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Abstract: The objective of this study is to examine numerical evaluations of the mosquito dispersal
mathematical system (MDMS) in a heterogeneous atmosphere through artificial intelligence (AI)
techniques via Bayesian regularization neural networks (BSR-NNs). The MDMS is constructed with
six classes, i.e., eggs, larvae, pupae, host, resting mosquito, and ovipositional site densities-based
ODEs system. The computing BSR-NNs scheme is applied for three different performances using
the data of training, testing and verification, which is divided as 75%, 15%, 10% with twelve hidden
neurons. The result comparisons are provided to check the authenticity of the designed AI method
portrayed by the BSR-NNs. The AI based BSR-NNs procedure is executed to reduce the mean square
error (MSE) for the MDMS. The achieved performances are also presented to validate the efficiency
of BSR-NNs scheme using the process of MSE, correlation, error histograms and regression.

Keywords: mosquito dispersal mathematical system; artificial intelligence; Bayesian regularization
neural networks; numerical results; neurons

1. Introduction

The spread of the mosquito has a significant role in supporting the persistence and
resurgence of various vector-borne diseases. There are numerous studies made on spatial
variability based on mosquitoes, including the human association with vectors, breeding
and host locations, the community pattern of mosquitoes, and the capacity to manage the
spread of the virus. Floral, dengue, yellow fever, malaria, and other serious viruses are
spread through mosquitoes. Malaria represents a significant geographic differential that is
primarily affected by social migration, treatment response, and changes in the climate [1,2].
The environment of mosquitoes has a dominant contribution in preventing disease from
spreading in the range of 100–1000 m [3]. Like some of the other insects, mosquitos can
migrate in just about any direction, but they can also transport partial stocks when supplies
are readily available.

Ronald Ross initially addressed the need to manage and prevent the spread of vector-
borne diseases a century back [4]. Additionally, he noted that the public health-based
community does not address this issue. According to Ross, the ratios of mosquito repro-
duction, immigration, mortality, and emigration determine the number of insects in any
given region. According to Manga et al. [5], the temporal difference in the mosquitoes’
usage of different characteristics affects both their reproductive rate and dispersal. This
demonstrates the discrepancy in vector density, host knowledge, and disease transmis-
sion capacity [6,7]. The characteristics of the sources on the transmission may not make
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sense, for example, the presence of inactive larval habitats may indicate high bite densi-
ties [8]. Experiments on mosquito transmission, meanwhile, provide some encouraging
results [9,10].

The outcomes of occurrences that are motivating to a wide range of fields are often
provided and understood by mathematical techniques, but insufficient systems possess
integrated diversity or dispersal features of a close population vector [11–13]. The insect’s
adult stages have been divided into a number of categories [14]. A system can include
the architecture of the mosquito life cycle, distribution/feeding cycle, spatial variation for
the insect species, and propagation/diversity impacts. The diffusion technique, which
simulates space as just a persisting variable, has generally been utilized in space studies.
Despite the validity of distribution networks that took heterogeneity into consideration,
integrating a number of distracting aspects is difficult [15,16]. A metapopulational method
is more suitable for modeling mosquito dispersion in zones that are discontinuous squares,
and the population is allotted to isolated regions. At each point, the population is divided
into subgroups that correlate to various scenarios and various categorized systems. The
diversity present in the habitats of the spreading disease has been harmonized by a num-
ber of dispersion frameworks [17,18]. Furthermore, the aqueous portions of mosquitoes
offer a complete context to represent the non-uniform schemes of the insects’ interference
management.

The mosquito dispersal mathematical system (MDMS) in a heterogeneous atmosphere
is classified into six densities: eggs E(u), larvae L(u), pupae P(u), host density Ah(u),
resting mosquito Ar(ξ), and ovipositional site A0(u), presented in Figure 1.
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The mathematical form of the MDMS is given as [19]:

d
du E(u) = bρA0 A0(u)− (ρE + µE)E(u), E0 = I1,
d

du L(u) = ρEE(u)−
(
ρL + µL2 L(u) + µL1

)
L(u), L0 = I2,

d
du P(u) = ρLL(u)− (µP + ρP)P(u), P0 = I3,
d

du Ah(u) = ρA0 A0(u)−
(
µAh + ρAh

)
Ah(u) + ρPP(u), (Ah)0 = I4,

d
du Ar(u) = −(ρAr + µAr )Ar(u) + ρAh Ah(u), (Ar)0 = I5,
d

du A0(u) = ρAr Ar(u)− (µA0 + ρA0)A0(u), (A0)0 = I6.

(1)

The dynamics behaviour of MDMS represented with in six classes, i.e., eggs, larvae,
pupae, host, resting mosquito and ovipositional site densities-based ODE system, while the
initial conditions are I1 to I6 represented the start values of the six classes, respectively. The
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global and local stability of the system is performed in [19] and after theoretical convergence
proofs following set of the parameters for MDMS are chosen as shown in Table 1 [19].

Table 1. Suitable Values for the MDMS.

Index Particulars Values Range

ρAr Resting mortality rate (MR) to go in ovipositional places 0.5 0.30–0.56
µP Pupae MR 0.4 0.22–0.52
µE MR of eggs 0.5 0.32–0.8
ρL Mature larvae rate into pupae 0.12 0.08–0.17
µAr Resting MR mosquitoes 0.0043 0.03–0.01
ρAh Host mosquitos using the latent conditions 0.46 0.322–0.6
µL2 Dependent density rate-based larvae mortality 0.02 0–1
b Female eggs located per ovipositional 60 50–300
µL1 Density-independent based larvae MR 0.4 0.30–0.58
µA0 MR Mosquito using the ovipositional sites 0.41 0.41–0.56
ρP Rate of pupae growth into mature 0.7 0.33–1
ρA0 Ovipositional rate 3.2 3–4
µAh Mosquitoes MR using the hosts penetrating 0.18 0.12–0.23
ρE Eggs rate into larvae 0.4 0.33–1

The motive of these investigations is to examine the numerical evaluations based
on the mosquito dispersal mathematical system (MDMS) in a heterogeneous atmosphere
using the artificial intelligence (AI) procedures enhanced by the Bayesian regularization
neural networks (BSR-NNs). The AI-based stochastic solvers have been used to solve
various stiff natured models [20–27], however, the MDMS has not been solved before using
the BSR-NNs. Recently, the stochastic applications have been applied in various systems,
some of them are SITR models, singular models, periodic differential systems, dengue
fever model, food chain models and prediction/delay/pantograph systems please see
reference [28–30] and citations mentioned therein. The authors were inspired through these
well-known applications to propose a consistent, reliable and robust platform to solve the
MDMS by applying the BSR-NNs. Several notable findings have important implications in
the current piece of research are marked as:

• A computational novel AI based BSR-NNs is presented to get the numerical solutions
of the MDMS.

• The performance of the AI based BSR-NNs is observed to solve three different varia-
tions of the MDMS.

• For the correctness of the AI scheme portrayed by the BSR-NNs, the comparison
performances using the obtained and reference solutions have been presented.

• Twelve number of hidden neurons have been taken to solve effectively the MDMS by
applying the BSR-NNs.

• The absolute error (AE) is achieved in exceptional performances that demonstrate the
accuracy of the BSR-NNs.

• For the solution of the dynamical MDMS, the correlation performances, error his-
tograms, regression are also provided that endorsed the accuracy.

The remaining parts of this study are given as: Section 2 shows the solutions of the
MDMS by applying the BSR-NNs. Section 3 presents the numerical solutions of the model.
The conclusions are shown in the last Section.

2. Methodology

In this section, the AI scheme enhanced by the BSR-NNs has been presented by using
the MDMS with the obligatory descriptions of the scheme along with its implementation
procedures.

In order to build the network statistics, the numerical capabilities are enabled using
the standard application setting. The computing BSR-NNs scheme is applied for three
different performances using the data of training, testing and verification, which is divided
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as 75%, 15%, 10% with twelve hidden neurons. For the solution of the MDMS, the optimal
cooperation using the matrices with overfitting, underfitting stages, complexity and rapid
convergence, the AI scheme enhanced by the BSR-NNs has been provided. These mech-
anisms have also been adapted in response to extensive reproduction, knowledge, care,
practice, and slight system network variations. The workflow illustrations of the BSR-NNs
scheme for the MDMS are presented in Figure 2.

The AI based BSR-NNs procedure is presented in Figure 3 that shows the general
perception based on the single neuron value. BSR-NNs is constructed on the similar
pattern of as portrayed in Figure 3 to models the dynamics of MDMS while the activation
function of log-sigmoid is incorporated in hidden layers. Table 2 indicates the execution
parameters setting of AI computing scheme enhanced by the BSR-NNs through the small
disproportion with premature convergence. Subsequently, the numerical investigations
with careful consideration have been conducted with parameters as listed Table 2 by the
BSR-NNs stochastic scheme for solving the MDMS.

For the numerical solutions of the dynamical MDMS using the BSR-NNs, the layer
procedure is processed, as presented in Figure 4. It contains a single input layer vector
using 12 hidden numbers of neurons, six outputs for the classes of MDMS and single input
layer of grids of inputs. The nftool commands, which is a Matlab (Version: R2019b) built-in
procedure, is used along with suitable choices of the hidden neurons, authentication data,
testing measures and learning commands based on the construction of the BSR-NNs solver.
The selection of the appropriate for the BSR-NNs is carried out on the basis of extensive
simulations/experimentation on the basis of the trade-off between the underfitting, i.e., pre-
mature convergence, and overfitting, i.e., greater complexity, scenarios. So, by decreasing
number of the neurons to less than 12 we have more chances of underfitting while increasing
the number of neurons to greater than 12 gives a slight improvement in accuracy/precision
but at the cost of considerable additional computations. Moreover, optimal architecture
of neural networks and parameter settings is provided in Figure 4 and Table 2 while
small changes with respect to different cases of MDMS has been done during different test
experiments in the presented study.

Table 2. Parameter Measures Using the Stochastic Procedure.

Parameter Settings

Maximum epochs 200

Fitness 0

Hidden neurons 12

Setting up Mu 0.25

Increasing performances of Mu 14

Adaptive Mu performances 6 × 10−2

Validation fail amount 8

Highest mu values 109

Minimum values of gradient 10−8

Train data 75%

Verification statics 10%

Test performances 15%

Sample selection Random

Output/input/hidden values Single

Dataset generation Runge-Kutta

Other Default
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3. Results and Discussion

The present section shows the numerical results for three variations to solve the MDMS
based on reported study [19] by applying the BSR-NNs, presented as:

Case 1: Suppose the MDMS is presented as:

d
du E(u) = 192A0(u)− 0.9E(u), E0 = 1 × 10−5,
d

du L(u) = 0.4E(u)− (0.52 + 0.02L(u))L(u), L0 = 1 × 10−5,
d

du P(u) = 0.12L(u)− 1.11P(u), P0 = 3 × 10−4,
d

du Ah(u) = 3.2A0(u)− 0.64Ah(u) + 0.7P(u), (Ah)0 = 1 × 10−4,
d

du Ar(u) = −0.5043Ar(u) + 0.46Ah(u), (Ar)0 = 1 × 10−5,
d

du A0(u) = 0.5Ar(u)− 3.61A0(u), (A0)0 = 3 × 10−4.

(2)
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Case 2: Suppose the MDMS is presented as:

d
du E(u) = 192A0(u)− 0.9E(u), E0 = 3 × 10−5,
d

du L(u) = 0.4E(u)− (0.52 + 0.02L(u))L(u), L0 = 3 × 10−5,
d

du P(u) = 0.12L(u)− 1.11P(u), P0 = 6 × 10−4,
d

du Ah(u) = 3.2A0(u)− 0.64Ah(u) + 0.7P(u), (Ah)0 = 3 × 10−4,
d

du Ar(u) = −0.5043Ar(u) + 0.46Ah(u), (Ar)0 = 3 × 10−5,
d

du A0(u) = 0.5Ar(u)− 3.61A0(u), (A0)0 = 6 × 10−4.

(3)

Case 3: Suppose the MDMS is presented as:

d
du E(u) = 192A0(u)− 0.9E(u), E0 = 6 × 10−5,
d

du L(u) = 0.4E(u)− (0.52 + 0.02L(u))L(u), L0 = 6 × 10−5,
d

du P(u) = 0.12L(u)− 1.11P(u), P0 = 9 × 10−4,
d

du Ah(u) = 3.2A0(u)− 0.64Ah(u) + 0.7P(u), (Ah)0 = 6 × 10−4,
d

du Ar(u) = −0.5043Ar(u) + 0.46Ah(u), (Ar)0 = 6 × 10−5,
d

du A0(u) = 0.5Ar(u)− 3.61A0(u), (A0)0 = 9 × 10−4.

(4)

The numerical values presented in equations 2 to 4 are taken in line with the reported
study [19] and further detailed for justification of the parameters can be seen in [19]. The
solutions have been obtained to solve the MDMS by applying the BSR-NNs using the input
[0, 1], with 0.01 step size and 12 numbers of hidden neurons. The achieved numerical
measures to solve the MDMS by applying the BSR-NNs are provided in Figure 5 through
the MSE and STs. The obtained computing MSE based on the train and test are provided
in Figure 5a–c at epochs 3, 5 and 6 for 1st, 2nd and 3rd case performed as 4.9429 × 10−10,
7.2206 × 10−11 and 3.5449 × 10−11. Figure 5d–f presents the gradient results, which are
given as 5.7431 × 10−8, 8.9848 × 10−8 and 2.2346 × 10−8. The predicted data displayed
in these plots demonstrates the reliability and consistency of stochastic BSR-NNs for the
MDMS. The comparison of the operators using the BSR-NNs for the MDMS are shown
in the fitting curves graphs. 6a–c. Figure 6d–f indicates the EHs illustrations that have
been provided as −5.8 × 10−6, −4.7 × 10−7 and 3.51 × 10−7 for 1st to 3rd case. Figure 7
presents the regression performances based on the correlation, which authenticate the
correlation is 1 for each variation, which indicates the perfect system. For the MDMS, the
statics based on train and test demonstrate the accuracy of the computational stochastic
BSR-NNs. Moreover, Table 3 shows the MDMS using the MSE based on the complexity,
test, train and generations.

Table 3. ANNs-LMB Procedure to Solve Each Group of the NDMHA.

Case
MSE

Epoch Gradient Performance Mu Time
Test Train

1 5.504 × 10−10 4.942 × 10−10 3 5.74 × 10−8 4.94 × 10−10 0.0500 4
2 6.064 × 10−11 7.220 × 10−11 5 8.98 × 10−8 7.22 × 10−11 5 3
3 3.775 × 10−11 3.544 × 10−11 6 2.23 × 10−8 3.54 × 10−11 50 2
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Figures 8 and 9 depict the data using the result comparisons and AE measures to solve
the MDMS based on BSR-NNs. Figure 8 presents the correctness of the AI scheme together
with the BSR-NNs through the comparison of results for solving the MDMS. Figure 9
shows the AE measures for each AI scheme together with the BSR-NNs. The AE for the
MDMS based on the density of eggs E(u) lie as 10−4–10−5, 10−4–10−6 and 10−5–10−6,
larvae L(u) density is shown as 10−5–10−6, 10−6–10−7 and 10−5–10−7, density of the
pupae P(u) is presented as 10−5–10−7, 10−5–10−6 and 10−5–10−7, host density Ah(u) lie
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around 10−5–10−7, 10−5–10−6 and 10−5–10−7, resting mosquito Ar(ξ) found as 10−6–10−7,
10−5–10−6 and 10−6–10−7 and ovipositional site A0(u) shown as 10−5–10−7, 10−5–10−6

and 10−5–10−7. These values of the AE present the correctness of AI scheme based on
BSR-NNs for solving the MDMS.
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4. Concluding Remarks

The purpose of this work is to examine the numerical evaluations of the mosquito
dispersal mathematical system in a heterogeneous atmosphere through the procedures
of artificial intelligence enhanced by the Bayesian regularization neural networks. The
nonlinear differential model has been divided into six classes: eggs, pupae, larvae, host,
ovipositional site and resting mosquito densities. Some concluding remarks of the current
work are provided as:

• The stochastic artificial intelligence based on Bayesian regularization neural network
procedure has never been provided before for the numerical solutions of the MDMS.

• The computing BSR-NNs procedure is implemented to solve three different variations
based on the data of training, testing and verification that is respectively given as 75%,
15%, 10%.

• Twelve hidden numbers of neurons have been applied to present the solutions of the
nonlinear mathematical system.

• The correctness of the AI based BSR-NNs is observed by using the comparison proce-
dures of the obtained and reference solutions.

• The AE performances in good measures enhance the precision and exactness of the
scheme for solving the model.

• The achieved results have been presented to authenticate the efficiency of the artifi-
cial intelligence enhanced by the Bayesian regularization neural networks using the
regression/correlation, state transitions and error histograms.

In future, the suggested Bayesian regularization based neural network schemes can be
applied to present the numerical solutions of the nonlinear and dynamical systems [31–41].
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