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Abstract: In this research, we investigate a novel class of granular type optimality guidelines for the
fuzzy multi-objective optimizations based on guidelines of vector granular convexity and granular
differentiability. Firstly, the concepts of vector granular convexity is introduced to the vector fuzzy-
valued function. Secondly, several properties of vector granular convex fuzzy-valued functions are
provided. Thirdly, the granular type Karush-Kuhn-Tucker(KKT) optimality guidelines are derived
for the fuzzy multi-objective optimizations.
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1. Introduction

The optimality guidelines can be used to identify the possible candidates for optimal
solutions, which plays a significant effect in the field of optimization principle and has
been researched for more than a century. However, since the data utilized in real-world
issues sometimes include uncertain or inaccurate data due to measurement mistakes or
other unforeseen factors, fuzzy optimization model is often used to deal with this actual
optimization problem containing fuzzy data.

In the past two decades, many results have been achieved in the research of optimality
guidelines for the fuzzy optimizations. As we all know, the comparison of fuzzy numbers
is often in partial order, so the resulting fuzzy difference and the derivative of the fuzzy
function are not as simple as the difference of the real function and the definition of the
derivative. Differentiability and convexity are two important conditions that are indispens-
able in the research of optimality guidelines of fuzzy optimization. For example, under
the Hukuhara difference and Hukuhara differentiability, the notion of convexity for real-
valued functions has been extended by Wu to LU-convexity for fuzzy-valued functions.The
KKT guidelines [1–4] for an optimization problem with a fuzzy-valued objective function
based on the premise of LU-convexity were then created. By using generalized Hukuhara
difference and generalized Hukuhara differentiability, Chalco-Cano et al. [5–7] researched
the optimality guidelines for the fuzzy optimizations. Zhang, Liu and Li researched the
optimality guidelines for the fuzzy optimizations based on the assumptions of univexity
[8] and invexity [9].

However, the Hukuhara differentiability or generalized Hukuhara differentiability of
the fuzzy optimizations have some disadvantages [10,11]. Recently, Mazandarani et al. [11]
have introduced the notion of a new fuzzy function differentiation as granular differen-
tiability (gr-differentiability). This result has brought many new results in the field of
fuzzy dynamic systems [12–15] and fuzzy differential equations [16–19] . Compared with
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generalized Hukuhara differential, a very important advantage of gr-differential is that
it is relatively simple in calculation. Zhang et al. [20] proposed the granular convexity
for fuzzy functions and researched the optimality guidelines for the fuzzy optimizations.
However, there are three essential differences between [20] and this article. Firstly, the
object of study is different from that of this paper. The fuzzy single-objective optimisation
problem is studied in [20], while the fuzzy multi-objective optimisation problem is studied
in this paper. The objective value for fuzzy single-objective optimization is the fuzzy
number, while the objective value for fuzzy multi-objective optimization is the fuzzy vector.
Secondly, the concept of solution is different. The solution in [20] is the optimal solution,
while the solution in this paper is the efficient solution. Thirdly, the convexity condition is
different. The condition of granular convexity of fuzzy function is studied in the [20], but
this paper is the condition of vector convexity of fuzzy function. For multi-objective fuzzy
optimizations [21,22], the computational complexity brought by Hukuhara or generalized
Hukuhara differentiation are particularly obvious.

Convexity is one of the important basic assumptions in the study of optimality con-
ditions. For the proof of the validity of convexity, Kalsoom [23] have proved some new
Ostrowsk’s type inequalities for q-differentiable preinvex functions by using the newly
offered identity. Butt [24] gave some new results by using convexity of exponential s-convex
functions of any positive integer order differentiable function. Kızıl [25] obtained new
results for strongly convex functions with the help of Atangana-Baleanu integral operators.
Ekinci [26] obtained new inequalities for the class of functions whose absolute values of
first derivatives are convex on [a, b].

The purposes of this paper is to propose the optimality guidelines to fuzzy multi-
objective optimizations under the conditions of vector granular convexity and granular
differentiability. Firstly, we present the concepts of vector granular convexity for a fuzzy
function. Secondly, we present the attributes for the vector granular convexity for a fuzzy
function. Thirdly, we recommend the optimality guidelines for the fuzzy multi-objective
optimization issue based on the assumptions of vector granular convexity and granular
differentiability. Several examples are given to motivate our studies.

2. Preliminaries

This section covers some fundamental notions and arithmetics of fuzzy-valued func-
tions. The abbreviations used in this paper are collected in Table 1.

Table 1. The abbreviations have been used in this paper.

The Abbreviations The Full Name

KKT Karush-Kuhn-Tucker
FNs fuzzy numbers

gr-differentiability granular differentiability
gr-differentiable granular-differentiable

gr-convex granular convex
gr-pseudoconvex granular pseudoconvex
gr-quasiconvex granular quasiconvex

HMF horizontal membership function
FMOP fuzzy multi-objective programming problem

FCMOP fuzzy constrained multi-objective programming
problem

ES efficient solutions
WES weakly efficient solutions

V-gr-convex vector granular convex
V-gr-convexity vector granular convexity

V-gr-pseudoconvex vector granular pseudoconvex
V-gr-quasiconvex vector granular quasiconvex

V-gr-pseudo-convexity vector granular pseudoconvex convexity
SOP scalar problem

KTCQ Kuhn-Tucker constraint qualification
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2.1. Some Notions of the Fuzzy-Valued Functions

Assume that Rn is the n−dimensional Euclidean space, and E is the space
representing all fuzzy numbers(FNs) on R. The parametric form can be expressed as
[u]µ = [uµ, uµ] : [a, b]→ [0, 1]. The horizontal membership function(HMF) [27] of ũ(δ) ∈ E
is denoted by H(ũ)(µ, αu) = ugr(µ, αu). For simplicity, H(ũ)(µ, αu) can be abbreviated
to H(ũ), otherwise it would be too long. For a triangular FN ũ = (γ, ε, ζ), γ ≤ ε ≤ ζ,
H(ũ) = [γ + (ε− γ)µ] + [(1− µ)(ζ − γ)]αu. The trapezoidal FN ṽ = (γ, ε, ζ, η), the HMF
isH(ṽ) = [γ + (ε− γ)µ] + [(η − γ)− (η − γ + ε− ζ)µ]αv, for µ, αv, αu ∈ [0, 1].

There are two FNs ṽ and ũ. Then, ṽ � ũ⇔ H(ṽ) ≥ H(ũ) for all αv = αu ∈ [0, 1] , and
µ ∈ [0, 1]; ṽ = ũ⇔ H(ṽ) = H(ũ) for all αv = αu ∈ [0, 1] , and µ ∈ [0, 1].

Remark 1 ([18]). The HMFH is a linear map. The following guidelines are met for any ṽ ∈ E ,
ũ ∈ E and any constant c ∈ R,

(1)H(ṽ⊕ ũ) := vgr(µ, αv) + ugr(µ, αu) = H(ṽ) +H(ũ);
(2)H(cũ) := cugr(µ, αu) = cH(ũ).

Definition 1 ([11]). The following is the definition of the granular distance between ṽ and ũ in E.

Dgr(ṽ, ũ) = supµmaxαv ,αu |vgr(µ, αv)− ugr(µ, αu)|.

Assume that g̃ : [e, f ] → E is a fuzzy function with n distinct parameters ũ1, ũ2, · · · , ũn.
The HMF of g̃(ζ) isH(g̃(ζ)) , ggr(ζ, µ, αg), ggr : [e, f ]× [0, 1]R× [0, 1]n → [k, l] ⊆ R, where
αg = (αu1 , αu2 , · · · , αun).

Definition 2 ([11]). The fuzzy function g̃ : [e, f ] → E is regarded as granular-differentiable
(gr-differentiable) at ζ0 ∈ [e, f ] if there exists an element dgr g̃(ζ0)

dζ ∈ E such that the following limit,

lim∆ζ→0
g̃(ζ0 + ∆ζ)	gr g̃(ζ0)

∆ζ
=

dgr g̃(ζ0)

dζ
,

exists for ∆ζ adequately value close to 0. dgr g̃(ζ0)
dζ is regarded as gr-derivative of g̃ at ζ0. If the

gr-derivative exists for ζ ∈ [e, f ] ⊆ R, the g̃ is gr-differentiable on [e, f ] ⊆ R. The space of
fuzzy-valued functions of all constantly gr-differentiable on U ⊆ R is defined as C1(U, E).

Theorem 1 ([11]). The fuzzy-valued function g̃ : [e, f ] ⊆ R → E is gr-differentiable at
ζ ∈ [e, f ]⇔ at that point its HMF is differentiable with reference to ζ. Furthermore,

H(
dg̃(ζ)

dζ
) =

∂ggr(ζ, µ, αg)

∂ζ
.

A multivariate fuzzy function’s partial derivative is defined by Zhang et al. [20].
Assume G̃(ς) : K ⊆ Rn → E, ς = (ς1, ς2, · · · , ςn) ∈ K, and which with n distinct FNs
ũ1, ũ2, · · · , ũn. We denote that αG = (αu1 , αu2 , · · · , αun) with respect to the distinct FNs
ũ1, ũ2, · · · , ũn, and µ, αui ∈ [0, 1].

Definition 3 ([20]). Assume that y0 = (ς0
1, ς0

2, · · · , ς0
n) ∈ K is a fixed element and

hi(ςi) = G̃(ς0
1, · · · , ς0

i−1, ςi, ς0
i+1 , · · · , ς0

n) be a fuzzy function. The G̃ has the ith par-

tial gr-derivative at y0, i f hi is gr-differentiable at ς0
i , denoted by ∂Ggr(y0,µ,αG)

∂ςi
and

∂Ggr(y0,µ,αG)
∂ςi

= (hi)
′
(ς0

i ), where αG = (αu1 , αu2 , · · · , αun).

G̃ is gr-differentiable at y0, if all the partial gr-derivative ( ∂Ggr(y0,µ,αG)
∂ς1

, · · · , ∂Ggr(y0,µ,αG)
∂ςn

)
exist on some neighborhood of y0 and are consecutive at y0.
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Definition 4 ([20]). We say that

5Ggr(ς∗, µ, αG) = (
∂Ggr(ς∗, µ, αG)

∂ς∗1
, · · · ,

∂Ggr(ς∗, µ, αG)

∂ς∗n
)T

is the granular gradient of G̃ at ς∗, where ∂Ggr(ς∗ ,µ,αG)
∂ς∗j

is the jth partial gr-derivative of G̃ at ς∗.

From Definition 1, the fuzzy functions’ distance measure is defined as follows:

Definition 5. It is assumed that G̃, Q̃ : K ⊆ Rn → E, are two fuzzy-valued functions. The
distance measure between G̃ and Q̃ can be defined by

Dgr(G̃, Q̃) = supζ∈K,µ∈[0,1]maxαG ,αQ |G
gr(ζ, µ, αG)−Qgr(ζ, µ, αQ)|,

where αG = (αu1 , αu2 , · · · , αun) and αQ = (αv1 , αv2 , · · · , αvm) with respect to the distinct FNs
ũ1, ũ2, · · · , ũn and ṽ1, ṽ2, · · · , ṽm, and µ, αui , αvi ∈ [0, 1].

At present, we cope with fuzzy vector mapping G̃ : K → Ep. For G̃ = (G̃1, · · · , G̃p),
with respect to the different FNs ũi1, ũi2, · · · , ũij, j = 1, · · · , n, and µ, αuij ∈ [0, 1], each

G̃i, i = 1, · · · , p is a fuzzy function. The HMF of G̃ isH(G̃) = (H(G̃1), · · · ,H(G̃p)), where
H(G̃i) = Ggr

i (ζ, µ, αGi ) and αGi = (αui1 , · · · , αuij).

Definition 6. Consider a fuzzy vector mapping G̃ = (G̃1, · · · , G̃p) : K → Ep. It can be said by
us that G̃ is vector gr-differentiable at ζ0 ∈ K ⇔ G̃i is gr-differentiable at ζ0 for all i = 1, · · · , p.

2.2. Solution Concepts

Firstly, we review the comparison of two real vectors. If c = (c1, · · · , cn)T ,
d = (d1, · · · , dn)T ∈ Rn, then

(i) c = d⇔ ci = di for all i = 1, 2, · · · , n;
(ii) c < b⇔ ci < di for all i = 1, 2, · · · , n;
(iii) c 5 d⇔ ci ≤ di for all i = 1, 2, · · · , n;
(iv) c ≤ d⇔ c 5 d and c 6= d.
Based on the partial order relations on Ep, p = 1, · · · , n, we also define the comparison

of two fuzzy vectors.

Definition 7. Let w̃ = (w̃1, · · · , w̃n)T , z̃ = (z̃1, · · · , z̃n)T ∈ En, then
(i) w̃ = z̃⇔ w̃i = z̃i for all i = 1, · · · , n;
(ii) w̃ ≺ z̃⇔ w̃i ≺ z̃i for all i = 1, · · · , n;
(iii) w̃ w z̃⇔ w̃i � z̃i for all i = 1, · · · , n;
(iv) w̃ � z̃⇔ w̃i � z̃i for all i = 1, · · · , n and w̃ 6= z̃.

We can get the follows proposition for the fuzzy vector function.

Proposition 1. Assume a fuzzy vector mapping G̃ = (G̃1, · · · , G̃p) : K → Ep, and ζ, ζ∗ ∈ K
with respect to distinct FNs ũi1, ũi2, · · · , ũij, j = 1, · · · , n, i = 1, · · · , p, and µ, αuij ∈ [0, 1].
Then, we have

(i) G̃(ζ∗) = G̃(ζ)⇔ H(G̃(ζ∗)) = H(G̃(ζ));
(ii) G̃(ζ∗) ≺ G̃(ζ)⇔ H(G̃(ζ∗)) < H(G̃(ζ));
(iii) G̃(ζ∗) w G̃(ζ)⇔ H(G̃(ζ∗)) 5 H(G̃(ζ));
(iv) G̃(ζ∗) � G̃(ζ)⇔ H(G̃(ζ∗)) 5 H(G̃(ζ)) andH(G̃(ζ∗)) 6= H(G̃(ζ));

Proof. It is easy to be proved by Remark 1 and Definition 7.
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It is considered by us that the following two classes of gr-differentiable fuzzy multi-
objective programming problems:

(FMOP) min G̃(ζ) = (G̃1(ζ), G̃2(ζ), · · · , G̃p(ζ))

ζ ∈ K ⊆ Rn.

where G̃(ζ) : K → Ep are (consecutively) gr-differentiable fuzzy functions, and K is a open
subset which is nonempty of Rn.

The constrained gr-differentiable fuzzy multi-objective programming problem,

(FCMOP) min G̃(ζ) = (G̃1(ζ), G̃2(ζ), · · · , G̃p(ζ))

q̃i(ζ) � 0̃, i ∈ J = {1, · · · , m},

where G̃(ζ) : K → Ep, q̃i : K → E, i ∈ J, are (consecutively) gr-differentiable fuzzy
functions, and K is a open subset which is nonempty of Rn. It is denoted by us that
S := {ζ ∈ K : q̃i(ζ) � 0̃, i ∈ J} as the feasible set of (FCMOP), J(ζ∗) := {i ∈ J, q̃i(ζ

∗) = 0̃}
as the set of indices of active constraints at ζ∗ ∈ K.

We’ll employ the notions of efficient solutions (ES) and weakly efficient solutions
(WES) of (FMOP), which were brought in by [10].

Definition 8 ([22]). Assume that G̃(ζ̃) : S→ Ep is a p-dimensional fuzzy function. Reputedly, a
point ζ∗ ∈ S is:

(1) a strongly ES if there exists no ζ ∈ S such that G̃(ζ) � G̃(ζ∗) ;
(2) an ES if there exists no ζ ∈ S such that G̃(ζ) � G̃(ζ∗) and ∃k such that G̃k(ζ) ≺ G̃k(ζ

∗),
k ∈ {1, · · · , p};

(3) a mildly WES if there exists no ζ ∈ S such that G̃j(ζ) � G̃j(ζ
∗), ∀j = 1, · · · , p;

(4) a WES if there exists no ζ ∈ S such that G̃(ζ) ≺ G̃(ζ∗).

Osuna-Gómez et al. have discussed the relationship between the above solutions, one
can refer to [21,22].

3. Vector Granular Convexity of Fuzzy Vector Functions

The notion of convexity is crucial in optimization theory. Recently, the notion of
convexity has been developed in a number of fields using new and imaginative approaches.
Based on the HMF of fuzzy vector functions, we define the notion of vector granular
convexity for fuzzy vector functions and suggest several aspects of this class of fuzzy vector
functions in this section.

Definition 9 ([20]). Assume that G̃ is a fuzzy function defined on a convex set K ⊆ Rn. It can be
said by us that G̃ is granular convex if

H(G̃(λζ1 + ζ2 − λζ2)) ≤ λH(G̃(ζ1)) +H(G̃(ζ2))− λH(G̃(ζ2))

for all λ ∈ (0, 1), αG = (αu1 , αu2 , · · · , αun) with respect to distinct FNs ũ1, ũ2, · · · , ũn, and each
ζ1, ζ2(ζ1 6= ζ2) ∈ K.

It can be said that G̃ is granular strict convex if

H(G̃(λζ1 + ζ2 − λζ2)) < λH(G̃(ζ1)) +H(G̃(ζ2))− λH(G̃(ζ2))

for all λ ∈ (0, 1), αG = (αu1 , αu2 , · · · , αun) with respect to distinct FNs ũ1, ũ2, · · · , ũn, and each
ζ1, ζ2(ζ1 6= ζ2) ∈ K.
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Definition 10. A fuzzy vector function G̃ = (G̃1, · · · , G̃p) : K → Ep is regarded as vector gran-
ular convex (for short: V-gr-convex) if there exist function rgr

i (ζ, ζ, µ, αGi ) : K× K× [0, 1]j+1 →
R+ − {0} such that for each ζ, ζ ∈ K and for αGi = (αui1 , · · · , αuij), i = 1, · · · , p,

H(G̃i(ζ)) ≥ H(G̃i(ζ)) + rgr
i (ζ, ζ, µ, αGi )〈∇Ggr

i (ζ, µ, αGi ), ζ − ζ〉

with respect to distinct FNs ũi1, ũi2, · · · , ũij, j = 1, · · · , n, and µ, αuij ∈ [0, 1].

Remark 2. For p = 1 and rgr
i = 1, the above definition reduces to the granular convex fuzzy

function.

Definition 11. If each G̃i and q̃j is a V-gr-convex fuzzy function for i = 1, · · · , p, and
j = 1, · · · , m, a fuzzy multi-objective programming problem (FCMOP) is considered V-gr-convex
fuzzy multi-objective programming problem.

Remark 3. A gr-convex fuzzy multi-objective programming problem is necessarily a V-gr-convex
fuzzy multi-objective programming problem, but not conversely. In other words, each G̃i and q̃j is a
gr-convex fuzzy function for i = 1, · · · , p, and j = 1, · · · , m, the problem of (FCMOP) is also a
V-gr-convex fuzzy multi-objective programming problem, but not conversely.

For the real-valued multi-objective programming problem, a good example has been given
by Jeyakumar and Mond in [28]. A similar fuzzy multi-objective programming issue example is
as follows.

Example 1. Let c̃ = (1, 2, 3) and d̃ = (0, 1, 2), It is considered by us that the following fuzzy
multi-objective programming problem.

minimizeζ∈R2 G̃(ζ) = (G̃1(ζ), G̃2(ζ)) = (c̃ ·
ζ2

1
ζ2

, d̃ · ζ2

ζ1
)

Subject to q̃1(ζ) = 1− ζ1 ≤ 0,

q̃2(ζ) = 1− ζ2 ≤ 0.

The following is the HMF of G̃(ζ) for µ, αc, αd ∈ [0, 1].

H(G̃(ζ)) = (H(G̃1(ζ)),H(G̃2(ζ))),

where

H(G̃1(ζ)) = [µ + 1 + (2− 2µ)αc] ·
ζ2

1
ζ2

,

and
H(G̃2(ζ)) = [µ + (2− 2µ)αd] ·

ζ2

ζ1
.

Seeing that this problem is a V-gr-convex fuzzy multi-objective programming problem with

rgr
G1

= ζ2
ζ2

, rgr
G2

= ζ1
ζ1

, rgr
q1 = rgr

q2 = 1is easy, but this issue does not live up to the gr-convexity
guidelines.

For example, for G̃2(ζ), we can check it satisfies the guideline of Definition 10 for ζ, ζ ∈ S.

∇Ggr
2 (ζ, µ, αG2) = (

−[µ + (2− 2µ)αd] · ζ2

ζ2
1

,
µ + (2− 2µ)αd

ζ1
)T ,

and

rgr
G2
(ζ, ζ, µ, αG2)〈∇Ggr

2 (ζ, µ, αG2), ζ − ζ〉 = [µ + (2− 2µ)αd] · [ζ1ζ2 − ζ2ζ1]

ζ1ζ1
,
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and

H(G̃2(ζ))−H(G̃2(ζ)) =
[µ + (2− 2µ)αd] · [ζ1ζ2 − ζ2ζ1]

ζ1ζ1
.

The above equations means that

H(G̃2(ζ))−H(G̃2(ζ)) = rgr
G2
(ζ, ζ, µ, αG2)〈∇Ggr

2 (ζ, µ, αG2), ζ − ζ〉,

So, G̃2(ζ) satisfies the guideline of Definition 10. We also can check that G̃1 and q̃j is a
V-gr-convex fuzzy function for j = 1, 2. From Definition 11, this issue is a V-gr-convex fuzzy
multi-objective programming issue. But this issue does not live up to the gr-convexity guidelines.

Proposition 2. Assume that ϕ : R → R is differentiable and convex with positive
derivative everywhere and g̃ : K → Ep is a V-gr-convex fuzzy vector function. Then,
Q̃(ζ) = (ϕ(g̃1(ζ)), · · · , ϕ(g̃p(ζ))) is also a V-gr-convex fuzzy vector function.

Proof. Let ζ, ζ ∈ K. According to the monotonicity of ϕ and V-gr-convexity of g̃, we get

ϕ(H(g̃i(ζ))) ≥ ϕ[H(g̃i(ζ)) + rgr
i (ζ, ζ, µ, αgi )〈∇Ggr

i (ζ, µ, αgi ), ζ − ζ〉]

≥ ϕ[H(g̃i(ζ))] + ϕ
′
[H(g̃i(ζ))][r

gr
i 〈∇Ggr

i (ζ, µ, αgi ), ζ − ζ〉].

Therefore, Q̃(ζ) is also a V-gr-convex fuzzy vector function.

Definition 12. A viable point ζ ∈ K is denoted as a vector critical point to (FMOP) if there exists
a vector λgr ∈ Rp with λ

gr
i > 0 such that

p

∑
i=1

λ
gr
i ∇Ggr

i (ζ, µ, αG) = 0

for αG = (αu1 , αu2 , · · · , αun) with regard to distinct FNs ũ1, ũ2, · · · , ũn.
The vector critical point of (FMOP) is defined as the point ζ where a non-negative linear

combination of the granular gradient vectors of each component fuzzy objective function equal to
zero.

Example 2. Let ṽ1 = (−1, 1, 3), ṽ2 = (0, 1, 2), ṽ3 = (1, 2, 4), ṽ4 = (3, 4, 5), ṽ5 = (1, 2, 3). It is
considered by us that the unconstrained fuzzy multi-objective programming issue

minimize G̃(ζ) = (G̃1(ζ), G̃2(ζ)) = (ṽ1ζ2
1 + ṽ2ζ1ζ2 + ṽ3ζ2

2, ṽ4ζ2
1 + ṽ5ζ2

2)

Subject to ζ ∈ R2.

The following is the HMF of G̃(ζ)for µ, αvi ∈ [0, 1] and i = 1, 2, 3, 4, 5.

H(G̃(ζ)) = (H(G̃1(ζ)),H(G̃2(ζ))),

where

H(G̃1(ζ)) = [−1 + 2µ + (4− 4µ)αv1 ]ζ
2
1 + [µ + (2− 2µ)αv2 ]ζ1ζ2 + [1 + µ + (3− 3µ)αv3 ]ζ

2
2,

and
H(G̃2(ζ)) = [3 + µ + (2− 2µ)αv4 ]ζ

2
1 + [1 + µ + (2− 2µ)αv5 ]ζ

2
2.

The granular gradient of G̃ as follows,

∇Ggr
1 (ζ, µ, αG1) = (2[−1 + 2µ + (4− 4µ)αv1 ]ζ1 + [µ + (2− 2µ)αv2 ]ζ2,

[µ + (2− 2µ)αv2 ]ζ1 + 2[1 + µ + 3− 3µ)αv3 ]ζ2)
T ,
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and
∇Ggr

2 (ζ, µ, αG2) = (2[3 + µ + (2− 2µ)αv4 ]ζ1, 2[1 + µ + (2− 2µ)αv5 ]ζ2)
T .

We can see that ζ = (0, 0)T is a vector critical point to this unconstrained fuzzy multi-objective
programming problem, there exists a vector λgr ∈ R2 with λ

gr
i > 0 such that ∑

p
i=1 λ

gr
i ∇Ggr

i
(ζ, µ, αG) = 0 for αG = (αv1 , αv2 , · · · , αv5) and i = 1, 2.

Based on the HMF of the fuzzy function, we may delimit the notions of granular
pseudoconvex and granular pseudoconcave fuzzy functions, which are comparable to the
definition of real-valued generalized convex functions.

Definition 13. Assume that G̃ : K → E is a gr-differentiable fuzzy function defined on an open
convex set K ⊆ Rn. G̃ is denoted as granular pseudoconvex (gr-pseudoconvex) at ζ ∈ K, if for all
δ ∈ K, one has

〈∇Ggr(ζ, µ, αG), δ− ζ〉 ≥ 0⇒ H(G̃(δ) ≥ H(G̃(ζ));

or equivalently,
H(G̃(δ) < H(G̃(ζ))⇒ 〈∇Ggr(ζ, µ, αG), δ− ζ〉 < 0

for αG = (αu1 , αu2 , · · · , αun) with respect to distinct FNs ũ1, ũ2, · · · , ũn and µ, αui ∈ [0, 1].
The G̃ : K → E is called gr-pseudoconvex on K, if the above property is contented for all

ζ ∈ K. The G̃ is called gr-pseudoconcave on K, if −G̃ is gr-pseudoconvex on K. The G̃ is called
gr-pseudolinear on K, if G̃ is both gr-pseudoconvex and gr-pseudoconcave on K.

Definition 14. Assume that G̃ : K → E is a gr-differentiable fuzzy function defined on an open
convex set K ⊆ Rn. The G̃ is regarded as strictly granular pseudoconvex (gr-pseudoconvex) at
ζ ∈ K, if for all δ ∈ K, ζ 6= δ one has

H(G̃(δ) ≤ H(G̃(ζ))⇒ 〈∇Ggr(ζ, µ, αG), δ− ζ〉 < 0

for αG = (αu1 , αu2 , · · · , αun) with respect to distinct FNs ũ1, ũ2, · · · , ũn and µ, αui ∈ [0, 1].
The fuzzy function G̃ : K → E is called strictly gr-pseudoconvex on K, if the above property is

contented for all ζ ∈ K.
It is clear that every strictly gr-pseudoconvex fuzzy function is also a gr-pseudoconvex fuzzy

function. However, in conclusion, the reverse is not true.

Proposition 3. Assume that G̃ : K → E is a gr-differentiable fuzzy function defined on an open
convex set K ⊆ Rn. If the fuzzy function G̃ is gr-convex on K, then it also is gr-pseudoconvex on K.

Proof. From Definition 10 and Remark 2, it can be easily proved.

The Proposition 3’s converse is not true.

Example 3. Let ũ1 = (1, 2, 3), ũ2 = (0, 1, 2), It is considered by us that g̃(ζ) = ũ1ζ + ũ2ζ3.
The following is the granular gradient of g̃,

∇ggr(ζ, µ, αg) = [1 + µ + (2− 2µ)αu1 ] + 3[µ + (2− 2µ)αu2 ]ζ
2 > 0,

Then, we own

〈∇ggr(ζ, µ, αg), δ− ζ〉 ≥ 0⇒ H(g̃(δ) ≥ H(g̃(ζ)),

which signifies g̃(ζ) is a gr-pseudoconvex fuzzy function, but it is not a gr-convex fuzzy function.

Definition 15. A fuzzy vector function G̃ = (G̃1, · · · , G̃p) : K → Ep is denoted as vector
granular pseudoconvex (for short: V-gr-pseudoconvex) if there exist function β

gr
i (ζ , ζ , µ , αG i ) :
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K × K × [0, 1 ] j+1 → R+ − {0} and τi > 0 such that for each ζ , ζ ∈ K and for
αGi = (αui1 , · · · , αuij), i = 1, · · · , p,

p

∑
i=1

τi〈∇Ggr
i (ζ, µ, αGi ), ζ − ζ〉 ≥ 0

⇒
p

∑
i=1

β
gr
i (ζ, ζ, µ, αGi )H(G̃i(ζ)) ≥

p

∑
i=1

β
gr
i (ζ, ζ, µ, αGi )H(G̃i(ζ))

with respect to distinct FNs ũi1, ũi2, · · · , ũij, j = 1, · · · , n, and µ, αuij ∈ [0, 1].
We can also define the notions of granular quasiconvex and granular quasiconcave fuzzy functions.

Definition 16. Assume that G̃ : K → E is a gr-differentiable fuzzy function defined on an open
convex set K ⊆ Rn. The G̃ is denoted as granular quasiconvex (gr-quasiconvex) at ζ ∈ K, if for all
δ ∈ K, and λ ∈ [0, 1]

H(G̃(λζ + δ− λδ)) ≤ max{H(G̃(δ)),H(G̃(ζ))}

for αG = (αu1 , αu2 , · · · , αun) with regard to distinct FNs ũ1, ũ2, · · · , ũn and µ, αui ∈ [0, 1].
The G̃ is called gr-quasiconcave on K, if −G̃ is gr-quasiconvex on K. The G̃ is referred to as

strictly gr-quasiconvex if

H(G̃(λζ + δ− λδ)) < max{H(G̃(δ)),H(G̃(ζ))}

is contented for ζ 6= δ and λ ∈ [0, 1].

Example 4. The fuzzy function

g̃(ζ) =

{
ã|ζ|

ζ , i f ζ 6= 0,
0, i f ζ = 0,

(1)

and ã = (1, 2, 3).
It is clear that g̃(ζ) is a gr-quasiconvex fuzzy function on K.

For real-valued functions, the following theorem characterizes differentiable quasicon-
vex functions. The proof can be found in [29].

Theorem 2 ([29]). Assume that K ⊆ Rn is an open convex set and assume that g : K → R is a
differentiable function on K. Then, g is quasiconvex on K,⇔ The following implication is true.

g(δ) ≤ g(ζ)⇒ 〈∇g(ζ), δ− ζ〉 ≤ 0, ∀δ, ζ ∈ K.

Since the HMF of a fuzzy function is a real-valued function, we can propose the
following proposition for the gr-differentiable quasiconvex fuzzy function by Theorem 2.

Proposition 4. Assume that G̃ : K → E is a gr-differentiable fuzzy function defined on an open
convex set K ⊆ Rn. Then, G̃ is gr-quasiconvex on K ⇔ The following implication is true.

H(G̃(δ)) ≤ H(G̃(ζ))⇒ 〈∇Ggr(ζ, µ, αG), δ− ζ〉 ≤ 0, ∀ζ, δ ∈ K,

for αG = (αu1 , αu2 , · · · , αun) with respect to distinct FNs ũ1, ũ2, · · · , ũn and µ, αui ∈ [0, 1].

Proof. Since H(G̃(δ)) and H(G̃(ζ)) are two real-valued functions. From Theorem 2, we
can easily prove this proposition.
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Definition 17. A fuzzy vector function G̃ = (G̃1, · · · , G̃p) : K → Ep is denoted as vector granular
quasiconvex (for short: V-gr-quasiconvex) if there exist function δ

gr
i (ζ,ζ,µ,αGi) : K× K× [0,1]j+1 →

R+−{0} and λi > 0 such that for each ζ,ζ ∈ K and for αGi = (αui1 , · · · , αuij), i = 1, · · · , p,

p

∑
i=1

δ
gr
i (ζ, ζ, µ, αGi )H(G̃i(ζ)) ≤

p

∑
i=1

δ
gr
i (ζ, ζ, µ, αGi )H(G̃i(ζ)),

⇒
p

∑
i=1

λi〈∇Ggr
i (ζ, µ, αGi ), ζ − ζ〉 ≤ 0

with respect to distinct FNs ũi1, ũi2, · · · , ũij, j = 1, · · · , n, and µ, αuij ∈ [0, 1].

4. The Karush-Kuhn-Tucker Optimality Guidelines

In this part, we will present the KKT optimality guidelines for the problems of (FMOP)
and (FCMOP) based on the gr-convexity and gr-differentiability.

4.1. Optimality Guidelines for the Issue of (FMOP)

The following Gordan’s alternative theorem will be used to establishing the essential
optimality guidelines. Mangasarian [29] provides evidence for this.

Theorem 3. Assume that C is a p× n matrix, then either
(i) Cζ < 0 has a result ζ ∈ Rn;
or
(ii) CTδ = b, δi ≥ 0, i = 1, · · · , p for some nonzero δ ∈ Rp, but never both.

At present time, we present the following KKT optimality guidelines for the issues of
(FMOP).

Theorem 4. Assume that G̃ is a V-gr-convex fuzzy vector function, then ζ is a WES for the issue
of (FMOP)⇔ ζ is a vector critical point to the problem of (FMOP).

Proof. (⇐) Since ζ is a vector critical point, then there exists a vector λgr ∈ Rp with λ
gr
i > 0

such that
p

∑
i=1

λ
gr
i ∇Ggr

i (ζ, µ, αG) = 0, i = 1, · · · , p

for αG = (αu1 , αu2 , · · · , αun) with respect to distinct FNs ũ1, ũ2, · · · , ũn.
Suppose that the point ζ is not a WES for the issue of (FMOP). Then there exists ζ ∈ K

such that
G̃(ζ) ≺ G̃(ζ).

From Definition 7 and Proposition 1, we get

H(G̃i(ζ)) < H(G̃i(ζ)), i = 1, · · · , p.

Since G̃ is a V-gr-convex fuzzy vector function, there exist function rgr
i (ζ, ζ, µ, αGi ) :

K × K × [0, 1]j+1 → R+ − {0} such that for each ζ, ζ ∈ K and for αGi = (αui1 , · · · , αuij),
i = 1, · · · , p,

H(G̃i(ζ)) ≥ H(G̃i(ζ)) + rgr
i (ζ, ζ, µ, αGi )〈∇Ggr

i (ζ, µ, αGi ), ζ − ζ〉.

According to the two inequations above, we obtain

rgr
i 〈∇Ggr

i (ζ, µ, αGi ), ζ − ζ〉 < 0, i = 1, · · · , p,
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and for λ
gr
i = rgr

i > 0, we have

p

∑
i=1

λ
gr
i 〈∇Ggr

i (ζ, µ, αGi ), ζ − ζ〉 < 0, i = 1, · · · , p,

which is a conflict. So the point ζ is a WES for the issue of (FMOP).
(⇒) Assume that the point ζ is a WES for the problem of (FMOP), then there exists no

ζ ∈ K such that
G̃(ζ) ≺ G̃(ζ).

According to Definition 7 and Proposition 1, obtain

H(G̃i(ζ)) < H(G̃i(ζ)), i = 1, · · · , p.

From the V-gr-convexity of the fuzzy vector function, we have

0 > H(G̃i(ζ))−H(G̃i(ζ)) ≥ rgr
i 〈∇Ggr

i (ζ, µ, αGi ), ζ − ζ〉,

which means
p

∑
i=1

rgr
i 〈∇Ggr

i (ζ, µ, αGi ), ζ − ζ〉 < 0.

According to Gordan’s alternative theorem and the above inequation, there exists a
vector λgr ∈ Rp with λ

gr
i > 0 such that

p

∑
i=1

λ
gr
i ∇Ggr

i (ζ, µ, αG) = 0, i = 1, · · · , p.

So, the issue of (FMOP) has a vector critical point called ζ.

As is known to all that for real-valued multi-objective optimizations, based on the
convexity hypothesis, the vector critical point, the WES and the solutions with optimality
for weighting scalar issues coincide. And Osuna-Gómez et al. [30] have proved this results
under the assumptions of invexity. We can also shown that the results are contented under
the V-gr-convexity hypothesis for (FMOP).

It is considered by us that the following gr-differentiable weighting optimization issue:

(SOP) min λ1Ggr
1 (ζ, µ, αG1) + λ2Ggr

2 (ζ, µ, αG2) + · · ·+ λpGgr
p (ζ, µ, αGp)

ζ ∈ K ⊆ Rn.

where λ = (λ1, · · · , λp)T ∈ Rp.

Theorem 5. Assume that G̃ is a V-gr-convex fuzzy vector function on an open set K, then all WES
of (FMOP) work out the weighting scalar problem (SOP) with λ ≥ 0.

Proof. Assume that ζ is a WES of (FMOP), from Theorem 4, then there exists
λgr = (λ

gr
1 , · · · , λ

gr
p )T ∈ Rp with λ ≥ 0 so that

p

∑
i=1

λ
gr
i ∇Ggr

i (ζ, µ, αG) = 0, i = 1, · · · , p.

Since G̃ is a V-gr-convex fuzzy vector function, then

H(G̃i(ζ))−H(G̃i(ζ)) ≥ rgr
i 〈∇Ggr

i (ζ, µ, αGi ), ζ − ζ〉,
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and
p

∑
i=1

[H(λ
gr
i G̃i(ζ))−H(λ

gr
i G̃i(ζ))] ≥

p

∑
i=1

λ
gr
i rgr

i 〈∇Ggr
i (ζ, µ, αGi ), ζ − ζ〉 = 0.

Then, we have
p

∑
i=1

[H(λ
gr
i G̃i(ζ))−H(λ

gr
i G̃i(ζ))] ≥ 0.

From the above inequation and Remark 1, we obtain

H(
p

∑
i=1

λ
gr
i G̃i(ζ))−H(

p

∑
i=1

λ
gr
i G̃i(ζ)) ≥ 0,

which means
p

∑
i=1

λ
gr
i Ggr

i (ζ, µ, αGi ) ≥
p

∑
i=1

λ
gr
i Ggr

i (ζ, µ, αGi ).

Therefore, ζ is a solutions with optimality for (SOP) with λgr ≥ 0.

Theorem 6. Assume that ζ is a vector critical point for (FMOP), and G̃i, i = 1, · · · , p is a
gr-pseudoconvex fuzzy function at ζ. Then ζ is a WES of (FMOP).

Proof. Assume that ζ is a vector critical point for (FMOP), then there exists λgr ≥ 0
such that

p

∑
i=1

λ
gr
i ∇Ggr

i (ζ, µ, αG) = 0, i = 1, · · · , p.

If there exists another ζ ∈ K such that G̃(ζ) ≺ G̃(ζ), from Proposition 1, which
means H(G̃i(ζ) < H(G̃i(ζ)) for i = 1, · · · , p. According to the gr-pseudoconvexity of
G̃i, i = 1, · · · , p, we have

〈∇Ggr
i (ζ, µ, αG), ζ − ζ〉 < 0,

and
p

∑
i=1
〈λgr

i ∇Ggr
i (ζ, µ, αG), ζ − ζ〉 < 0.

According to Gordan’s alternative theorem, this system

p

∑
i=1

λ
gr
i ∇Ggr

i (ζ, µ, αG) = 0, i = 1, · · · , p.

have no solutions, which contradicts ζ is a vector critical point for (FMOP). So, ζ is a WES
of (FMOP).

Example 5. Consider Example 2, G̃i(ζ) is a gr-pseudoconvex fuzzy function, so the vector critical
point ζ∗ = (0, 0)T is a WES of (FMOP) based on Theorem 6.

4.2. Optimality Guidelines for the Problem of (FCMOP)

The following Motzkin’s alternative theorem and Kuhn-Tucker constraint qualification
(KTCQ) will be used to establishing the necessary optimality guidelines. These results can
be found in Mangasarian [29].

The (KTCQ) is shown below.

Definition 18. Assume that the constraint functions q̃j, j = 1, · · · , m of the (FCMOP) is contin-
uously gr-differentiable at ζ ∈ S. The (FCMOP) is said to be satisfy the (KTCQ) at ζ, if for any
d ∈ Rn such that

〈∇qgr
j (ζ, µ, αqj), d〉 ≤ 0, ∀j ∈ J(ζ),
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there exists a vector function β : [0, 1]→ Rn, which is continuously differentiable at 0 and some
real number γ > 0 such that

β(0) = ζ,H[q̃j(β(ς))] ≤ 0, ∀ς ∈ [0, 1] and β
′
(ς) = γd.

The Motzkin’s alternative theorem as follows.

Theorem 7. Assume that X, Y and Z is given p1 × n, p2 × n and p3 × n matrices, with X being
nonvacuous. Then,

(i) Xς > 0, Yς ≥ 0, Zς = 0, has a solution ς ∈ Rn,
or
(ii) XTø1 + YTø2 + ZTø3 = 0, ø1 ≥ 0, ø3 = 0 has a solution ø1, ø2, ø3,
but never both.

At present, we create the optimality guidelines for the issue of (FCMOP) based on vec-
tor granular convexity and granular differentiability. The necessary optimality guidelines
as follows.

Theorem 8. Assume that G̃(ζ) : K → Ep and q̃(ζ) : K → Em is continuously vector gr-
differentiable fuzzy functions at ζ ∈ K ⊆ Rn. Assume that the (KTCQ) is contented at ζ. Then, a
guideline with necessity for ζ to be a WES for (FCMOP) is that there exist multipliers λgr ∈ Rp

and rgr ∈ Rm, such that

p

∑
i=1

λ
gr
i ∇Ggr

i (ζ, µ, αGi ) +
m

∑
j=1

rgr
j ∇qgr

j (ζ, µ, αqj) = 0, (2)

rgr
j qgr

j (ζ, µ, αqj) = 0, j = 1, · · · , m, (3)

λ
gr
i ≥ 0, λgr 6= 0, rgr

j ≥ 0, i = 1, · · · , p.

Proof. Suppose ζ is a WES for (FCMOP). First of all, we evidence the follows system has
no result d ∈ Rn.

〈∇Ggr
i (ζ, µ, αGi ), d〉 < 0, ∀i = 1, · · · , p. (4)

〈∇qgr
j (ζ, µ, αqj), d〉 ≤ 0, ∀j ∈ J(ζ). (5)

If the above system has a result d ∈ Rn. From the (KTCQ), there exists a function
β : [0, 1]→ Rn which is a continuously differentiable function at 0 and some real number
γ > 0 such that

β(0) = ζ,H[q̃j(α(ς))] ≤ 0, ∀ς ∈ [0, 1] and α
′
(ς) = γd.

Since G̃(ζ) : K → Ep is a continuously vector gr-differentiable fuzzy functions at ζ,
then for every G̃i, we obtain

H[G̃i(β(ς))] =H[G̃i(ζ)] + 〈∇Ggr
i (ζ, µ, αGi ), β(ς)− ζ〉+ ‖β(ς)− ζ‖ϕ(β(ς), ζ)

=H[G̃i(ζ)]+〈∇Ggr
i (ζ, µ, αGi ), β(ς)−β(0)〉+‖β(ς)−β(0)‖ϕ(β(ς), β(0))

=H[G̃i(ζ)] + ς〈∇Ggr
i (ζ, µ, αGi ),

β(0 + ς)− β(0)
ς

〉

+‖β(ς)− β(0)‖ϕ(β(ς), β(0)), (6)

where, for ς→ 0, we get
limς→0‖β(ς)− β(0)‖ = 0,
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and
β(0 + ς)− β(0)

ς
→ β

′
(0) = γd.

From (6) and the assumption 〈∇Ggr
i (ζ, µ, αGi ), d〉 < 0, ∀i = 1, · · · , p, we have

H[G̃i(β(ς))] < H[G̃i(ζ)], ∀i = 1, · · · , p,

for sufficiently small ς > 0.
According to Proposition 1 andH[q̃j(β(ς))] ≤ 0, we get

G̃i(β(ς)) ≺ G̃i(ζ), ∀i = 1, · · · , p,

and
q̃j(β(ς)) � 0̃, ∀j = 1, · · · , m,

which conflicts ζ is a WES for (FCMOP). So, the system (4)–(5) has no solution. From
Motzkin’s alternative theorem, there exist λ

gr
i ≥ 0, λgr 6= 0, rgr

j ≥ 0, i = 1, · · · , p and

j ∈ J(ζ), such that

p

∑
i=1

λ
gr
i ∇Ggr

i (ζ, µ, αGi ) +
m

∑
j∈J(ζ)

rgr
j ∇qgr

j (ζ, µ, αqj) = 0.

If we setting rgr
j = 0 for all j ∈ {1, · · · , m} \ J(ζ), we obtain

p

∑
i=1

λ
gr
i ∇Ggr

i (ζ, µ, αGi ) +
m

∑
j=1

rgr
j ∇qgr

j (ζ, µ, αqj) = 0,

rgr
j qgr

j (ζ, µ, αqj) = 0, j = 1, · · · , m,

λ
gr
i ≥ 0, λgr 6= 0, rgr

j ≥ 0, i = 1, · · · , p.

are contented at ζ.

By the gr-convexity of objective and constraint functions, we obtain the guidelines
with sufficient optimality as follows.

Theorem 9. Assume that ζ is a feasible result for the (FCMOP) and G̃(ζ) : K → Ep is a
V-gr-pseudoconvex and vector gr-differentiable fuzzy function, and q̃(ζ) : K → Em is a V-gr-
quasiconvex and vector gr-differentiable fuzzy function at ζ. If there exist multipliers 0 < λgr ∈ Rp

and 0 ≤ rgr ∈ Rm, such that (2)–(3) are satisfied. Then, ζ is an ES for the (FCMOP).

Proof. Assume that ζ ∈ S is a feasible result of the issue (FCMOP). Then,

q̃j(ζ) � 0̃, ∀j = 1, · · · , m,

from Proposition 1, which means

H[q̃j(ζ)] ≤ 0, ∀j = 1, · · · , m.

Since (2)–(3) are satisfied at ζ, then for 0 ≤ rgr ∈ Rm, we obtain

rgr
j qgr

j (ζ, µ, αqj) = 0, j = 1, · · · , m,

which means



Fractal Fract. 2022, 6, 600 15 of 18

H[rgr
j q̃j(ζ)] = 0, j = 1, · · · , m.

Then, from Remark 1, we obtain

m

∑
j=1

rgr
j H[q̃j(ζ)] ≤

m

∑
j=1

rgr
j H[q̃j(ζ)].

By the V-gr-quasiconvexity of q̃(ζ) and the above inequality, we obtain

m

∑
j=1

rgr
j 〈∇qgr

j (ζ, µ, αqj), ζ − ζ〉 ≤ 0.

Consequently, from (2), we obtain

p

∑
i=1

λ
gr
i 〈∇Ggr

i (ζ, µ, αGi ), ζ − ζ〉 ≥ 0.

By the V-gr-pseudoconvexity of G̃(ζ) and the inequality above, we obtain

p

∑
i=1

β
gr
i (ζ, ζ, µ, αGi )H(G̃i(ζ)) ≥

p

∑
i=1

β
gr
i (ζ, ζ, µ, αGi )H(G̃i(ζ)), (7)

is contented for β
gr
i (ζ, ζ, µ, αGi ) : K× K× [0, 1]j+1 → R+ − {0}.

On the contrary, assume that ζ is not an ES for the (FCMOP). Then, there exists some
point ζ ∈ S, such that

G̃(ζ) � G̃(ζ),

and there exists k such that

G̃k(ζ) ≺ G̃k(ζ), k ∈ {1, · · · , p}.

By Proposition 1 and 0 < β
gr
i , we have

p

∑
i=1

β
gr
i H(G̃i(ζ)) <

p

∑
i=1

β
gr
i H(G̃i(ζ)),

which is a conflict to (7). So, ζ is an ES for the (FCMOP).

Example 6. Consider the example as follows.

minimize G̃(ζ) = (G̃1(ζ), G̃2(ζ))

S.t. G̃1(ζ) = ṽ1(ζ1 − 1)2 + ṽ2(ζ2 − 1)2,

G̃2(ζ) = ṽ3(ζ1 − ζ2)
2,

q̃1(ζ) = ζ1 + ṽ4ζ2 − 6 � 0̃,

q̃2(ζ) = ṽ5ζ1 + ζ2 − 6 � 0̃,

where ṽ1 = (0, 1, 2), ṽ2 = (0, 1, 2), ṽ3 = (3, 4, 5), ṽ4 = (1, 2, 3) and ṽ5 = (1, 2, 3).
The HMF of G̃1(ζ) and G̃2(ζ) as follows,

H(G̃1(ζ)) = [µ + (2− 2µ)α1](ζ1 − 1)2 + [µ + (2− 2µ)α2](ζ2 − 1)2,

and
H(G̃2(ζ)) = [3 + µ + (2− 2µ)α3](ζ1 − ζ2)

2.
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The HMF of q̃1(ζ) and q̃2(ζ) as follows,

H(q̃1(ζ)) = ζ1 + [1 + µ + (2− 2µ)α4]ζ2 − 6,

and
H(q̃2(ζ)) = [1 + µ + (2− 2µ)α5]ζ1 + ζ2 − 6.

Then, we have

∇Ggr
1 (ζ, µ, αG1) = (2[µ + (2− 2µ)α1](ζ1 − 1), 2[µ + (2− 2µ)α2](ζ2 − 1))T ,

and

∇Ggr
2 (ζ, µ, α3) = (2[3 + µ + (2− 2µ)α3](ζ1 − ζ2),−2[3 + µ + (2− 2µ)α3](ζ1 − ζ2))

T ,

where αG1 = (α1, α2).

∇qgr
1 (ζ, µ, α4) = (1, [1 + µ + (2− 2µ)α4])

T ,

and
∇qgr

2 (ζ, µ, α5) = ([1 + µ + (2− 2µ)α5], 1)T .

By the optimality guidelines, we have

2λ
gr
1 [µ + (2− 2µ)α1](ζ1 − 1) + 2λ

gr
2 [3 + µ + (2− 2µ)α3](ζ1 − ζ2)

−rgr
1 − rgr

2 [1 + µ + (2− 2µ)α5] = 0,

2λ
gr
1 [µ + (2− 2µ)α2](ζ2 − 1)− 2λ

gr
2 [3 + µ + (2− 2µ)α3](ζ1 − ζ2)

−rgr
1 [1 + µ + (2− 2µ)α4]− rgr

2 = 0,

rgr
1 {ζ1 + [1 + µ + (2− 2µ)α4]ζ2 − 6} = 0,

rgr
2 {[1 + µ + (2− 2µ)α5]ζ1 + ζ2 − 6} = 0,

λ
gr
i ≥ 0, rgr

j ≥ 0, i = 1, 2, j = 1, 2,

ζ1 + [1 + µ + (2− 2µ)α4]ζ2 − 6 ≥ 0,

[1 + µ + (2− 2µ)α5]ζ1 + ζ2 − 6 ≥ 0.

where µ, α1, α2, α3, α4, α5 ∈ [0, 1].
By calculating, we obtain ζ∗ = (2, 2)T is a KKT point when µ = 1, ασ = 0, σ = 1, 2, 3, 4, 5

and λ
gr
1 = 1, rgr

1 = rgr
2 = 2

3 . Seeing the vector fuzzy function G̃(ζ) is a V-gr-convex vector fuzzy
function and the vector fuzzy function q̃(ζ) is a linear vector fuzzy function is easy. So, this problem
satisfy the assumptions of Theorem 9. Then, ζ∗ is an ES for this issue.

5. Conclusions

In this thesiss, for vector fuzzy-valued functions, we recommended the notions of
V-gr-convexity, V-gr-pseudo-convexity, and V-gr-quasiconvexity. These are the vector
real-valued functions’ extensions of convexity, pseudoconvexity, and quasiconvexity. V-gr-
convexity, V-gr-pseudoconvexity, V-gr-quasiconvexity, and V-gr-differentiability for vector
fuzzy-valued functions were also explored. Under the assumptions of V-gr-convexity and
V-gr-differentiability, we also certificated the optimality guidelines. Our findings extended
the previous findings to the (FMOP) and (FCMOP).
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