is the Hurst parameter. The covariance function obeys the power law
with exponent 2H — 2 for large lag,

Y(j) ~ var(Xo)H(2H —1)/*H 2 as j — co.
If H € (1/2,1), then the covariance function decreases slowly with the power law,
and }; 7(j) = oo, i.e., it has the long-memory property.
A FARIMA(p, d, q) process { X;} is the solution of:

¢(B)V?X; = 0(B)e;,
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where p, q are positive integers, d is real, B is the backward shift, BX; = X;_4, and the
fractional-differencing operator V¢, autoregressive operator ¢, and moving average opera-
tor 0 are, respectively,

2 dd—1)---(d+1—k)
v”’:(l—B)d:k:Z1 i
¢(B) =1—¢1B—¢2B*--- — ¢, B,

0(B) =1—6,B—0,B%--- —6,B".

(—B)~,

where {¢;} is the white-noise process, which consists of iid random variables with the finite
second moment. Here, the parameter d manages the long-term dependence structure, and
by its relation to the Hurst index, H =d +1/2,d € (0,1/2) corresponds to the long-range
dependence in the FARIMA process.

Another class of stationary processes that can possess long-range dependence is from
the countable-state Markov process [12]. In a stationary, positive recurrent, irreducible,
aperiodic Markov chain, the indicator sequence of visits to a certain state is long-range
dependent if and only if return time to the state has an infinite second moment, and this is
possible only when the Markov chain has infinite state space. Moreover, if one state has
the infinite second moment of return time, then all the other states also have the infinite
second moment of return time, and all the states have the same rate of dependency; that is,
the indicator sequence of each state is long-range dependence with the same Hurst index.

In this paper, we develop a discrete-time finite-state stationary process that can possess
long-range dependence. We define a stationary process {X;,i € N} where the number of
possible outcomes of X; is finite, S = {0,1,--- ,m} forany m € N, and fork =1,2,--- ,m,

cov(Iix,—ky, Ix—i)) = ckli — 1272, @
forany i,j € N,i # j, and some constants ¢, € R, Hy € (0,1). This leads to:
cov(X;, X;) ~ i —jPPHe=2 as|i—j| — oo, 2)

where k' = argmaxi{H;k = 1,--- ,m}. If Hy = max{Hik = 1,---,m} € (1/2,1),
(1.2) implies that as n — oo, Y1, cov(Xq, X;) diverges with the rate of |n|?f¥~1, and
the process is said to have long-memory with Hurst parameter Hy,. Furthermore, from
(1.1), for k = {1,--- ,m}, the process {I{Xi:k}}i =1,2,---} is long-range dependence if
Hy € (1/2,1). In particular, if H; # H j, then the states “i” and “j” produce different levels
of dependence. For example, if H; < 1/2 < Hj, then the state “j” produces a long-memory
counting process whereas state “i” produces a short-memory process.

A possible application of our stochastic process is to model the over-dispersed multi-
nomial distribution. In the multinomial distribution, there are # trials, each trial results in
one of the finite outcomes, and the outcomes of the trials are independent and identically
distributed. When applying the multinomial model to real data, it is often observed that
the variance is larger than what it is assumed to be, which is called over-dispersion, due
to the violation of the assumption that trials are independent and have identical distribu-
tion [13,14], and there have been several ways to model an overdispersed multinomial
distribution [15-18].

Our stochastic process provides a new method to model an over-dispersed multi-
nomial distribution by introducing dependency among trials. In particular, the variance
of the number of a certain outcomes among # trials is asymptotically proportional to the
fractional exponent of 1, from which we define:

n
Yii=) Iixopy fork=1,2,--- ,m,
i=1
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and call the distribution of (Y1, Y, - - -, Yy;) the fractional multinomial distribution.

The work in this paper is an extension of the earlier work of the generalized Bernoulli
process [19], and the process in this paper is reduced to the generalized Bernoulli process if
there are only two states in the possible outcomes of X;, e.g., S = {0,1}.

In Section 2, a finite state stationary process that can possess long-range dependence
is developed. In Section 3, the properties of our model are investigated with regard to
tail behavior and moments of inter-arrival time of a certain state “k”, and conditional
probability of observing a state “k” given the past observations in the process. In Section 4,
the fractional multinomial distribution is defined, followed by the conclusions in Section 5.
Some proofs of propositions and theorems are in Section 6.

Throughout this paper, {i, i, i1,- - - }, {7, i}, i, --- } C N, withip <i; <ip <---,and
i < iy <ifh <---.Foranyset A= {ip,i1, - ,in}, |A| = n+1, the number of elements in
the set A, and for the empty set, we define |@| = 0.

2. Finite-State Stationary Process with Long-Range Dependence

We define the stationary process {X;, i € N} where the set of possible outcomes of X;
is finite, S = {0,1,--- ,m}, for m € N, with the probability that we observe a state “k” at
timeiis P(X; = k) = px > 0,fork =0,1,--- ,m,and } }* ; px = 1.

For any set A = {ip,i1,- -+ ,in} C N, define the operator:

L}K-I,p,c(A) =p H (P + C|ij - Z.j71|2H_2)'
j=1,-
If A =@, define L}‘{,p/C(A) :=1,and if A = {ip}, L;LP’C(A) = p.
LetH = (Hy,Hp, -+ ,Hp),p = (p1,P2,- -+ ,Pm), ¢ = (c1,¢2,- -+ ,cm) be vectors of
length m, and H, p, ¢ € (0,1)". We are now ready to define the following operators.

Definition 1. Let Ag, A1, -+, Am C N be pairwise disjoint, and Ag = n’ > 0. Define,

Lippc(AL Az, Am) == [T L poe (A)
k=1,--m

and,

!

7
Dﬁ,p,c(AerZr"' ,Am,'Ao) = Z(—l)e Z Z Lik—l,p,c(AlLJBl/AZUBZr"' ,AmUBm).
(=0 |B=¢ BCB
BCAy BiﬁB]'=®
UB;=B

For ease of notation, we denote Dy P L

Hp,cr and L}‘{k/pk’ck by D*,L*, L}, respectively.
Note that if Ay = {ip},

D*(A1, Az, -+, Ami Ag) = || LZ(Ak)(l - i LIt/(Ak/LJ{lO})) 3)

k=1, ,m K'=1 Ly (Ax)

For any pairwise disjoint sets Ag, A1, -+ Ay C N,if D*(Aq, Ay, - -+, Am; Ag) > 0, then
{X;;i € N} is well defined stationary process with the following probabilities:

P(mieAk{Xi:k}) :LZ(Ak)r fOI‘kzl,"' ,m, (4)
P(Mizt,oom Nica {Xi=k}) = [ Li(Aw), (5)
k=1,--,m

P(Mk=0,..,u Niea, {Xi = k}) =D*(A1, Az, -+, Am; Ao). (6)
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In particular, if the stationary process with the probability above is well defined, then,
fork,k =1, ---,m, we have:

P(X; =k, X; = k) = pr(p + clj — i]72),
P(X; =k X; =K) = pepr,

P =0X=0)=1-2 ¥ PX=R+ ¥ PX=kX=K)
k=1,--,m kk'=1,-m

m m
=1-2Y pe+ Y m(pr+p2+ -+ pm+ i — j)22)
=1 =1

m
=p5+ Y preeli — j1*H2,
p
P(Xi =k X;=0)=P(X;=0,X; =k) = px(1 = p1 = p2 — - - — pm — cx[i = jI?7?)
= pr(po — cxli — jI*2).

Asaresult, fori # j,i,j € Nk #K kK € {1,2,--- ,m},

cov(Iix,—ky, Lix=ky) = prcli — j|*H2, ?)

COU(I{X,':k}/I{X]-:k’}) = 0, (8)
m

cov(Iix,—o} I{x,=0)) = ) Prckli —jPP2, )
=1

cov(Ipx,—ky, Ix—oy) = —prceli — jJ2H 2. (10)

Note that ({I;x,—1} tien, {I{x,=2} }ien, =, {I{x,=m} }ien) are m generalized Bernoulli
processes with Hurst parameter, Hy, Hy, - - - , Hy,, respectively (see [19]). However, they are
not independent, since for ¢ # k, ¢ € {1,2,--- ,m},

P({I{x,=y =1} N {I1x,=ky = 1}) = 0# P(lix,=¢y = DP(I{x,=y = 1) = pepr-
Further, we have,

cov(X;, Xj) = E(X;X;) — E(X;)E(X;)

=Y kK'P(Iix,—hy = 1, Iix—wy=1) - Y kK pipi
kK k!
= Y Epeli— )P,

k=1, m

Therefore, the process {X;};cn possesses long-range dependence if min{H;, - - -, H} > 1/2.

All the results that appear in this paper are valid regardless of how the finite-state
space of X; is defined. More specifically, given that: D*(A1, Ay, - -+, Am; Ag) > 0 for any
pairwise disjoint sets Ag, A1, - - - Ay C N, we can define probability (4)—(6) with any state
space S = {s0,51,52,- - ,Sm} C R for any m € N in the following way.

P(miEAk{Xi = Sk}) = LZ(Ak), fork=1,---,m,

PNt m Nica {Xi=sk}) = ] Li(Aw),
k=1, m

P(Mg=0,..,m Nica, {Xi = sx}) = D" (A1, A2, - -+, Am; Ap).
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Note that the only difference is that the space “k” is replaced by “s;”. As a result,
we can obtain the same results as (7)-(10), except that I;x,_j, is replaced by I;x,_,}, and
we get:

cov(Xj, Xj) = cov(X; — s, Xj — s0)

= Z Sks;cP(I{Xi:sk} =1, I{Xj:s]’(} = 1) - Z Sksgcpkpk’
kK =1, ,m kk'=1,--- ,m

= Y (sk—s0)?prckli — j1*H 2
ke

In a similar way, all the results in this paper can be easily transfered to any finite-state
space S C R. For the sake of simplicity, we assume S = {0,1,- - - ,m}, m € N, without loss
of generality, and define S* := {1,--- ,m}.

Now, we will give a restriction on the parameter values, { Hy, px, ¢x; k € SO}, which will
make D*(Aq, Ay, - -+, Am; Ag) > 0 for any pairwise disjoint sets Ay, - - - A, C N; therefore,
the process { X} is well-defined with the probability (4)-(6).

ASSUMPTIONS:

(A1) ¢, Hy, px € (0,1) for k € S°.
(A.2) For any ig < iy <ip, g, i1,ip €N,

f (pr + cxlin — io|*Pe=2) (pr + cxlip — i1 |2 —2) <1 1)
= Pi + Cli — ip|2Hk=2 ‘

For the rest of the paper, it is assumed that ASSUMPTIONS (A.1, A.2) hold.

Remark 1. (a). (11) holds if,

i (px +cx) (px + ) <1
=1

Pi+ 0272

since,
(px + cilin — io[ %) (pi + cxlin — ia [P 2)
(pr + cilia — io[2Hi=2)
is maximized when iy — iy = 2,i1 — iy = 1, as it was seen in Lemma 2.1 of [19].
(b). If(l1 — io)/(iz — io) — 0, (iz — il)/(iz — io) — 1 with i, — iy — oo in (11), then we have:

m
Y pe+rlin —ipPH? < 1, (12)
k=1

and this, together with (11), implies that for any set { Ay, i} C N,
o Le (AU {i})
= LA

This means that for any Ay = {io} C N, D*(Aq, Ay, -+, Am; Ag) > 0by (3).
(c). From (12), YL q ¢ < 1= Y"1 Pk = po-
(d). If m =1, (11) is reduced to (2.7) in the Lemma 2.1 in [19].

Now we are ready to show that {X;,i € N} is well defined with probability (4)—(6).
Proposition 1. For any disjoint sets Ag, A1, Az, -+, Am C N, Ay # @,
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The next theorem shows that the stochastic process {X;,i € N} defined with proba-
bility (4)-(6) is stationary, and it has long-range dependence if max{H;, k € S°} > 1/2.
Furthermore, the indicator sequence of each state is stationary, and has long-range depen-
dence if its Hurst exponent is greater than 1/2.

Theorem 1. {X;,i € N} is a stationary process with the following properties.
i.
P(X; =k) = py, fork € S°.
ii.
cov(Iix,—¢} Ix =) = prceli — jP72, fork € 8°,
and
i— leHk’ -2

COU(I{XI-:O}/ I{Xj:O}) ~ pk/Ck/| , as |1 —]| — o0

where k' = argmax Hy.

.
m

cov(X;, X)) = Y Rpreli— jPH2, fori # .
k=1

Proof. By Proposition 1, { X;} is a well-defined stationary process with probability (4)—(6).
The other results follow by (7)-(10). O

3. Tail Behavior of Inter-Arrival Time and Other Properties

For k € S {I;x ) }ien is a stationary process in which the event {X; = k} is
recurrent, persistent, and aperiodic (here, we follow the terminology and definition in [20]).
We define a random variable T}, as the inter-arrival time between the i-th “k” from the
previous “k”, i.e., ‘

Tlik = 1nf{1 >0: Xi+T}£;1 = k},
with T,?k := (. Since {I{X,-:k}}ieN is GBP with parameters (Hy, py, cx) for k € sY, T,?k, Tlg’k, e
are iid (see page 9 [21]). Therefore, we will denote the inter-arrival time between two consec-
utive observations of k as Tyx. The next Lemma is directly obtained from Theorem 3.6 in [21].

Lemma 1. For k € S, the inter-arrival time for state k, Ty, satisfies the following.
i. Tyy has a mean of 1/ py. It has an infinite second moment if H, € (1/2,1).
ii.

P(Tyy > t) = 2P L (1),

where Ly is a slowly varying function that depends on the parameter Hy, py, ck.

The first result i in Lemma 1 is similar to Lemma 1 in [22]. However, here, we have a
finite-state stationary process, whereas countable-state space Markov chain was assumed
in [22]. Now, we investigate the conditional probabilities and the uniqueness of our process.

Theorem 2. Let Ag, Ay, - -+, Am be disjoint subsets of N. For any { € SO such that max Ay >
max Ag, and for i' ¢ Ul Ay such that i' > max Ay, the conditional probability satisfies
the following:

P(Xy = €] Mk=g, m Nica {Xi = k}) = py +¢¢li’ — max Ag[?H 72,

If there has been no interruption of “0” after the last observation of “£”, then the chance to
observe “L” depends on the distance between the current time and the last time of observation of “£”,
regardless of how other states appeared in the past. This can be considered as a generalized Markov
property. Moreover, this chance to observe “£” decreases as the distance increases, following the
power law with exponent 2H, — 2.
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Proof. The result follows from the fact that:

P({Xy = €} Niea, {Xi = k}) = P(Nica, peso{Xi = k}) X (pg + coli’ — max Ag[?72),
kes?

since there isno i € Ag between i’ and max A;. [

In a countable state space Markov chain, long-range dependence is possible only when
it has infinite state space, and additionally if it is stationary, positive recurrent, irreducible,
aperiodic Markov chain, then each state should have the same long-term memory, i.e.,
sequence indicators have the same Hurst exponent for all states [22]. By relaxing the
Markov property, long-range dependence was made possible in a finite-state stationary
process, also with different Hurst parameter for different states.

Theorem 3. Let Ag, Ay, - -+, Am be disjoint subsets of N. For ¢ € SY such that max A, <
max Ay, and i,ip, 15 & UJ' Ay such that i},1,,i5 > max Ag, and i, > iy, the conditional
probability satisfies the following:
a.

pe+celiy —max A2 > P(Xy = €] N g geso {Xi = K}).

P(Xy =l Nieakeso {Xi =k})  py+ cylih, — max Ay [2He=2
P(Xiy = € Nieagkeso {Xi =k}) = po+ crlis — max Ay 2He=2,

Theorem 4. A stationary process with (4)—(6) is the unique stationary process that satisfies
i fork € S:

m
P(X;i=k)=pr, wherepy>0and Y pp=1,
k=0

ii. fork € SQand anyi,j € N,i # |,

cov(Ipx,—ky, Ix=y) = cili — j/H2

7

for some constants c; € Ry, Hy € (0,1),
iii. for any sets, A C S® and {iy;k € A} CN,

P(Nkea{Xi =k}) =[] re
keA

iv. for € € SO, there is a function hy(-) such that,
P(Xyr = ] Niea keso {Xi = k}) = hy(i' —max Ay)

for disjoint subsets, Ay, A1, -+, Am, {i'} C N, such that Ay # @, i > max Ay, and max A, >
max Ag (Ag can be the empty set).

Proof. Let X* be a stationary process that satisfies i—iv. By i, i,
P(X} =k, X}, = k) = cov(Ix: _yy, Ixe =) + Pk = cilio — P72 + i,
0 1
which results in:

hy(io —i1) = P(X} = k|X; = k) = px+ (c1./ pi)lio — iq |22,
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Therefore, by iv,
n
P(X; =k X; =k X}, =k, X =k) = pe [ [ e(ij —ij-1)
i=1

= Ly({io iz, -+ ,in}),

where L; = L} . Furthermore, by applying iii, iv to X*,

Hi,proci/ pi

P(Nieakeso{Xi =k} =TT Li(Ap).
k=1, ,m

This implies that X* satisfies (4)-(6) with ¢, = ¢}/ py for k € SO O

4. Fractional Multinomial Distribution

In this section, we define a fractional multinomial distribution that can serve as an
over-dispersed multinomial distribution.
Note that } iy I;x,—) has mean npy for k € S. Further, as n — oo,

/

C
(P(1 = pi) + 2Hkk— D H € (0,1/2),

n
UW(ZI{X,-:k}) ~ < cenlnn Hy=1/2,
i=1 /
k| |2Hx H, e (1/2,1
2Hk71|n‘ 4 k€<//)/

for k € SY, and,

/

Crr
(P (1= pr) + ZHIC/%lM Hy € (0,1/2),
n
var( ZI{X;ZO}) ~ < cynlnn Hy =1/2,
i=1 /
i 2H, ,
2Hk/-1|n| 4 Hk € (1/2r1)/

where k' = argmaxi {Hy; k € S%}, and ¢, = piCx- It also has the following covariance.

n n
COU( Y Iixi—kp ) I{Xi:k’}) = —npipr,
i=1 i=1

n n
COU( > Iix=0p ) I{Xf:k}> = —npopx— ), ckli— P2
i=1 i=1 i#j
ij=1,n
for k, k' € S°.

We define Yy := }iy I;x,—), fork € S, and a fixed 1, and call its distribution fractional
multinomial distribution with parameters n, p, H, c.

Ifc=0, (Y, Y1, Yo, -, Yn) follows a multinomial distribution with parameters 1, p,
and E(Yy) = npg,var(Yy) = npi(1 — py), cov(Yy, Y) = —npypyp, for k, k' € S,k # k', and
po=1-1iL pi

If ¢ # 0, (Yo, Y1, -, Yn) can serve as over-dispersed multinomial random variables
with:

E(Y) = npi, Var(Y) = np(1— pi) (14§01,



Fractal Fract. 2022, 6, 596

90f17

where the over-dispersion parameter ¢,  is as follows.

C .
Apem =1 | He01/2)
Yk ~ fE\;k 1 if H, =1/2,
cn2Hk—1 '
A popm—1 ¢ HHE/21),

fork € SO, and,

C .
(1fpk/)(2Hk/ 71) lfHk/ € (0,1/2),
P ~ flnpn —1 if Hy = 1/2,
/ — Py
CnZHk/—l )
(l—pk/)ZHk/—l_l lfHk/E(1/2,1>,

where k' = argmax;{Hy;k € S°},asn — co.If Hy € (0,1/2), the over-dispersion parameter
1y, x remains stable as 1 increases, whereas if Hy € (1/2,1) the over-dispersed parameter
Y, k increases with the rate of fractional exponent of 7, n?Hk=1,

5. Conclusions

A new method for modeling long-range dependence in discrete-time finite-state
stationary process was proposed. This model allows different states to have different Hurst
indices except that for the base state “0“, the Hurst exponent is the maximum Hurst index
of all other states. Inter-arrival time for each state follows a heavy tail distribution, and its
tail behavior is different for different states. The other interesting feature of this process is
that the conditional probability to observe a state “k” (k is not the base state “0”) depends
on the Hurst index Hj and the time difference between the last observation of “k” and the
current time, no matter how other states appeared in the past, given that there was no base
state observed since the last observation of “k”. From the stationary process developed in
this paper, we defined a fractional multinomial distribution that can express a wide range
of over-dispersed multinomial distributions; each state can have a different over-dispersion
parameter that can behave as an asymptotically constant or grow with a fractional exponent
of the number of trials.

6. Proofs
Lemma 2. For any {ag,a,-- - ,an, ay,ay,- - ,a,} C Ry that satisfies ag — 24:1 a; > 0,ay —

Z{::l’l{ >0forj=1,2,---,n,

1

i if,
ao a1 (n
0 1 n
then,
apg— a1 —dax — —dy @
!/ / / ! = 4
g —a; —ay, — -+ —dy ag
i1 a a a
0 1 n
7<= = 7
aq ay aj
then,
4p —a; —a — -+ —ang _ 4o
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;o ,
iii. For any {ag, ay,- - - SO, Ay, 07, ,a,t C Ry,

ap+ax+---+ay >mm/1

1
¢ / / e
i a;+ay+---+ay ioa;

a .
max — >

a;
Proof. i and ii were proved in Lemma 5.2 in [19].
For iii, define bj such that,

Then,
ap4ap+ - +ay  bay +boah + - 4 buay,
ay +ah+ - +a, ay +ah+ - +a,

which is weighted average of {bj,j =1,---,n}. O
To ease our notation, we will denote:

L*(All AZ/ e rAk—l/Ak ) {l}/ Ak—l—l/ te /Am)

L*(...,Aku{i}/...)/

and,

L+, A U{i}, Ay U{j},---) = L¥(A}, AS, -+, A%)
where, if k # K/,
A;ifi #kk/
Af =S AU {itifi =k,
AjU{jifi=FK,
andifk =k,
. JAiifi £k,
P A u{ivYifi =k
D*(---,AgU{i},---)and D*(-- - , A U{i}, Ap U{j},- - -) are also defined in a similar way.

Lemma 3. For any disjoint sets Ay, - -+ , Am, {io,i1} CN,
1.

il.
D*(ALAZI' R {io,il}) >0

Proof. i.

=

D (A, Ag, -+, Awg {ig}) = L;(Ak)<1 ¥ Lk(AkU{ZO]’)>

v Lp(Ar)

»
Il
—

I
=

i (1- § L;g({il,k/,iz,k/,io}))

=1 L}t/ ({il,k// iZ,k/})

»
Il
—
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where iy 4/,1 € A are two closest elements to ip among Ay such thatif min Ay <ip <
max Akr, then 1'1’](/ <y < i2,k’/ if ip > max Akr, then il,k’ < lerk/ < 1y, if ip < min Akr, then
ig <ipp <ipp,andif Ay = @, theniy py =iy = @. Therefore,

Ly ({iy e, iap io})
L ({ivw, iop })

; :12H, 2 o 12Hp -2
(P + Cwlivje = ol %) (pro + Cwlio — By [TH75) 0 kA
P+ cp iy — i [P 2 S e
= pu + cp| max Ay — ip|*w 2 if ip > max Ay,
P + Ck" min Ay — i0|2Hk’72 if ip < min Ay,
if Ay = @.

Pk
L*’({il,k"iz,k"i(]}) . .
By (11), Y04 W < 1, and the result is derived.
ii. Since,
m

D*(Ay, Az, -+, Aw; {io, i1}) = D*(A1, Ag, -+, Am; {io}) — Y D* (-, AcU{in}, -+ {io}),

it is sufficient if we show:

L*(A1,Ag, -+ Am) =20 L5+ A Ui}, - 0) -
erg:l L*( .. /Ak’ U{il},. ) _ZZ?k’Zl L*( /AkU{iO},Ak/ U{il},- ) .

Note that:
L*(AllAZI"' ,Am) 1
Y Lo, Ap U{in},--0) Ly ({iy i io})
Zk/ VL (T D)

which is non-increasing as set Ay increases for k =1, --- ,m. That s,

L*(Al,AZ,- o /Am) < L*<A/1/A£/ o IA:’H)
E]’:/lzl L*( © /Ak’ U{Zl}/ . ) o Zzzzl L*( o rA;(/ U {il}l' : )

for any sets Ay C A;(,k =1,2,---,m. Therefore,

L*(AerZ/"'/Am) > Z?:lL*(/AkU{IO}/>
Yoo LG ApUdid ) T e LG, AU {io}, Ap Ui, o)

by iii of Lemma 2. By i of Lemma 2 combined with the fact that:

1

yn Ly ({iy g odp o })
k=1 "L, ({iyr ippr 1)

>1

from (11), the result is derived. O

Note that for any disjoint sets A1, Ap, - -+, Am, {io, i1, ,in}

D*(AllAZI e /AWZ/ {iO/ilr Tt rin}) - D*(All AZ/' o rAm; {iOr il/ e /in—l})
D* (Al U {in}/ AZ/ tt /Am; {iO/ il/ e /infl})
- D*(AllAZ U {in}/' o /Am/' {iOIilI e /infl})

- D*(AerZI' o rAm U {l'rl}/ {i()ril/ e /in—l})-
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Let us denote:
m
Z D*(All e /Ak—llAk U {in}/Ak-H e /ATI’I/ {i0/i1/ ttt /in—l})
k=1

by:

m

Z D*( o /Ak ) {in}/ T ;{iO/ill' e /in—l})'

k=1
Proof of Proposition 1. We will show by mathematical induction that {X;,,---,X; }isa
random vector with probability (4)—(6) for any n and any {i, i, -+ ,in} C N. Forn =1,
it is trivial. For n = 2, it is proved by Lemma 3. Let us assume that {X; ,-- -, Xz-n,il} isa
random vector with probability (4)—(6) for any {iy,ip,- -+ ,i,7_1} C N. We will prove that
{Xi, - ’Xin/} is a random vector for any {iy,ip,- -+ , iy} C N.

Without loss of generality, fix a set {i1,i,--- ,i,,} C N. To prove that {X; ,- -, Xin’}

is a random vector with probability (4)—(6), we need to show that D*(Ay, - - -, Ay; Ag) > 0
for any pairwise disjoint sets, A, - - - , Am, such that Ul" jAy = {i1, -+ ,ip}. UM |Ag| =0or
1, then the result follows from the definition of D* and Lemma 3, respectively. Therefore,
we assume that |Ag| > 2, Ay = {ig, ], -+ ,i;,o}, and max Ag = i,’10. Let Al = Ao/{iilo}. We
will first show that for any such sets,

Y D Ag Uiy}, -5 Ap)

(13) is equivalent to D*(Ay, - - - , Am; Ag) > 0.
For fixed ¢ € {1,2,--- ,m}, define the following vectors of length m — 1,

> 1. (13)

H[ = (le o ,Héfl,H[+1, te /Hm)r

pé = (plf' o Pe-1,Pe+1s /Pm)/

l
[— (Cl,... lcffllcé+1l"' /Cm)-

We also define:

D?LZ)(' o ,Ag,l, Aﬁ«H/ to ;AO) = D;flpé,cé (Alr o rAE*l/Aerlr' < A AO)

Since {X;;i € UL Ay U A}} is a random vector with (4)-(6), D*(--- , Ay, - - ; Ap) >0,
and it can be written as:

D*(-+-, A, AY) = P( Nicay {Xi =0} N jea, {Xi =k} Niea, {Xi= f}> (14)

k=1, m
kA
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= P(Mieay (5 € 0.010 ien, X =K} Niea, (X = 1})
k;éﬂ "

= PNty (X € 00010 sene {Xi=kE Nieayy (X = 0})

k;é/ "
P( ieay/ i iy {Xi € {0, 01} N icay {Xi =k} Nica oy {Xi = 03 0 {Xy = 0})

Tk
P( iean/{inir iy {Xi € {0,431} mkjleAk {Xi =k} Nicaoqiy {Xi =0 Niegig iy {Xi = 0})

k"

fp(m en (X =k} Nieaty, ) X0 =0 Nieays g,y X _o})

k=1,
P
Note that:
k=1,
kel
= P( ichy {Xi =k} Niea, {Xi = ﬁ})
k=1,
e
~P(Peag X € L = Lm0 a1 = B e, (X = 1))
k=1,
kel

= LZ(AZ)D?_Z)( .. ,A£71/A£+1, e /AE))/
and:
P< lE{l]+1 »10—1} {XZ € {0/ g}} mk:lleAkm {Xl = k}
kit
Nieaugiy 1 =0 Niegiy, iy {Xi = 0})

= P( ey X5 € 003N ien, X =k Nieao (Xi=13)

,m
k;&/

- X P( Nieay/ (i) 1Xi € {0,330 jea, {Xi =k} Nieaugiy {Xi = f})

i*eAg,i*<i; k=1,+,m

kAL

+ Z P( mieAé/{i},i*,i**} {Xl 6 {O, g}} ﬂk l'leAk {Xl = k} nieA[U{i}i*,i**} {Xl = g})

i* **GA/ =1,--,m

kAL

ok
*<i <l]

(1P ( Ny i g KOO0 en (X =K Nicaiyig, - i iXi=0)
"
= L (DA {iue)D] (- Ar, Apyr, - D) (16)

CND=®
C=® or max C<i}

CuD:Ag/{i;}

where |@| = 0. Therefore, by (14)—(16),
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D™ (-, Ao s AY) = Li(ADD! ) (- Ay, A, 5 AY) a7)
Hofl
+ Y (DML AU UCD (-, At Ags, - D).

=0  CcnD=0
C=® or max C<i;

CuD=Ay/{if}

(17) can also be derived by the definition of L}, D*, without using probability for {X;;i €
Ui, AU A{)}. In the same way, using the definition of L}, D*,

DY (- AgU iy}, 5 AD) = Li(ALU (i3, DD}y (-~ Aoy, Agar, 5 A)) (18)
ng—1

+ ) Y (DL A U, i UC)DE (- Apiy, Aggr, -+ ;D).
=0 CND=0

C=Q or maxC<i’
CUD:AE,/{:’;-}

Note that, forj =0,1,--- ,n9 — 1,
gH,p,c(Al/' .. ,Ag U {l;o}, .. ,Am,‘ A6,Z;) =
2 (71)‘C‘+1LZ (A/ U {17/1011;} ) C)Dzkff)( c /Affll AZ+1/ e /D) < O/

CND=Q
C=Q@ or max C<i;~

CuD=Ay/{i}}
since we have:
SHpc(AL, - A Ams Apif) =
_ p( Oiet iy, (X € (0,0} N ica (X =k} N,y (X = 0}
kil
Niegip ity 1Xi = 0}) <0

+17

by (16), and:

Al
g gH,p,c(Alr' Ay A AO/ 1])

Hypoc (At iy,) == . —~ > 1. (19)
fppoe (s 15 1,) SHpe(AL - ArU{if ), A A1)

The last inequality is due to the fact that:

gH,p,C(Alr ttt /Af/ ttt /Am} A6/ Z;)
gH,p,C(All ce rAé U {17/10}/ e /Amr AE)/ l;)

APEY ccay/{il) (=)L (AU UO)

C=Q@ or max C<i;

- -1 * . . 4
L2 L ceapqyy (FDISHLE(A UL, i} UC)

C=Q@ or max C<i]’»
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and for any set C such that maxC < i; orC =0,

Li(Acu{iyuc)  Ly(Au{if})
Ly (AgUd{in, 33 UC)  Lp(Ag Uiy, i}

)>1

by (11). More specifically,

o (Al ) = Ly (A u{ii}uC) _ Lilinjaiega) 20)
PR L (A Ui, 3 UC)  Lilinjie 2. ih,)

where iy ;1,14 are the two closest elements to i;o among Ay U {z;} Thatis, i1, igj2 €
ApU {1;} are two closest elements to 7, such that if min A, U {1;} < iy, < max Ay, then
. ) ) e B ) ) 7

L1 < Lig < Lgj2s and if Ty > max Ay, U {Zj}, then L < g2 < Ly -

Ly ({icja icj2})
Ly({igj iej2in})
e+ coligjn —igjol*H2
(pe+celivjn — iw [PH=2) (pe 4 cqlin —igjp[*He=2)
1
igjp — by [2He2

if min A, U {z;} < iy <maxAy,

ifi,; > max Ay U {i]’-},

pe+cg

which is non-increasing as j increases since i;- < i;o. Therefore, fHé,,p co (Ay; i; ; i;,o) is non-
increasing as j increases. Also, for fixed j, C such that max C < i;. orC=0Q,

Lj(Ar U {iny #}UC) _ L3(ArU {ip,))
LAULTIU0 —  L(A)

(21)

by the fact that %ﬁ;}) is non-decreasing as the set A increases.
14
Combining the above facts with (17) and (18), and by i of Lemma 2,

Ly(Agudin}) = D*(--, AgU{in b, - 5 Ap)

Therefore,
D*(Ay, -, Aw; Ap) L
YD (e AU} 5 AY) T ZZ”:1%W ’
which proves (13) and,
D*(Ay, -+, Ap; Ag) > 0.
O

Proof of Theorem 3. a. Let Ay = {ig, i1, - ,in}. Note that:

D*(... /AEU{ill}/ ;AO>
P(Xlﬁ = E‘ ﬁk:O,»--,m ml'EAk{Xl' = k}) = D*(Al/ - 1Am} AO) =
Li(Ag U Dy (- Aper, Agsas -+ 5 Ao) + Ko 8Hpe(- - A Ui}, -+ 5 Aoidj)

Li(A)D{_ (- Amy, Agrr, - 5 A0) + Eo 8upe( At -, Am; Ao 1))

Since, . |
Sipe(Ar+ AcU Lt} Aw Agii)
gHrprC(All Tty Am/ AO, 1])
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is non-decreasing as j increases, and by (19) and (20):

Li(Acufin}) _ SHpc(AL -, AgU{il}, -+, Am; Aosj)
L? (AZ) N gH,p,C(Alr e Ay Ay Ag; Z])

the result follows by ii of Lemma 2.
b.

P(Xjy = ] O=0,..m NicadXi =k})  D*(---, AgU{ib}, - ;Ag)
P(Xy = ] Ni=0,. m Niea {Xi = k}) — D*(---, AgU{iz},- - ; Ao)
Li(AgU {ié})D?_g)(' A1, Ay, Ag) + Z}Z:o SHpc(- - AcU{is}, 5 Ao ij)

Li(ArU (BN (- Ay, Arrr 5 A0) + Lo 8pel, ACU (B, Agy)
For fixed j, C such that max C < i]-,

L;(AEU{IE,Z‘]‘}UC) < LZ(A[U{Z'IZ})
Lj(Agu i3, i} UC) — Ly(ArU{i})

and,
L? (AU {Zé, 1]} uC)
Lz (AU {lé, l]} uC)

is non-increasing as j increases. Therefore, the result follows by i of Lemma 2. O
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