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Abstract: To obtain high-quality Pareto optimal solutions and to enhance the searchability of the
biogeography-based optimization (BBO) algorithm, we present an improved BBO algorithm based
on hybrid migration and a dual-mode mutation strategy (HDBBO). We first adopted a more scientific
nonlinear hyperbolic tangent mobility model instead of the conventional linear migration model
which can obtain a solution closer to the global minimum of the function. We developed an im-
proved hybrid migration operation containing a micro disturbance factor, which has the benefit of
strengthening the global search ability of the algorithm. Then, we used the piecewise application
of Gaussian mutation and BBO mutation to ensure that the solution set after mutation was also
maintained at a high level, which helps strengthen the algorithm’s search accuracy. Finally, we
performed a convergence analysis on the improved BBO algorithm and experimental research based
on 11 benchmark functions. The simulation results showed that the improved BBO algorithm had
superior advantages in terms of optimization accuracy and convergence speed, which showed the
feasibility of the improved strategy.

Keywords: biogeography-based optimization algorithm; nonlinear hyperbolic tangent mobility
model; hybrid migration; dual-mode mutation

1. Introduction

A multitude of optimization algorithms inspired by biological phenomena and laws
have been established. Over the past decades, many algorithms have been widely used
to solve problems concerning multi-objective programming engineering, and in other
research fields [1,2] several other classical algorithms have been used, including differential
evolution (DE), particle swarm optimization (PSO), the genetic algorithm (GA), and the
sparrow search algorithm (SSA). However, recent theoretical developments have revealed
that the BBO algorithm is more efficient in solving such problems. The BBO algorithm
was first proposed by Simon in 2008 and is similar to most other optimization algorithms
inspired by biogeography theory. The algorithm has a simple principle and few parameters;
the well-known disadvantages of the BBO algorithm are that it easily falls into local
optimization and slowly converges in a complex running environment. Therefore, research
on the theory and application of the BBO algorithm is of high academic and engineering
value [3-5].

Many scholars have maintained high enthusiasm for researching and improving the
BBO algorithm in recent years. The studies conducted on the BBO algorithm can be divided
into the following three groups after consulting the data and summarizing them: Firstly,
theoretical analyses are carried out on the basis of various BBO algorithm models. Simon [6]
applied the Markov chain model to research the BBO algorithm’s global convergence,
and the results indicated that many influencing factors gave rise to the algorithm, such
as population size, migration model, and initial immigration. Ma et al. [7] established
four different mobility models according to the species distribution in the biogeography
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literature, which was important for further studies. Parimal et al. [8] proposed a novel
migration model and an adaptive local topological structure for the algorithm. In summary,
little in-depth research has been conducted on the theory of the BBO algorithm at present,
and most scholars mainly illustrate the performance of the improved BBO algorithm with
simulation results. Secondly, researchers have mainly focused on strategies to optimize the
BBO algorithm, which included improving the algorithm operator or referring to strategies
for improving other algorithms. Sayyed et al. [9] combined the BBO algorithm with the
PSO algorithm to establish a novel hybrid metaheuristic method. Zhang et al. [10] proposed
an improved BBO algorithm by adding a differential mutation operator to the migration
operation and increasing the migratory number. In addition, Zhao et al. [11] developed
an excellent migration strategy, whereby the constant and sinusoidal migration models
are used in the early and late iterative stages, respectively. Santosh et al. [12] proposed an
improved hybrid method based on the combination of the BBO algorithm and the recursive
least square (RLS) algorithm. Finally, according to the remaining studies, the improved
BBO algorithm was employed for various optimization issues. He et al. [13] presented
an improved BBO algorithm based on the elite learning (EL) strategy and applied it to
solve complex problems related to multimodal medical image registration. Furthermore,
Zhang et al. [14] developed an improved BBO algorithm that could effectively resolve the
manufacturing service supply chain optimization (MSSCO) problem. Amin [15] used the
BBO algorithm to establish an improved method for optimizing plate-fin heat exchangers.
Liu et al. [16] applied the BBO algorithm to the design of power grid partitions, and the
results demonstrated that the method of the power grid community network is reasonable
to a certain extent. Furthermore, Zhang et al. [17] developed a heuristic approach based on
the BBO algorithm to solve the multistage multiproduct scheduling problem (MMSP) in a
rational amount of time.

Based on the above literature, although the performance of the BBO algorithm has
been strengthened from different aspects and has achieved certain positive results, due to
the diversity and complexity of different research problems, further improvement of the
algorithm in terms of optimization accuracy, convergence speed, and stability is desired. In
this paper, we propose an improved BBO algorithm based on hybrid migration and dual-
mode mutation. The hybrid migration contributes to enhancing the global search capability
of the algorithm and the Gaussian and BBO variations enhance the search accuracy of the
algorithm. The remainder of this paper is structured as follows: In Section 2, we develop
three improvement strategies and study their feasibility. In Section 3, we provide the
simulation results, and then we compare and study the performance of the improved BBO
algorithm and other algorithms. Section 4 is the conclusion with discussions of future work.

2. Improved BBO Algorithm and Strategies
2.1. HDBBO Algorithm

The core operation of the BBO algorithm is to simulate the migration and mutation of
biological populations [18]. Among them, the migration operation is designed to facilitate
information sharing. The migration of each species’ habitat is shown in Figure 1, where H1
denotes the first population habitat (H2 denotes the second population habitat, . .. , Hj,1
denotes the i + 1th population habitat) which can receive species from H2 and H6, while
some species in this habitat emigrate to H7. In addition, we used the mutation operation to
scientifically simulate the possible species variation caused by a change in the environment
of the habitats. Furthermore, Table 1 shows the correspondence between the BBO algorithm
and biogeography theory [19].

The improved BBO algorithm is called the HDBBO algorithm because it involves
hybrid migration and dual-mode mutation. The flowchart of the HDBBO algorithm is
shown in Figure 2.
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Figure 1. Diagram of species migration between habitats.

Table 1. Correspondence between BBO algorithm and biogeography theory.

Biogeography Theory BBO Algorithm
Habitat Individual (candidate solutions)
Habitat suitability index (HSI) Evaluation function value
Suitable index vector (SIV) Component of candidate solutions

Number of habitats Population size

Habitat with high HSI value An excellent solution

Habitat with low HSI value An adverse solution

Species migration Migration operation

Catastrophic events lead to dramatic changes in habitats Mutation operation

Start

Initialize the parameters

Calculate fitness and update code

Sort value of HSI from large to small

Perform hybrid migration according to the
value of A and p

dooj uonjeron

Calculate Pi and Mi

Yes The value of HSI belongs No

to the larger group?
Perform BBO Perform Gaussian
mutation operation mutation operation

No

Termination condition

Yes

Output the best solutions

End
Figure 2. HDBBO algorithm flow chart.

The improvements in the HDBBO algorithm can be summarized as follows: First,
the HDBBO algorithm obtains the HSI through the initialization parameter calculation
and updates the HSI, sorting the HSI from large to small. In the migration model section,
the HDBBO algorithm uses the hyperbolic tangent mobility model to calculate the in-
migration and out-migration rates instead of the traditional linear mobility model. It
performs the mixed species migration operation using Equation (3) based on the values of
the in-migration and out-migration rates. Then, it calculates the habitat species probability
and mutation rate. Furthermore, it judges whether the HSI value belongs to a larger group,
if so, it adopts the BBO variation; otherwise, it adopts the Gaussian variation. Finally, it
judges the termination condition of the obtained results. If the results are to be terminated,
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it obtains the optimal solution; otherwise, it performs the iterative cyclic calculation. Details
on the reasonability and applicability of these three improvement strategies are further
discussed in later sections.

2.2. Hyperbolic Tangent Mobility Model

The BBO algorithm uses the linear migration model to describe the immigration and
emigration of species in habitats. After years of research and development, scholars have
only proposed a few novel migration models based on the exponential, quadratic, and
cosine functions. Additionally, researchers have repeatedly executed studies based on
nonlinear migration models. After repeated comparisons, the HDBBO algorithm adopts
the hyperbolic tangent mobility model, which is shown in Figure 3.
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|
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Rate

Number of species  Smax

Figure 3. Hyperbolic tangent mobility model of species.

As shown in Figure 3, we established the relationship between the number of species
and migratory rate in a habitat, and the migratory rate is composed of the immigratory
rate (A) and emigratory rate (¢). As indicated in Figure 3, when the number of species
in the habitat is 0, the maximum immigratory rate is I and the emigratory rate is 0. In
contrast, the immigratory rate is 0 and the maximum emigratory rate is E when the number
of species reaches the maximum (Smax). Furthermore, when fewer or more species are
present in the habitat, the change in the migratory rate tends to be gentle. Additionally, the
variation is greater and more evident when the number fluctuates within a certain range.
Therefore, this nonlinear relationship is exceedingly consistent with biogeography theory,
and the migratory rate based on the hyperbolic tangent mobility model can be expressed
by Equations (1) and (2). The value of « is usually set to 1.10 [20]. In the hyperbolic tangent
mobility model, @ = 1.0 is usually meaningless; however, the smaller the value, the more
relaxed the curve, and the closer the model to the actual law. Thus, in this paper, the
experimental results suggested that the improved BBO algorithm works more effectively
when o« = 1.05.

I k—n/2 _ ., —k+n/2

M=s(1-2 - (1)
2 wk—172 § p—k+n/2
E akfn/Z _ (ka+n/2

Me=75 (1 T k2 g g k2 2)

where Ay and py, represent the immigratory and emigratory rate, respectively, when
the number of species in the habitat is k; I and E represent the maximum values of the
immigratory and emigratory rates, respectively; « is the impact factor parameter; k and n
represent the current and maximum number of species, respectively.

2.3. Hybrid Migration Operation

Most scholars have been committed to improving the migratory operator to enhance
the performance of the BBO algorithm [21,22]. However, an improved hybrid migration
strategy including a perturbation factor was developed, which could be described as
follows: According to the migratory rate value, if a certain SIV of H; must change to
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adapt the environment, where H, represents the ath habitat, H,(SIV},) and H,(SIV,)
are combined with a micro disturbance factor to achieve the hybrid migration operation.
Consequently, the expression of this improved hybrid migration strategy is given by:

H,;(S1Vy) = (1 —0) x Hy(SIVyy) + 6 x Hy(SIVyy)

{ 6 =[1—rand(0,1)] x [1—sin(§ X %)} ©)
where 0 represents the micro disturbance factor; H,(SIV,,) is the mth suitable index vector;
H,(S1V,,) and H,(SIV ;) represent the corresponding SIVs, which are desired to immigrate
or emigrate between habitats; Gi,qex and Gmax denote the current and maximum iterative
number, respectively; rand(0,1) represents a random number in the 0 to 1 range.

Gindex = 0 and € = 1 are defaulted when no iteration occurs in the study, and the discrete
migration operation is realized in habitats, which can be shown as H,(SIV ;) < Hy(SIV ).
Currently, most of the high-quality SIVs of H}, can be obtained by H,, and the HDBBO
algorithm maintains a strong global exploration ability.

Then, the HDBBO algorithm starts to iterate, Giqex is smaller at the beginning of
the iterations, and Gmax is a constant. Consequently, the ratio of Gjgex t0 Gmax is smaller,
which causes the value of the sine function to be small with a rapid change in the ratio with
increasing numbers of iterations. Accordingly, the value of 6 gradually decreases from one
with a higher speed. Nonetheless, the value of 0 is generally larger in this iterative phase
and a wide search range from H, to H}, is produced. Numerous high-quality suitable index
vectors may be transferred among habitats to share the information, which facilitates the
increase in biological population diversity. Thus, in this process, the global optimization
ability of the HDBBO algorithm gradually decreases, while the local optimization ability
accordingly strengthens.

Similarly, in the middle and late iterative stage of the algorithm, Gj,qex becomes larger,
but the reduction speed of the 8 value slowly decreases due to the existence of the sine
function. As expected, the local optimization ability continues to increase, while the global
optimization ability gradually decreases. When 6 = 0, the SIV can satisfy the survival
requirements of most species and the HSI is exceedingly high. This suggests almost no
migration operation occurs in the habitats and the dynamic balance state is established.
Therefore, the local high-quality SIV can be maintained.

In general, 6 € (0,1). Due to the sinusoidal function including the number of iterations,
the value of 8 becomes more flexible. Consequently, compared with the BBO algorithm,
the improved hybrid migration strategy considers both the global and local optimization
abilities and it increases the optimization accuracy of the HDBBO algorithm.

Algorithm 1 presents the pseudo code of the hybrid migration strategy.

Algorithm 1 Hybrid Migration Strategy.

1: Parameter:E = 1, I = 1, Population size = 50, Feature dimension = 50,
Maximum iteration = 200

: Initialization: Generate habitats as size as population size;

: Population evaluation: Evaluate habitats

: for a = 1: Population size

: for m = 1: Feature dimension

:if rand(0,1) < A,4, then // Determine whether H, immigrates by A,

: Select the H, that is considered as immigrating;

:end

:if rand(0,1) < py, then // Determine whether Hj, immigrates by p,

10: Select the Hj, that is regarded as emigrating

11: end

12: Realize hybrid migration and update H, (SIV,) according to Equation (3).
13: end

O 0 NS Ul W N
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2.4. Dual-Mode Mutation Operation

Sudden changes in temperature, infectious diseases, drought, and flood often occur
in habitats, which have a substantial impact on the survival of organisms. Based on this
phenomenon, we designed the mutation operator in the BBO algorithm. Many studies
have demonstrated that the HSI changes with these disasters. The fewer or more species
that a habitat contains, the higher its mutation probability, with the habitats in the steady
state nearly always being less affected. Therefore, the lower the occurrence probability of
the species contained in the habitat, the more prone the algorithm is to mutation opera-
tions. To be precise, the mutational rate M;, which is inversely proportional to P;, can be
calculated with

M; = Mmax X (1 - Pi/Pmax) (4)

where Mmax is the maximum mutation rate, which can be defined by scholars, Pnax = max{P;},
and P; represents the probability that the habitat contains 7 species; furthermore, P, is given
with A; and y; by
1 .
—_— 1 = 0
[T P P ’
1+ F Mt

b= Moy s ()
0.1 ;
i )\0/\1...)\[_1>’ l<i<mn,

Hik2.-Hi <1+i§1 kK

In essence, the result of the mutation operation of the conventional BBO algorithm is
indeterminate (it either enhances or diminishes performance). In other words, the findings
are equivalent to replacing the SIV of the original habitat with another SIV randomly
selected within a certain range. A basic BBO mutation has the advantage of generating
various solutions and facilitating the diversity of the SIV. However, an excellent SIV may be
destroyed, and scholars are uncertain if the SIV after mutation can be applied to the entire
solution set, which ultimately affects the convergence speed of the algorithm. Therefore,
several improved methods for mutation operators have been proposed to reduce the impact
of the basic BBO mutation [23,24].

In this study, we introduced and combined Gaussian mutation with BBO mutation,
and the HDBBO algorithm uses these two disparate mutational methods. The probability
density function of the Gaussian mutation is shown in Equation (6):

1 x—p)?
fy,az(x) = o/t exp <_(20.;1)> (6)
where y represents the average value and o2 denotes the variance. In addition, N(u, 0?) is
the quintessential Gaussian distribution, as 4 = 0,0 = 1.

When Gaussian mutation is implemented, 12 random numbers from 0 to 1 are assumed
to be present, and they are presumed to be evenly distributed; then, a random number L
conforming to N (y,¢?) can be calculated by

12
L:y+(7<2‘7i—6> )

i=1

The Gaussian mutation operation process can be described as follows: When the
Gaussian mutation from the Hy(SIV) = (SIV4,SIV,,...,SIV,,...SIV,;_1,51Vy) to the
Hy(SIV) = (SIVy,S1V;,...,SIVy,...51V; 1,S1Vy) of the species is accomplished, the
mutation point expression (SIV ) can be shown as

He(S1Vy) = 09 s [H(1V2) x (14 L) ®)

where Hy(SIV;) and Hy(SIVy) represent the SIV of Hy before and after Gaussian mutation,
respectively.
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The HDBBO algorithm initially sorts the HSI of the habitats from high to low. The
algorithm uses the basic BBO mutation for the habitats with a higher HSI. The use of
this strategy can result in an increased population diversity in a certain range and a high-
quality SIV being retained after mutation. In contrast, Gaussian mutation is applied to the
habitats that possess a lower HSI. In the later iterations of the HDBBO algorithm, Gingey is
approximated to Gmax, and the accurate SIV search in the local range is facilitated by the
high capability of Gaussian mutation, which is able to reduce the influence of the inferior
solution on the entire solution set and enhance the HDBBO algorithm’s performance.

The pseudo code of the dual-mode mutation operation is demonstrated in Algorithm 2.

Algorithm 2 Dual-mode Mutation Operation

1: Sort the population according to the HSI of the habitats from high to low

2: for a = 1: Population size

3: for b = 1: Feature dimension

4: if rand(0,1) < M,, then;

5: The basic BBO mutation is used in habitats with higher HSI;

6: else

7: Gaussian mutation is used in habitats with lower HSI according to Equation (8).
8: end

9: end

3. Simulations and Discussion

To verify whether the performance of the HDBBO algorithm was enhanced and to
further judge the feasibility of the improvement measures, we implemented a multitude
of experimental simulations on 11 benchmark functions with different complexities. We
divided the experiments into two parts. In the first half, we compared the ideal function
solutions obtained by the HDBBO algorithm and two other classical algorithms. In the
second half, we studied the influence of different values of «, where « represents the impact
factor parameter regarding the migratory rate.

3.1. Selection of Benchmark Functions

We selected 11 quintessential benchmark functions to test the performance of these
three algorithms, and the relevant descriptions of these functions are shown in Table 2.
We found that f; — f4 are unimodality functions, which we used to test the convergence
characteristics of each algorithm. In contrast, f; — f11 are all multimodality functions,
which we mainly used to test the algorithms’ ability to avoid falling into local ideal solu-
tions. The 11 functions chosen were all complex nonlinear classical test functions, which
were appropriate for accurately and objectively appraising the overall performance of
the algorithms.

Table 2. Test performance function features.

Function Name Scope Dimension Optimal Solution Type
f1 Sphere +100 30 0 Unimodality
f2 Step +100 30 0 Unimodality
f3 Quartic +1.28 30 0 Unimodality
fa Rosenbrock +30 30 0 Unimodality
fs Schwefel2.21 +100 30 0 Unimodality
f6 Schwefel2.22 +10 30 0 Unimodality
f7 Rastrigin +5.12 30 0 Multimodality
fs Ackley +32 30 0 Multimodality
fo Griewank +600 30 0 Multimodality
f10 Penalty1 +50 30 0 Multimodality
fi1 Penalty2 +50 30 0 Multimodality
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3.2. Parameters Setting

We used MATLAB (Version: R2018b) as the programming language to complete the
simulation experiments. The relevant parameters that were set in MATLAB were as follows:
the population size was set to 50, the dimension of these functions was defined as 20, the
global migration rate was one, the maximum values of A and y were assumed to be one,
the values of the maximum mutation rate and Gaussian mutation rate were 0.05, and the
maximum number of iterations was set to 200. To avoid the contingency of the results and
to ensure the universality of the experimental conclusions, we set the three algorithms to
independently run 50 times on each test function.

3.3. Analysis of the Simulation Results
3.3.1. Comparison of Different Algorithms

As Gaussian mutation is similarly involved in the improved strategy of the BBO algo-
rithm, the proposed improved algorithm is called the GBBO algorithm [25]. To demonstrate
the superiority of the HDBBO algorithm compared with the conventional BBO and GBBO
algorithms, we carried out experiments under the same running environment and param-
eters. We defined a = 1.05 in this group of experiments, and the influence of different a
values on the HDBBO algorithm was determined in the next group of experiments. Based
on these conditions, the comparison results of 11 benchmark functions are shown in Table 3.

Table 3. Simulation data of three algorithms on 11 benchmark functions.

. BBO GBBO HDBBO

Function Average Best Std Average Best Std Average Best Std
A 115 x 100 1.04 x 102 171 x10° 139 x 10> 458 x 10>  1.93 x 10>  3.08 x 10>  1.23 x 10! 1.06 x 10°
fa 342 x 102 3.00 x 10! 1.83 x 10°  4.18 x 102 2.93 x 10! 1.75 x 100 320 x 102 2.19 x 10° 1.55 x 10°
f3 208 x 1071 015x 107! 704 x 107! 147 x 107! 2,06 x 1072 495 x 107! 0 0 4,65 x 1071
fa 222 x 10° 1.54 x 10° 1.78 x 106 4.97 x 10° 151 x 102 2.44 x 10° 1.30 x 10°  6.81 x 10 1.08 x 10°
f5 1.80 x 10! 1.19 x 10! 9.34 x 100 1.54 x 10! 7.85 x 100 1.12 x 10! 547 x 100 3.02 x10°  5.76 x 100
fe 287 x10° 927 x10°!  6.12 x 100 213 x10° 568 x10°!  5.63 x 100 197 x 10°  3.66 x 10-1  3.26 x 10°
f7 9.58 x 10° 2.71 x 10° 1.51 x 10! 1.11 x 10! 2.73 x 10° 1.72 x 10! 9.31 x 100 0 1.19 x 10!
fs 648 x 100 354 x 10° 330 x 10° 546 x 10°  2.88 x 100  3.89 x 10° 358 x 100 205x 10° 271 x 10°
fo 6.13 x 100 1.24 x 10° 138 x 10 5.62 x 10° 1.34 x 10° 1.36 x 10! 284 x 100 649 x 1071 8.82 x 100
fio 502 x 10° 735x 1072 420 x 10®° 269 x10° 713 x10°! 330 x 10° = 4.26 x 10° 0 2.97 x 100
1 1.78 x 10° 1.59 x 100 1.05 x 107 8.10 x 10° 2.23x 10° 516 x 10° 739 x 10° 658 x 107! 3.81 x 10°

In this study we used three indexes, the average value, the best value, and the standard
deviation (Std) of the test functions to compare the capability of the three algorithms.
Specifically, the average value represents the mean solution of each benchmark function,
which roughly reflects the applicability of an algorithm to diverse test functions and its
optimization accuracy. Furthermore, the best value denotes the ideal solution solved by
each algorithm, which demonstrates the ability of the algorithm to seek the global optimal
value. Furthermore, the standard deviation reflects the distribution of the Pareto optimal
solution and intuitively demonstrates the overall performance of the algorithms.

According to the results shown in Table 3, which we obtained from the analysis of the
three evaluation criteria of the three algorithms under the same operating environment
and parameters, the HDBBO algorithm invariably possesses advantages regardless of
the unimodal function or multimodal function. We noticed that the functions calculated
by the HDBBO algorithm were nearly always relatively small and the results were more
approximate to the optimal solution of the test functions. Indeed, for the functions of f3, f7,
and f1g, the best solutions all reached zero, which demonstrates the excellent capability of
the HDBBO algorithm. Furthermore, Figure 4 shows the convergence curves of the three al-
gorithms on different benchmark functions, which we created to accurately and objectively
evaluate these algorithms and are intuitively indicative of the experimental results.
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Figure 4. Comparison of the three algorithms on 11 benchmark functions (a—k) on the convergence
of f1—f11.(a) convergence of the three algorithms on benchmark function fi; (b) convergence of the
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three algorithms on benchmark function f5; (c) convergence of the three algorithms on benchmark
function f3; (d) convergence of the three algorithms on benchmark function f4; (e) convergence of the
three algorithms on benchmark function fs; (f) convergence of the three algorithms on benchmark
function f4; (g) convergence of the three algorithms on benchmark function f7; (h) convergence of the
three algorithms on benchmark function fg; (i) convergence of the three algorithms on benchmark
function fy; (j) convergence of the three algorithms on benchmark function fg; (k) convergence of
the three algorithms on benchmark function fi;.

Figure 4 shows that the abscissa axis represents the iterative number of each test
function and the ordinate axis represents the best value of each test function optimized
by the three algorithms. Due to the different attributes of each test function, the optimal
value resolved by the algorithms varies in the magnitude order. For easy observation, we
linearly expressed the best f5 and fg values, while we expressed the others on a based
10 logarithm. To expediently identify the numerical difference at the beginning of the
iterations, we created partial enlarged diagrams of the parts of the functions, which was
essential in comparing the capabilities of the algorithms.

We had the following discussion through the comparison and research concerning
Figure 4. For the f1, f1, fo — fo, and f1; functions, at the initial stage of the iterations,
the HDBBO algorithm produced a more optimal value than the other two algorithms.
Therefore, the improved strategies that were proposed did not reduce the capabilities of the
algorithm. Conversely, the optimization ability of the algorithm could be enhanced to a cer-
tain extent, and the superior applicability of the HDBBO algorithm could be demonstrated.
Furthermore, the search speed of the BBO algorithm and GBBO algorithm considerably
slowed in the middle and late iterations, and these two algorithms tended to fall into
local optimization after the 120th iteration. Nevertheless, the convergence curve of the
HDBBO algorithm was almost vertical at the beginning of the iterative stage because of
the algorithm’s strong exploration ability. Moreover, the global optimization solution was
almost achieved when the iteration number was 50, thus explaining the excellent data
development ability of the improved BBO algorithm. In addition, although each algorithm
was independently running and their operating environments were identical, the best value
of the functions could have been invariably obtained by the improved BBO algorithm with
a faster speed, which implies that the computational complexity of the HDBBO algorithm
is small. Furthermore, the distribution of the Pareto optimal solution suggested that the
HDBBO algorithm was stable.

3.3.2. Further Research on HDBBO Algorithm

In this study, we examined the HDBBO algorithm based on the hyperbolic tangent
mobility model. Thus, we explored the influence of « = 1.05 and a = 1.10 to verify the
rationality of this improved strategy, and we did not complete the contrast experiment
of & = 1.00 as this assumption was meaningless. Based on the above descriptions, the
experimental simulation results of the different a values on the HDBBO algorithm are
shown in Table 4.

Table 4. Results of HDBBO with different values of «.

. «=1.10 «=1.05
Function Average Best Std Average Best Std

fi 7.16 x 10? 7.01 x 10! 2.54 x 10° 2.49 x 10? 2.08 x 10’ 9.36 x 102
f2 2.59 x 107 1.89 x 10! 1.23 x 10° 2.38 x 102 0 1.64 x 10°
f3 6.42 x 1072 1.05 x 1072 3.95 x 1072 4.84 x 1072 0 251 x 107!
fa 228 x 10° 6.52 x 10! 2.64 x 10° 1.56 x 10° 8.19 x 10! 1.10 x 106
fs 9.17 x 10° 6.15 x 10° 7.78 x 10° 7.72 x 10° 4.58 x 10° 6.49 x 10°
fo 2.82 x 10° 8.57 x 1073 2.13 x 10 2.27 x 10° 424 x 107! 5.66 x 10°
fr 1.43 x 10! 2.77 x 1071 1.85 x 10! 1.03 x 10! 2.13 x 1071 1.25 x 10!
fs 4.55 x 10° 3.52 x 10° 2.05 x 10° 2.07 x 10° 0 1.36 x 10°
fo 3.24 x 10° 3.89 x 107! 1.40 x 10! 2.36 x 10° 9.49 x 107! 6.16 x 10°
fro 3.59 x 10° 3.05 x 1072 3.29 x 10° 1.01 x 10° 0 7.24 x 10°

fin 9.52 x 10° 5.93 x 107! 1.11 x 107 6.23 x 10° 0 4.75 x 10°
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Similarly, to more intuitively observe the experimental results, the corresponding
function iteration curve is shown in Figure 5.
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Figure 5. Comparison of different & values in the HDBBO algorithm (a—k) on the convergence of
f1 — f11.(a) convergence of different @ on benchmark function f;; (b) convergence of different & on
benchmark function f,; (c) convergence of different @ on benchmark function f3; (d) convergence
of different « on benchmark function f;; (e) convergence of different & on benchmark function fs;
(f) convergence of different & on benchmark function fg; (g) convergence of different  on benchmark
function f7; (h) convergence of different « on benchmark function fg; (i) convergence of different «
on benchmark function fo; (j) convergence of different « on benchmark function f1; (k) convergence
of different « on benchmark function fi1.

The solid and dotted lines in Figure 5 represent the convergence curves of the functions
when & = 1.05 and « = 1.10, respectively. When & = 1.10, the simulation results of the
fa, f6, and fo were more accurate than when & = 1.05 in the improved BBO algorithm.
Nevertheless, the improved BBO algorithm demonstrated superior convergence curves for
the other eight benchmark functions when the value of « was 1.05. Indeed, the optimal
value could be quickly received by the HDBBO algorithm with an increase in the number
of iterations.

In general, the HDBBO algorithm was superior to the other two algorithms in terms
of optimization accuracy, iterative speed, and distribution of the Pareto optimal solution,
which implied that it has an excellent data development ability while avoiding local opti-
mization because of these improved strategies. Furthermore, through a set of comparative
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experiments, we confirmed that @ = 1.05 is more appropriate for the hyperbolic tangent
mobility model in the improved BBO algorithm.

4. Conclusions

Aiming to overcome the challenges of the BBO algorithm such as slow convergence
speed and insufficient search ability, we designed an improved BBO algorithm containing
three novel strategies. Specifically, after replacing the mobility model of the BBO algo-
rithm, the migration operation and mutation operation were improved and adjusted. The
introduction of a nonlinear hyperbolic tangent migration model and micro-disturbance
factor is beneficial to both global and local optimization. At the same time, the dual-mode
mutation operation of Gaussian mutation and BBO mutation is beneficial to preserve the
high-quality solution vector after mutation. Moreover, it promotes the accurate search of
the solution vector in the local scope, so as to reduce the influence of the inferior solution
vector on the whole solution set. Furthermore, through the combination of theoretical
analysis and simulation experiments, we found that the HDBBO algorithm has clear advan-
tages over the BBO and GBBO algorithms. The HDBBO algorithm can effectively avoid the
problem of local optimization and possesses a strong data development ability, which will
be more beneficial for the optimization problems of multi-objective or nonlinear complex
functions in future work. In addition, the optimal scheduling of microgrids at present is
usually constrained by a variety of conditions and more consideration needs to be given to
multi-objective optimal scheduling. Thus, we are also committed to applying the HDBBO
algorithm to the multi-objective optimization of microgrids.
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