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Abstract: When performing fractional factorial experiments in a completely random order is imprac-
tical, fractional factorial split-plot designs are suitable options as an alternative. It is well recognized
that the more there are lower order effects of interest at lower order confounding, the better the
designs. From this viewpoint, this paper considers the construction of optimal regular two-level
fractional factorial split-plot designs. The optimality criteria for two different design scenarios are
proposed. Under the newly proposed optimality criteria, the theoretical construction methods of
optimal regular two-level fractional factorial split-plot designs are then proposed. In addition, we also
explore the theoretical construction methods of some optimal regular two-level fractional factorial
split-plot designs under the widely adopted general minimum lower order confounding criterion.

Keywords: general minimum lower order confounding; regular two-level fractional factorial design;
split-plot design

1. Introduction

Regular two-level fractional factorial (FF) designs are commonly used for factorial
experiments. When performing an FF design, it is required to perform the experimental
runs in a completely random order. However, in some experiments, due to the reasons of
being time-consuming or of economic cost, it is impractical or even impossible to perform
the FF experimental runs in a completely random manner. For example, consider a modified
experiment from [1] in which the purpose is to study the corrosion resistance of steel bars
treated with two coatings, say C1 and C2, each at two furnace temperatures, 360 ◦C and
380 ◦C. It takes a long time to reset the furnace and reach a new equilibrium temperature.
The factor furnace temperature is called a hard-to-change factor and the factor coating is
called an easy-to-change factor. To save experimental time, it is desirable to reduce the
times of resetting equilibrium temperature (the hard-to-change factor). To do so, regular
two-level fractional factorial split-plot (FFSP) designs are practical design options. For
more examples of the experiments which involve hard-to-change factors, one may refer
to [1].

For choosing FFSP designs, Ref. [2] proposed the minimum aberration-FFSP (MA-
FFSP) criterion by extending the MA criterion proposed in [3] for FF designs. Since then,
a large amount of study on MA-FFSP designs has been carried out, including Ref. [4],
which discussed the difference between the FF designs and FFSP designs and developed
some theories on MA-FFSP designs; Ref. [5], which developed an algorithm for searching
optimal MA-FFSP designs; Ref. [6], which studied MA-FFSP designs by developing a
finite projective geometric formulation; Ref. [7], which considered the construction of
FFSP designs in terms of consulting designs; Ref. [8], which extended the MA criterion to
multi-level FFSP designs; Ref. [9], which proposed theoretical construction methods for
MA orthogonal split-plot designs; Ref. [10], which considered the design scenario where
the whole plot (WP) factors are more important than the sub-plot (SP) factors under the
MA criterion; and Ref. [11], which constructed the MA FFSP designs for the design scenario
considered in [10] via complementary designs.
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According to the effect hierarchy principle and effect sparsity principle (see [12]), main
effects and two-factor interactions (2FIs) are always of interest, assuming that the third-
and higher-order interactions are negligible. A main effect or 2FI is said to be clear if it
is not aliased with any other main effects or 2FIs. Based on the effect hierarchy principle,
effect sparsity principle, and the concept of clear effects, some work on choosing optimal
FFSP designs were carried out, including Ref. [13], which gave the conditions of an FFSP
design to contain clear main effects and 2FIs; Ref. [14], which gave the bounds on the
maximum number of clear effects of FFSP designs; Ref. [15,16], which studied the mixed-
level FFSP designs with a four-level factor in WP or SP section respectively; Ref. [17] which
investigated the conditions for the FFSP designs which involving some two-level factors
and an eight-level factor to contain clear effects; Ref. [18], which studied the conditions
of FFSP designs with some two-level factors and a 2t-level factor containing various clear
effects; and Ref. [19], which provided the conditions of FFSP designs with some s-level
factors and an st-level factor containing various clear effects.

Apart from the MA and clear effect criterion for the FFSP designs, Ref. [20] extended
the general minimum lower order confounding (GMC) criterion for the regular two-level FF
designs in [21] to the regular two-level FFSP designs and proposed the GMC-FFSP criterion
for assessing the regular two-level FFSP designs. However, the theoretical construction
methods of the optimal regular two-level FFSP designs under the GMC-FFSP criterion have
not been studied yet.

For a regular two-level FFSP design, the effect involving only WP factors is called a
WP effect, and the effect involving at least one SP factor is called an SP effect. The studies
on MA orthogonal FFSP designs in [9] were motivated by five different design scenarios;
among them, two are presented as follows:

Scenario 1: the WP effects and SP effects are equally important.
Scenario 2: the SP effects are more important than the WP effects.

In this paper, we investigate the regular two-level FFSP designs for Scenario 1 and
Scenario 2 based on a commonly adopted principle that the more there are lower order
effects of interest at the lower order confounding, the better the regular two-level FFSP
designs. This viewpoint is different from that considered in [9]. In addition, this paper
also considers constructing optimal regular two-level FFSP designs under the GMC-FFSP
criterion. The contributions of this paper are threefold:

(1) We develop suitable optimality criteria for choosing regular two-level FFSP designs
for Scenarios 1 and Scenario 2 based on the assumption that the effects involving more
than two factors are negligible.

(2) The construction methods of the optimal regular two-level FFSP designs under the
newly proposed optimality criteria are provided.

(3) The construction methods of some optimal regular two-level FFSP designs under the
GMC-FFSP criterion are derived.

The rest of the paper is organized as follows. Section 2 includes some useful notation,
definitions, and the development of the optimality criteria for designs for Scenario 1 and
Scenario 2, respectively. The construction of some optimal regular two-level FFSP designs
are provided in Section 3. Conclusions are given in Section 4.

2. Optimality Criteria, Notation and Definitions

Let k1 = n1 − m1, k2 = n2 − m2, k = k1 + k2, and N = 2k. Throughout the paper,
we use the notation 2(n1+n2)−(m1+m2) to denote a regular two-level FFSP design with n1
WP factors/columns, n2 SP factors/columns, and N runs. Since the factors are assigned
to columns of designs, we do not differentiate between factors and columns. Denote
a1, a2, . . . , ak1 , b1, b2, . . . , bk2 as k independent 2k × 1 columns at +1 and −1 levels. The
saturated design H = H(a1, a2, . . . , ak1 , b1, b2, . . . , bk2) with 2k runs and 2k − 1 columns can
be obtained by taking all possible component-wise products among the k independent
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columns. Let Ha = H(a1, a2, . . . , ak1), without special statement; the columns in H and Ha
are placed one after another in Yates order, i.e.,

H = {a1, a2, a1a2, a3, a1a3, . . . , a1a2 · · · ak1 , b1, a1b1, a1a2b1, . . . , a1 · · · ak1 b1 · · · bk2},
Ha = {a1, a2, a1a2, a3, a1a3, . . . , a1a2 · · · ak1}.

Let S ⊂ H and γ ∈ H; then we denote Bi(S, γ) = #{(d1, . . . , di):d1, . . . , di ∈ S,
d1 · · · di = γ} and ḡ(S) = #{γ:γ ∈ H\S, B2(S, γ) > 0}, where # denotes the cardinality of
a set, d1, . . . , di are mutually different columns in S and d1 · · · di is the column genarated by
taking component-wise products of columns d1, . . . , di.
Let T = (TW , TS) denote a 2(n1+n2)−(m1+m2) design with TW = {a1, a2, . . . , ak1 , ak1+1, . . . , an1}
and TS = {b1, b2, . . . , bk2 , bk2+1, . . . , bn2}, where TW and TS denote the WP section and SP
section in the 2(n1+n2)−(m1+m2) design, respectively. It is worth noting that we have set
TW to contain k1 independent columns and TS to contain k2 independent columns here.
Given any k independent columns a1, a2, . . . , ak1 , b1, b2, . . . , bk2 , choosing a 2(n1+n2)−(m1+m2)

design is equal to choosing m(= m1 + m2) more columns ak1+1, . . . , an1 , bk2+1, . . . , bn2 from
H. Certainly, the m columns ak1+1, . . . , an1 , bk2+1, . . . , bn2 can be generated by some of the
previously stated k independent columns.

Let #
1C

(k)
2 (T) denote the number of main effects which are aliased with k 2FIs, where

k = 0, 1, . . . , K with K = (n
2). Let #

2C
(k)
2 (T) denote the number of 2FIs which are aliased with

k 2FIs, where k = 0, 1, . . . , K− 1. Let #
1(s)C

(0)
(w)

and #
1(s)C

(1)
(w)

denote the number of SP main
effects which are not aliased with any WP effects, and the number of SP main effects which
are aliased with at least one WP effect, respectively. Let #

2(s)C
(0)
(w)

and #
2(s)C

(1)
(w)

denote the
number of SP 2FIs which are not aliased with any WP effects, and the number of SP 2FIs
which are aliased with at least one WP effect, respectively. With these notation, we provide
the optimality criteria for choosing 2(n1+n2)−(m1+m2) designs for Scenario 1 and Scenario 2,
respectively, as follows. The 2(n1+n2)−(m1+m2) designs which can sequentially maximize

#
1C(T) = (#

1(s)C
(0)
(w)

(T) = n2, #
1C2(T), #

2C2(T)), (1)

are optimal for Scenario 1, where #
1C2(T) = (#

1C(0)
2 (T), #

1C(1)
2 (T), . . . , #

1C(K)
2 (T)) and

#
2C2(T) = (#

2C(0)
2 (T), #

2C(1)
2 (T), . . . , #

2C(K−1)
2 (T)). The 2(n1+n2)−(m1+m2) designs which can

sequentially maximize

#
2C(T) = (#

1(s)C
(0)
(w)

(T) = n2, #
1C2(T), #

2(s)C
(0)
(w)

(T)) (2)

are optimal for Scenario 2. By combining (1) and (2), the 2(n1+n2)−(m1+m2) designs which
can sequentially maximize

#
3C(T) = (#

1(s)C
(0)
(w)

(T) = n2, #
1C2(T), #

2C2(T), #
2(s)C

(0)
(w)

(T)) (3)

are optimal under the GMC-FFSP criterion. Let 2n−m denote a regular two-level FF design
with n columns and N = 2n−m runs. For a 2n−m design D, the notation #

1C
(k)
2 (D) and

#
2C

(k)
2 (D) have the same meanings as #

1C
(k)
2 (T) and #

2C
(k)
2 (T), respectively. A 2n−m design D

which can sequentially maximize

(#
1C2(D), #

2C2(D)) (4)

is optimal under the GMC criterion. To avoid confusion, hereafter, we use the expression
GMC-FF instead of GMC to present the contents relative to the 2n−m designs.

Before introducing the theoretical results of this work, we introduce some more no-
tation. Let Fa = F(a1, a2, . . . , ak1) be the set of columns which are the component-wise
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products of all possible odd number of columns among the k1 independent columns
a1, a2, . . . , ak1 , i.e., Fa = {a1, a2, a3, a1a2a3, a4, a1a2a4, a1a3a4, a2a3a4, . . . }. The set Fb = F(b1,
b2, . . . , bk2) and Fab = F(a1, a2, . . . , ak1 , b1, b2, . . . , bk2) are similarly defined. Denote
Gab = Fab\Fa. The columns in Fa, Fab and Gab are placed in Yates order, respectively.
For any two sets A and B of columns from H, the notation A⊗ B denotes the set which con-
sists of all the mutually different columns generated by taking component-wise products
between two columns in which one is from A and the other is from B. In [13], it is stated
that T = (TW , TS) is a 2(n1+n2)−(m1+m2) design if and only if{

TW ⊆ Ha, TS ⊆ H\Ha,
#(TW) = n1, #(TS) = n2,

(5)

where #(·) denotes the number of columns in a design.

3. Construction of Optimal 2(n1+n2)−(m1+m2) Designs

A 2(n1+n2)−(m1+m2) design is said to have resolution R if no c-factor interaction is
aliased with any other interaction involving fewer than R− c factors. The resolution III
2(n1+n2)−(m1+m2) designs have at least one main effect which is aliased with at least one 2FI.
In the resolution R=IV 2(n1+n2)−(m1+m2) designs, all the main effects are clear but there is
at least one 2FI which is aliased with at least one 2FI. In Sections 3.1–3.3, we provide the
construction methods of some optimal 2(n1+n2)−(m1+m2) designs for Scenario 1, Scenario 2,
and under the GMC-FFSP criterion.

3.1. Construction Methods of Optimal 2(n1+n2)−(m1+m2) Designs for Scenario 1

We first provide a lemma which generalizes the construction of GMC-FF 2n−m designs
for given n and m with 5N

16 + 1 ≤ n ≤ N
2 . Theorems 1 and 2 provide the construction

methods of some optimal 2(n1+n2)−(m1+m2) designs for Scenario 1.

Lemma 1. For k1 ≥ 2, suppose D is a 2n−m design with respect to
2k1−2 + 1 ≤ n1 ≤ 2k1−1,
n2 = ∑k−2

t=s 2t for k1 − 1 ≤ s ≤ k− 2 and
5N
16 + 1 ≤ n ≤ N

2 .
(6)

If D consists of the first n1 columns of Fa and the last n2 columns of Gab, then D is optimal under
the GMC-FF criterion.

Proof. According to [22,23], a 2n−m design D with D ⊂ Fab must has resolution at least
IV. Therefore, #

1C(0)
2 (D) = n, and #

1C2(D) is sequentially maximized. Next, we prove that
#
2C2(D) is sequentially maximized among all the 2n−m designs with respect to (6).

Suppose E is a 2n−m design which consists of the first n columns of Fab. According
to [24], E is a GMC-FF design which sequentially maximizes #

2C2(E) among all the 2n−m

designs with respect to (6). Let r = bn/2k1−1c. Write D = (D̄1, D1), where D1 contains
the last r× 2k1−1 columns of D, and D̄1 = D\D1. Write E = (E1, Ē1), where E1 contains
the first r × 2k1−1 columns of E, and Ē1 = E\E1. We can always find γ1, γ2 ∈ H\Fab
such that D1 = γ1E1 and H\D1 = γ2(H\E1), implying that D̄1 = γ2Ē1. Rewrite D1 as
D1 = {d1Fa, d2Fa, . . . , drFa}, where d1 is the grand mean and d2, . . . , dr are from H\Fab.
Rewrite E1 as E1 = {e1Fa, e2Fa, . . . , erFa}, where e1, e2, . . . , er are from H\Fab. Actually, there
exists the facts that

(1) D1 ⊗ D1 = E1 ⊗ E1 = H\Fab,
(2) D1 ⊗ D̄1 = E1 ⊗ Ē1 ⊂ D1 ⊗ D1(= E1 ⊗ E1),
(3) D̄1 ⊗ D̄1 = Ē1 ⊗ Ē1 ⊂ D1 ⊗ D1(= E1 ⊗ E1), and
(4) (D̄1 ⊗ D̄1) ∩ (D1 ⊗ D̄1) = ∅

due to the following reasons.
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For (1). According to Lemma A.3 in [25], since 2k−2 + 1 ≤ #(D1) ≤ 2k−1 and
D1 has k independent columns, then D1 ⊗ D1 = H\Fab. Similarly, we can also obtain
E1 ⊗ E1 = H\Fab.

For (2). Let l1 denote the first column of D̄1, then

l1 ⊗ (Fab\l1) = (l1 ⊗ ((Fab\D1)\l1)) ∪ (l1 ⊗ D1)

= (l1 ⊗ ((Fab\D1)\l1)) ∪ (D̄1 ⊗ D1)

= H\Fab,

where the second equality is because l1 ⊗ D1 = D̄1 ⊗ D1 due to D̄1 ⊂ Fa and the structure
of D1. Therefore, D̄1 ⊗ D1 ⊂ D1 ⊗ D1. Similarly, we obtain that

q1 ⊗ (Fab\q1) = (q1 ⊗ ((Fab\E1)\q1)) ∪ (q1 ⊗ E1)

= (q1 ⊗ ((Fab\E1)\q1)) ∪ (Ē1 ⊗ E1)

= H\Fab

and Ē1 ⊗ E1 ⊂ D1 ⊗ D1(= E1 ⊗ E1), where q1 is the first column in Ē1. Note that
(D̄1 ⊗ D1) ∪ (D̄1 ⊗ (Fab\D)) = H\Fab, and (D̄1 ⊗ D1) ∩ (D̄1 ⊗ (Fab\D)) = ∅. Similarly,
there exists (Ē1⊗ E1)∪ (Ē1⊗ (Fab\E)) = H\Fab and (Ē1⊗ E1)∩ (Ē1⊗ (Fab\E)) = ∅. Since
Ē1 ⊗ (Fab\E) = D̄1 ⊗ (Fab\D) as Fab\E = γ2(Fab\D), we have D̄1 ⊗ D1 = Ē1 ⊗ E1. This
obtains the fact (2).

For (3). Since D̄1 ⊂ Fa and D̄1 = γ2Ē1, it is easy to obtain that D̄1 ⊗ D̄1 = Ē1 ⊗ Ē1 ⊂
Ha\Fa. This completes the proof for (3).

For (4). Note that D̄1 ⊗ D̄1 ⊂ Ha\Fa and any two-column interaction with one column
from D̄1 and the other from D1 is not in Ha\Fa. Therefore, (D̄1 ⊗ D̄1) ∩ (D1 ⊗ D̄1) = ∅.

Based on the analysis above, the 2FIs of D and E can be classified into three disjoint
groups, respectively, as

G1: D1 ⊗ D̄1 = E1 ⊗ Ē1,
G2: D̄1 ⊗ D̄1 = Ē1 ⊗ Ē1 and
G3: (D1 ⊗ D1)\((D1 ⊗ D̄1) ∪ (D̄1 ⊗ D̄1)) = (E1 ⊗ E1)\((E1 ⊗ Ē1) ∪ (Ē1 ⊗ Ē1)).

From (1) and (2), for any γ ∈ G1, there are #(D̄1) two-column pairs (α1, β1) with
α1 ∈ D1 and β1 ∈ D̄1 such that γ = α1β1, and there are #(Ē1) two-column pairs (α2, β2)
with α2 ∈ E1 and β2 ∈ Ē1 such that γ = α2β2, where #(D̄1) = #(Ē1); if there are t1 two-
column pairs (α1, β1) with α1 ∈ D1 and β1 ∈ D1 such that γ = α1β1, there must be t1
two-column pairs (α2, β2) with α2 ∈ E1 and β2 ∈ E1 such that γ = α2β2 due to D1 = γ1E1.

From (1) and (3), for any γ ∈ G2, if there are t3 two-column pairs (α1, β1) with α1 ∈ D̄1
and β1 ∈ D̄1 such that γ = α1β1, there must be t3 two-column pairs (α2, β2) with α2 ∈ Ē1
and β2 ∈ Ē1 such that γ = α2β2, due to that D̄1 = γ2Ē1; if there are t4 two-column pairs
(α1, β1) with α1 ∈ D1 and β1 ∈ D1 such that γ = α1β1, there must be t4 two-column pairs
(α2, β2) with α2 ∈ E1 and β2 ∈ E1 such that γ = α2β2 due to that D1 = γ1E1.

For any γ ∈ G3, if there are t5 two-column pairs (α1, β1) with α1 ∈ D1 and β1 ∈ D1
such that γ = α1β1, there must be t5 two-column pairs (α2, β2) with α2 ∈ E1 and β2 ∈ E1
such that γ = α2β2 due to that D1 = γ1E1.

Therefore, we have #
2C2(D) = #

2C2(E) which is sequentially maximized among all the
2n−m designs with respect to (6) as E is a GMC-FF design according to [24]. This completes
the proof.

Remark 1. In [24], it is stated that a 2n−m design with 5N
16 + 1 ≤ n ≤ N

2 is a GMC-FF design if
this design consists of the first (or last) n columns of Fab. Lemma 1 generalizes their construction
methods for GMC-FF 2n−m designs with 5N

16 + 1 ≤ n ≤ N
2 .

Based on Lemma 1, the following Theorems 1 and 2 provide construction methods of
some optimal 2(n1+n2)−(m1+m2) designs for Scenario 1.
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Theorem 1. Suppose T = (TW , TS) is a 2(n1+n2)−(m1+m2) design with respect to
2k1−2 + 1 ≤ n1 ≤ 2k1−1,
n2 = ∑k−2

t=s 2t for k1 − 1 ≤ s ≤ k− 2 and
5N
16 + 1 ≤ n ≤ N

2 .

If TW consists of the first n1 columns of Fa and TS consists of the last n2 columns of Gab, then
T = (TW , TS) is optimal for Scenario 1.

Proof. Clearly, T = (TW , TS) is a 2(n1+n2)−(m1+m2) design as it satisfies (5); thus,
#
1(s)C

(0)
(w)

(T) = n2. According to Lemma 1, we obtain that T can sequentially maximize

(#
1C2(T), #

2C2(T)). This completes the proof.
Example 1 shows the application of Theorem 1.

Example 1. Consider constructing an optimal 2(6+8)−(2+7) design for Scenario 1. Without loss of
generality, let a1 = 5, a2 = 15, a3 = 25, a4 = 35 and b1 = 45, then Fa = {5, 15, 25, 125, 35, 135,
235, 1235} and Gab = {45, 145, 245, 1245, 345, 1345, 2345, 12345}. Let TW = {5, 15, 25, 125, 35,
135} and TS = {45, 145, 245, 1245, 345, 1345, 2345, 12345}. According to Theorem 1,
T = (TW , TS) is optimal for Scenario 1.

Theorem 2. Suppose T = (TW , TS) is a 2(n1+n2)−(m1+m2) design with n1 = 2k1−1,
n2 ≤ 2k−1 − 2k1−1 and 5N

16 + 1 ≤ n ≤ N
2 . Let TW = Fa and TS consists of the first n2

columns of Gab, then T = (TW , TS) is optimal for Scenario 1.

Proof. Clearly, the design T in this theorem is a 2(n1+n2)−(m1+m2) design; thus,
#
1(s)C

(0)
(w)

(T) = n2. Note that T consists of the first n columns of Fab; thus, T sequentially

maximizes (#
1C2(T), #

2C2(T)) as it is also a GMC-FF design according to [24]. This completes
the proof.

Example 2. Consider constructing an optimal 2(4+8)−(1+6) design for Scenario 1. Without loss of
generality, let a1 = 5, a2 = 15, a3 = 25, b1 = 35 and b2 = 45, then Fa = {5, 15, 25, 125} and
Gab = {35, 135, 235, 1235, 45, 145, 245, 1245, 345, 1345, 2345, 12345}. Let TW = {5, 15, 25, 125}
and TS = {35, 135, 235, 1235, 45, 145, 245, 1245}. According to Theorem 2, T = (TW , TS) is
optimal for Scenario 1.

In Theorem 3, we build the connection between GMC-FF 2n−m designs and the optimal
2(n1+n2)−(m1+m2) designs for Scenario 1. Before introducing Theorem 3, we first give a
useful lemma.

Lemma 2. Suppose D and B are two 2n−m designs from Fab. If D can be divided into two disjoint
parts D1 and D2 such that

(i) B1 = γ1D1, B2 = γ2D2 and B = B1 ∪ B2 with B1 ∩ B2 = ∅,
(ii) (D1 ⊗ D2) ∩ ((D1 ⊗ D1) ∪ (D2 ⊗ D2)) = ∅, and
(iii) (B1 ⊗ B2) ∩ ((B1 ⊗ B1) ∪ (B2 ⊗ B2)) = ∅,

then (−ḡ(D), #
1C2(D), #

2C2(D)) = (−ḡ(B), #
1C2(B), #

2C2(B)), where each of γ1 and γ2 can be the
grand mean or any column from H\Fab, and ∅ denotes the empty set.

Proof. Since B1 = γ1D1 and B2 = γ2D2, we have that D1 ⊗ D1 = B1 ⊗ B1,
D2 ⊗ D2 = B2 ⊗ B2, and γ1γ2(D1 ⊗ D2) = B1 ⊗ B2. More specifically, if there are t1
two-column pairs (α1, α2) with α1 ∈ D1 and α2 ∈ D1 such that ν = α1α2, then there are
must be t1 two-column pairs (β1, β2) with β1 ∈ B1 and β2 ∈ B1 such that ν = β1β2; for
any ν ∈ D2 ⊗ D2, if there are t2 two-column pairs (α1, α2) with α1 ∈ D2 and α2 ∈ D2 such
that ν = α1α2, then there must be t2 two-column pairs (β1, β2) with β1 ∈ B2 and β2 ∈ B2
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such that ν = β1β2; for any ν ∈ D1 ⊗ D2, if there are t3 two-column pairs (α1, α2) with
α1 ∈ D1 and α2 ∈ D2 such that ν = α1α2, then there must be t3 two-column pairs (β1, β2)
with β1 ∈ B1 and β2 ∈ B2 such that γ1γ2ν = β1β2.

With the analysis above, we first prove that −ḡ(D) = −ḡ(B). Recalling the definition
of ḡ(D), we have

ḡ(D) = #{ν : ν ∈ H\D, B2(D1 ∪ D2, ν) > 0}
= #{ν : ν ∈ H\D, ν ∈ (D1 ⊗ D1) ∪ (D2 ⊗ D2) ∪ (D1 ⊗ D2)}
= #{ν : ν ∈ H\D, ν ∈ (D1 ⊗ D1) ∪ (D2 ⊗ D2)}+ #{ν : ν ∈ H\D, ν ∈ D1 ⊗ D2}
= #{τ : τ ∈ H\B, τ ∈ (B1 ⊗ B1) ∪ (B2 ⊗ B2)}+ #{τ : τ ∈ H\B, τ ∈ B1 ⊗ B2},
= ḡ(B) (7)

where in the fourth equality #{τ : τ ∈ H\B, τ ∈ B1 ⊗ B2} = #{ν : ν ∈ H\D, ν ∈ D1 ⊗ D2}
is due to the fact that for any ν0 ∈ H\D with ν0 ∈ D1 ⊗ D2 we have τ0 = γ1γ2ν0 ∈ H\B.
This obtains that −ḡ(D) = −ḡ(B).

Since any 2n−m design from Fab has resolution IV, then #
1C2(D) = #

1C2(B).
Next, we give the proof that #

2C2(D) = #
2C2(B). According to the analysis in the first

paragraph, for any ν0 = α1α2 ∈ (D1 ⊗D1) ∪ (D2 ⊗D2), we have τ0 = ν0 = (γiα1)(γiα2) ∈
(B1 ⊗ B1) ∪ (B2 ⊗ B2). Therefore, we have

#{ν : ν ∈ (D1 ⊗ D1) ∪ (D2 ⊗ D2), B2(D, ν) = k} = #{τ : τ ∈ (B1 ⊗ B1) ∪ (B2 ⊗ B2), B2(B, τ) = k},

where k = 0, 1, . . . , K. Similarly, for any ν0 = α1α2 ∈ D1 ⊗ D2, we have τ0 = γ1γ2ν0 =
(γ1α1)(γ2α2) ∈ B1 ⊗ B2. Therefore, we have

#{ν : ν ∈ D1 ⊗ D2, B2(D, ν) = k} = #{τ : τ ∈ B1 ⊗ B2, B2(B, τ) = k},

where k = 0, 1, . . . , K. This obtains that #
2C2(D) = #

2C2(B) and the proof is completed.

With Lemma 2, we immediately obtain Theorem 3, which connects optimal FFSP
designs for Scenario 1 with GMC-FF 2n−m designs.

Theorem 3. Suppose T = (TW , TS) ⊂ Fab and B ⊂ Fab are 2(n1+n2)−(m1+m2) and GMC-FF
2n−m designs with 5N

16 + 1 ≤ n ≤ N
2 , respectively. For T̄ = Fab\T and B̄ ⊂ Fab\B, if T̄ can be

divided into two disjoint parts T1 and T2 such that

(i) B1 = γ1T1, B2 = γ2T2 and B̄ = B1 ∪ B2 with B1 ∩ B2 = ∅;
(ii) (T1 ⊗ T2) ∩ ((T1 ⊗ T1) ∪ (T2 ⊗ T2)) = ∅, and
(iii) (B1 ⊗ B2) ∩ ((B1 ⊗ B1) ∪ (B2 ⊗ B2)) = ∅,

then T is optimal for Scenario 1, where each of γ1 and γ2 can be the grand mean or any column
from H\Fab.

Proof. On one hand, according to Lemma 1 of [24], sequentially maximizing #
2C2(T) is equal

to sequentially maximizing (−ḡ(T̄), #
2C2(T̄)). On the other hand, according to Lemma 2, we

obtain that (−ḡ(T̄), #
2C2(T̄)) = (−ḡ(B̄), #

2C2(B̄)) indicating that (−ḡ(T̄), #
2C2(T̄)) is sequen-

tially maximized. This is because (−ḡ(B̄), #
2C2(B̄)) is sequentially maximized among all the

2n−m designs with 5N
16 + 1 ≤ n ≤ N

2 . Therefore, we obtain that T can sequentially maximize
(1) among all the 2(n1+n2)−(m1+m2) designs and thus it is optimal for Scenario 1.

Theorem 3 provides an approach to conforming that a 2(n1+n2)−(m1+m2) design is
optimal for Scenario 1. The following example illustrates the application of Theorem 3.

Example 3. For a given 2(6+6)−(2+5) design T = (TW , TS) with TW = {5, 15, 25, 125, 35, 135}
and TS = {45, 145, 245, 1245, 345, 1345}, we have T̄ = Fab\T = {235, 1235, 2345, 12345}. Di-
vide T̄ into two disjoint subsets as T̄ = T1 ∪ T2 with T1 = {235, 1235} and T2 = {2345, 12345},
then T1 and T2 satisfy ((T1 ⊗ T1) ∪ (T2 ⊗ T2)) ∩ (T1 ∪ T2) = ∅. Let B1 = 24T1 = {345, 1345},
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B2 = T2 and B̄ = B1∪B2 then B = Fab\B̄ = {5, 15, 25, 125, 35, 135, 235, 1235, 45, 145, 245, 1245}
which is composed of the first 12 columns of Fab. According to Theorem 3, we obtain that T se-
quentially maximizes (1) among all 2(6+6)−(2+5) FFSP designs. Therefore, design T is optimal for
Scenario 1.

3.2. Construction Methods of Optimal 2(n1+n2)−(m1+m2) Designs for Scenario 2

Lemmas 3 and 4 below derive some properties for 2(n1+n2)−(m1+m2) designs which
is useful for deriving the construction methods of optimal 2(n1+n2)−(m1+m2) designs for
Scenario 2.

Lemma 3. For any 2(n1+n2)−(m1+m2) design T = (TW , TS), there must be n1n2 ≤ #
2(s)C

(0)
(w)

(T) ≤
(n2

2 ) + n1n2.

Proof. For any 2(n1+n2)−(m1+m2) design, the number of 2FIs which have two SP factors and
the number of 2FIs which have only one SP factor are (n2

2 ) and n1n2, respectively. Therefore,
#
2(s)C

(0)
(w)
≤ (n2

2 ) + n1n2. As aforementioned, the generator which contains only one SP factor
is not allowed, implying that all the 2FIs which have only one SP factor are not aliased with
any WP effects. Therefore, we have n1n2 ≤ #

1(s)C
(0)
(w)

(T). This completes the proof.

Lemma 4. For any 2(n1+n2)−(m1+m2) design T = (TW , TS) with k2 = 1, there must be #
2(s)C

(0)
(w)

(T)
= n1n2.

Proof. The formula k2 = 1 indicates that there is only one independent SP factor denoted as
b1. Therefore, the SP dependent factors b2, b3, . . . , bn2 can be expressed as bi = b1ai1 ai2 · · · aij ,
where i = 2, 3, . . . , n2 and i1, i2, . . . , ij = 1, 2, . . . , k1. Therefore, all of the (n2

2 ) 2FIs which con-
tain two SP factors are aliased with WP effects. As aforementioned, for any 2(n1+n2)−(m1+m2)

design, the 2FIs which contain only one SP factor are not aliased with any WP effects. There-
fore, we have #

2(s)C
(0)
(w)

(T) = n1n2. This completes the proof.

With Lemma 3, Theorems 4 blow provides construction methods of some FFSP designs
which are optimal for Scenario 2.

Theorem 4. Suppose T = (TW , TS) is a 2(n1+n2)−(m1+m2) design with n1 ≤ 2k1−1 and n2 = k2,
i.e., m2 = 0, if TW ⊂ Fa and TS ⊂ Gab, then T = (TW , TS) is optimal for Scenario 2.

Proof. Note that T ⊂ Fab, then T has resolution at least IV. Therefore, T sequentially
maximizes (#

1(s)C
(0)
(w)

(T) = n2, #
1C2(T)). The formula m2 = 0 implies that no SP 2FI is

aliased with WP effects meaning that #
2(s)C

(0)
(w)

(T) = (n2
2 ) + n1n2 which is the upper bound

of #
2(s)C

(0)
(w)

(·). Therefore, T sequentially maximizes (#
1(s)C

(0)
(w)

(T) = n2, #
1C2(T), #

2(s)C
(0)
(w)

(T))
meaning that T is optimal for Scenario 2.

Example 4. Consider constructing a 2(4+2)−(1+0) design which is optimal for Scenario 2. Without
loss of generality, we set a1 = 5, a2 = 15, a3 = 25, b1 = 35 and b2 = 45. Let
TW = {5, 15, 25, 125} and TS = {35, 45}. According to Theorem 4, the design T = (TW , TS) is
an optimal 2(4+2)−(1+0) design for Scenario 2.

With Lemma 3, we obtain Theorem 5 below.

Theorem 5. Suppose T = (TW , TS) is a 2(n1+n2)−(m1+m2) design with n1 ≤ 2k1−1, n2 ≤ 2k2 − 1
and m2 ≥ 1. Let TW ⊂ Fa and TS ⊂ F(a1, b1, . . . , bk2)\a1, then T = (TW , TS) is optimal for
Scenario 2.
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Proof. Clearly, T is a 2(n1+n2)−(m1+m2) design as TW ⊂ Ha and TS ⊂ Fab\Ha. Since any two-
column interaction of F(a1, b1, . . . , bk2)\a1 is not in Ha, and any two-column interaction with
one column from Fa and the other from F(a1, b1, . . . , bk2)\a1 is not in Ha, then T has no SP 2FI

which is aliased with any WP effects. Therefore, we have #
2(s)C

(0)
(w)

(T) = n1n2 + (n2
2 ) which is

the upper bound for every 2(n1+n2)−(m1+m2) design according to Lemma 3. This completes
the proof, noting that T sequentially maximizes #

1C2(T) due to its resolution IV.

Example 5 below illustrates the application of Theorem 5.

Example 5. Consider constructing a 2(2+7)−(0+4) design which is optimal for Scenario 2. With-
out loss of generality, we set a1 = 5, a2 = 15, b1 = 25, b2 = 35, and b3 = 45. Then
Fa = {5, 15} and F(a1, b1, . . . , bk2)\a1 = {25, 35, 45, 235, 245, 345, 2345}. According to Theorem
5, any 2(n1+n2)−(m1+m2) design T = (TW , TS) with TW ⊂ Fa and TS ⊂ F(a1, b1, . . . , bk2)\a1 is
an optimal 2(2+7)−(0+4) design for Scenario 2.

With Theorems 4 and 5, the following corollary is obtained.

Corollary 1. The 2(n1+n2)−(m1+m2) designs constructed by Theorems 4 and 5 have
#
1(s)C

(0)
(w)

(T) = n2, #
1C(t)

2 (T) = 0 for t = 1, 2, . . . , K, and #
2(s)C

(0)
(w)

(T) = (n2
2 ) + n1n2.

With Lemma 4, we can immediately obtain the results in Theorem 6.

Theorem 6. Suppose T = (TW , TS) is a 2(n1+n2)−(m1+m2) design with k − 1 ≤ n1 ≤ 2k−2,
n2 ≤ 2k−2 and m2 = n2 − 1. Let TW ⊂ Fa and TS contains any n2 columns of Gab, then T is
optimal for Scenario 2.

Example 6. Consider constructing a 2(5+2)−(1+1) design which is optimal for Scenario 2. With-
out loss of generality, we set a1 = 5, a2 = 15, a3 = 25, a4 = 35 and b1 = 45. Then
Fa = {5, 15, 25, 125, 35, 135, 235, 1235} and Gab = {45, 145, 245, 1245, 345, 1345, 2345, 12345}.
According to Theorem 6, any 2(n1+n2)−(m1+(n2−1)) design T = (TW , TS) with TW ⊂ Fa and
TS ⊂ Gab is an optimal 2(5+2)−(1+1) design for Scenario 2. Without loss of generality, let
TW = {5, 15, 25, 125, 35} and TS = {145, 245}, then T = (TW , TS) is optimal for Scenario 2.

3.3. Construction Methods of GMC-FFSP 2(n1+n2)−(m1+m2) Designs

With Theorem 1 and Lemma 4, we immediately obtain Theorem 7 below, which
constructs some GMC-FFSP 2(n1+n2)−(m1+m2) designs.

Theorem 7. Suppose T = (TW , TS) is a 2(n1+n2)−(m1+m2) design with 2k−3 + 1 ≤ n1 ≤ 2k−2,
n2 = 2k−2, 5N

16 + 1 ≤ n ≤ N
2 and m2 = n2 − 1. If TW consists of the first n1 columns of Fa and

TS = Gab, then T is a GMC-FFSP design.

Example 7. Consider constructing a 2(5+8)−(1+7) GMC-FFSP design by Thereom 7. With-
out loss of generality, we set a1 = 5, a2 = 15, a3 = 25, a4 = 35 and b1 = 45. Then
Fa = {5, 15, 25, 125, 35, 135, 235, 1235} and Gab = {45, 145, 245, 1245, 345, 1345, 2345, 12345}.
Let TW = {5, 15, 25, 125, 35} and TS = {45, 145, 245, 1245, 345, 1345, 2345, 12345}, then
T = (TW , TS) is a 2(5+8)−(1+7) GMC-FFSP design.

With Theorem 2 and Lemma 4, Theorem 8 below provides construction methods of
some GMC-FFSP 2(n1+n2)−(m1+m2) designs.

Theorem 8. Suppose T = (TW , TS) is a 2(n1+n2)−(m1+m2) design with n1 = 2k−2, n2 ≤ 2k−2,
5N
16 + 1 ≤ n ≤ N

2 and m2 = n2 − 1. If TW = Fa and TS consists of the first n2 columns of Gab,
then T is a GMC-FFSP design.
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Proof. The formula n1 = 2k−1 indicates that TW consists of k− 1 independent columns,
i.e., k1 = k − 1. Therefore, we have k2 = 1. In Theorem 2, it is proved that T can
sequentially maximize (#

1(s)C
(0)
(w)

(T) = n2, #
1C2(T), #

2C2(T)). According to Lemma 4, for

any 2(n1+n2)−(m1+m2) design with k2 = 1, we have #
2(s)C

(0)
(w)

(·) = n1n2. This completes
the proof.

Example 8. Consider constructing a 2(8+3)−(4+2) GMC-FFSP design by Theoreom 8. With-
out loss of generality, we set a1 = 5, a2 = 15, a3 = 25, a4 = 35 and b1 = 45. Then
Fa = {5, 15, 25, 125, 35, 135, 235, 1235} and Gab = {45, 145, 245, 1245, 345, 1345, 2345, 12345}.
Let TW = {5, 15, 25, 125, 35, 135, 235, 1235} and TS = {45, 145, 245}, then T = (TW , TS) is a
2(8+3)−(4+2) GMC-FFSP design.

Similar to Theorem 3, the theorem below provides an approach to conforming that
some 2(n1+n2)−(m1+m2) designs are GMC-FFSP designs.

Theorem 9. For 5N
16 + 1 ≤ n ≤ N

2 , suppose T = (TW , TS) is a 2(n1+n2)−(m1+m2) design with
T ⊂ Fab and m2 = n2 − 1. If there exists a GMC-FF design D ⊂ Fab such that

(i) T1 = γ1D1, T2 = γ2D2 and T̄ = T1 ∪ T2 with T1 ∩ T2 = ∅;
(ii) (D1 ⊗ D2) ∩ {(D1 ⊗ D1) ∪ (D2 ⊗ D2)} = ∅, and
(iii) (T1 ⊗ T2) ∩ {(T1 ⊗ T1) ∪ (T2 ⊗ T2)} = ∅,

then T is a GMC-FFSP design, where T̄ = Fab\T, D̄ = Fab\D, D̄ = D1 ∪D2 with D1 ∩D2 = ∅,
each of γ1 and γ2 can be the grand mean or any column from H\Fab, and ∅ denotes the empty set.

Example 9. For a given 2(12+12)−(7+11) design T = (TW , TS) with TW = {6, 16, 26, 126, 36,
136, 236, 1236, 46, 146, 246, 1246} and TS = {56, 156, 256, 1256, 356, 1356, 2356, 12356, 456, 1456,
2456, 12456}, we have T̄ = Fab\T = {346, 1346, 2346, 12346, 3456, 13456, 23456, 123456}.
Divide T̄ into two disjoint subsets as T̄ = T1 ∪ T2 with T1 = {346, 1346, 2346, 12346} and
T2 = {3456, 13456, 23456, 123456}, then T1 and T2 satisfy ((T1 ⊗ T1) ∪ (T2 ⊗ T2)) ∩ (T1 ∪
T2) = ∅. Let D1 = 35T1 = {456, 1456, 2456, 12456}, D2 = T2 and D̄ = D1 ∪ D2 then
D = Fab\D̄ = {6, 16, 26, 126, 36, 136, 236, 1236, 46, 146, 246, 1246, 346, 1346, 2346, 12346, 56,
156, 256, 1256, 356, 1356, 2356, 12356} which is composed of the first 24 columns of Fab. According
to Theorem 9, we obtain that T is a 2(12+12)−(7+11) GMC-FFSP design.

3.4. Some More Illustrative Examples and Further Discussions

In this section, we provide some more examples to illustrate how to recognize the
superiority of an FFSP design over another under criteria (1), (2), and (3), respectively.

Consider the following two 2(2+7)−(0+4) designs represented by their independent
defining words

D1 : I = a1a2b2b3b4 = a1a2b2b5 = a1b1b2b6 = a2b1b2b7 and

D2 : I = a1b1b2b4 = a1b2b3b5 = a1b2b3b6 = b1b2b3b7,

respectively. With some calculations we obtain that

#
1(s)C

(0)
(w)

(D1) = 7, #
1C2(D1) = 9, #

2C2(D1) = (15, 0, 21), #
2(s)C

(0)
(w)

(D1) = 33 and

#
1(s)C

(0)
(w)

(D2) = 7, #
1C2(D2) = 9, #

2C2(D2) = (8, 02, 28), #
2(s)C

(0)
(w)

(D2) = 35.

Under criterion (1), D1 is better than D2 due to the following reasons. Note that
#
2C(0)

2 (·) is the first component, in (1), such that #
2C(0)

2 (D1) 6= #
2C(0)

2 (D2) and
#
2C(0)

2 (D1) = 15 > #
2C(0)

2 (D2) = 8. Therefore, D1 is better than D2 under criterion (1).
In contrast, the FFSP design D2 is better than D1 under criterion (2). Note that criterion (2)

prefers FFSP designs with resolution of at least IV, which have more SP 2FIs that are not
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aliased with any WP effect regardless of #
2C2(·). With this point in mind, since #

1(s)C
(0)
(w)

(D1) =

#
1(s)C

(0)
(w)

(D2), #
1C2(D1) =

#
1C2(D2) and #

2(s)C
(0)
(w)

(D2) = 35 > #
2(s)C

(0)
(w)

(D1) = 33, then design
D2 is better than D1 under criterion (2).

As for criterion (3), it is clear that, if an FFSP design is better than another under crite-
rion (1), then it is always the case when they are compared under criterion (3), noting that
criterion (3) concerns one more component #

2(s)C
(0)
(w)

(·) apart from the three common compo-

nents #
1(s)C

(0)
(w)

(·) = n2, #
1C2(·) and #

2C2(·) shared by (1) and (3). Therefore, design D1 is better
than D2 under criterion (3). To show how to identify a better design under criterion (3), we
consider two more examples represented by their independent defining words:

D3 : I = a1b1b2b3b4 = a2b1b2b3b5 = a3b1b2b3b6 = a1a2a3b1b2b3b7 = a1a2b1b8

= a1a3b1b9 = a2a3b1b10 = a1a2b2b11 = a1a3b2b12 = a2a3b2b12

= a1a2b3b14 = a1a3b3b15 = a2a3b3b16 = a1a2a3a4,

D4 : I = a1b1b2b3b4 = a1a2b1b2b5 = a1a3b1b2b6 = a1a2a3b1b2b3b7 = a1a2b3b8

= a1a3b3b9 = a1a2a3a4 = a2b1b3b10 = a3b1b3b11 = a2a3b1b12

= a2b2b3b13 = a3b2b3b14 = a2a3b2b15 = a2a3b3b16,

where D3 and D4 are two 2(4+16)−(1+13) FFSP designs, respectively. With some calculations,
we obtain that

#
1(s)C

(0)
(w)

(D3) = 16, #
1C2(D3) = 20, #

2C2(D3) = (03, 160, 05, 30), #
2(s)C

(0)
(w)

(D3) = 160 and

#
1(s)C

(0)
(w)

(D4) = 16, #
1C2(D4) = 20, #

2C2(D4) = (03, 160, 05, 30), #
2(s)C

(0)
(w)

(D4) = 171.

Although D3 and D4 have equal performance under criterion (1) due to that #
1(s)C

(0)
(w)

(D3) =
#
1(s)C

(0)
(w)

(D4), #
1C2(D3) =

#
1C2(D4) and #

2C2(D3) =
#
2C2(D4), design D4 is better than

D3 under criterion (3) as #
2(s)C

(0)
(w)

(D4) = 171 > #
2(s)C

(0)
(w)

(D3) = 160.
The study of this paper is substantially different from the Refs. [7–11,18,19,26]. More

specifically, Ref. [7] considered the regular symmetrical or mixed-level FFSP designs under
the minimum secondary aberration criterion, which concerns only the number of SP-factor
interactions in the WP alias sets; Ref. [8] studied the matrix presentation for FFSP designs
at s levels as well as the maximum resolution and minimum aberration properties for
such FFSP designs, where s is a prime number; Ref. [9] proposed generalized minimum
aberration criteria for two-level orthogonal FFSP designs in five different design scenarios
and tabulated a catalog of optimal 12-, 16-, 20-, and 24-run FFSP designs under their gener-
alized minimum aberration criteria by computer algorithm; Refs. [10,11] both considered
construction of FFSP designs under the WP-minimum aberration criterion, which assumes
that the whole plot factor are more important. The criteria considered in our paper is
different from those in [7–11] . These differences lead to that, for two-level regular FFSP
designs, the optimal ones under the criteria considered in [7–11] may not be optimal under
criteria (1), (2), and (3), and vice versa. Ref. [18,19] proposed some sufficient and necessary
conditions for the asymmetrical split-plot designs to contain various types of clear effects,
while our work considers developing theoretical construction methods of regular two-level
FFSP designs under the optimality criteria (1), (2), and (3). Ref. [26] mainly focused on the
regular two-level FFSP designs with replicated settings of the level combinations for WP
factors, while the level combinations for the regular two-level FFSP design in our work are
not replicated.

Due to the complex structure of FFSP designs, although we provide a series of theo-
retical construction methods for optimal FFSP designs under criteria (1), (2), and (3), there
are still many optimal 2(n1+n2)−(m1+m2) FFSP designs which cannot be constructed by our
methods. For example, the theoretical construction methods for optimal 2(n1+n2)−(m1+m2)
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FFSP designs, under criteria (1), (2), and (3), which satisfy N
4 + 1 ≤ n ≤ 5N

16 are not covered
in this paper. This is a future research direction worthy of study.

4. Conclusions

The 2(n1+n2)−(m1+m2) designs enjoy a wide application when performing a 2n−m de-
sign in a completely random order is impractical. A large body of work on choosing
2(n1+n2)−(m1+m2) designs under the MA criterion and clear effect criterion was proposed.
The GMC-FFSP criterion is a widely used criterion for assessing 2(n1+n2)−(m1+m2) designs.
This criterion advocates the FFSP designs with more effects at lower order confounding.
The FFSP designs chosen under the GMC-FFSP criterion are preferable when we have
prior information on the importance ordering of some effects. However, the theoretical
construction methods of optimal 2(n1+n2)−(m1+m2) designs under the GMC-FFSP criterion
have not been studied yet.

This paper investigates theoretical construction methods of GMC-FFSP 2(n1+n2)−(m1+m2)

designs. In addition, from the angle that the more there are lower order effects of interest at
lower order confounding, the better the 2(n1+n2)−(m1+m2) designs, we propose optimality
criteria for two kinds of design scenarios stated in the Introduction section. Some optimal
2(n1+n2)−(m1+m2) designs for these two kinds of design scenarios are also theoretically con-
structed under the newly proposed optimality criteria. In the supplementary material, the
R code for the proposed designs is provided.
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