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Abstract: In this paper, we study the existence of positive solutions for a system of fractional differ-
ential equations with p-Laplacian operators, Riemann-Liouville derivatives of diverse orders and
general nonlinearities which depend on several fractional integrals of differing orders, supplemented
with nonlocal coupled boundary conditions containing Riemann—Stieltjes integrals and varied frac-
tional derivatives. The nonlinearities from the system are continuous nonnegative functions and
they can be singular in the time variable. We write equivalently this problem as a system of integral
equations, and then we associate an operator for which we are looking for its fixed points. The main
results are based on the Guo-Krasnosel'skii fixed point theorem of cone expansion and compression
of norm type.

Keywords: Riemann-Liouville fractional differential equations; nonlocal coupled boundary conditions;
singular functions; positive solutions; multiplicity
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1. Introduction

We consider the system of Riemann-Liouville fractional differential equations with
p1-Laplacian and py-Laplacian operators

o
Dgl(fppl(Dgix(f))) = f(t,x(t),y(1), i x (1), I3y (1)), t € (0,1), 1)
Dy, (9o, (Dgy () = a(t, x(1),y(t), Iy x(t), IG5y (1)), t € (0,1),

subject to the nonlocal coupled boundary conditions

j=0,...,p—2, DJ\x(0) =0,
1 noo1

) = [ 9n(DFLx(0)dMo(r), DEx(1) = Y. [ DEy(r) domi(x),
0 =170

j=0,....4—2, DJ%y(0) =0,

72 ! 72 Bo LN Br
DEy() = [ 9n(DRzy() ado(x), DELy(1) = ) [ Dffx(r) amy(r),
k=1

@

where 61,6, € (1,2, 1€ (p—1Lpl,peEN,p>3,72€(g—1,9,,g€N,qg>3,nmeN,
U1, U2, v, 2 > 0,0 ER k=0,...,n0<a <ap < - <a, <Pop<12—1 6 >1,
Br ERk=0,....m0< B <Pr<-+<Buw<ag<m—1a9>1 9,(s) = s/,
(p;il = Qo;, 0i = mLi’ i=12p>11i=129:(0,1) x Ri — R are continuous
functions, singular at t = 0 and/or t = 1, (Ry = [0,0)), Ig 4 is the Riemann-Liouville
fractional integral of order 6 (for 6 = 1, jio, v1,v2), D} is the Riemann-Liouville fractional
derivative of order 0 (for 6 = d1, 1,02, Y2, %0, - - -, &n, Bo, - - -, Bm), and the integrals from the
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boundary conditions (2) are Riemann-Stieltjes integrals with 0, : [0,1] = R, i =0,...,n
and N; [0,1] = R, j=0,...,m functions of bounded variation. The present work was
motivated by the applications of p-Laplacian operators in various fields such as nonlinear
elasticity, glaciology, nonlinear electrorheological fluids, fluid flows through porous media,
etc. see for details the paper [1] and its references.

In this paper, we present varied conditions for the functions f and g such that problem
(1), (2) has a positive solution, and then it has two positive solutions. A positive solution
of (1), (2) is a pair of functions (x,y) € (C([0,1],R;))? satisfying the system (1) and the
boundary conditions (2), with x(s) > 0 for all s € (0,1] or y(s) > 0 forall s € (0,1]. We
apply the Guo—Krasnosel’skii fixed point theorem of cone expansion and compression
of norm type (see [2]) in the proof of our main results. Connected to our problem, we
mention the following papers. In [3], the authors studied the existence of multiple positive
solutions of the system of nonlinear fractional differential equations with p;-Laplacian and
p2-Laplacian operators

{D’Sl((p pr (D81 x(5))) = (s, x(s), y(s)), s € (0,1),
DY (9, (DE2y(s))) = (s, x(s), y(s)), s € (0,1),

supplemented with the nonlocal uncoupled boundary conditions

Z SuDYLx (k)
k=

x(0) =0, DJlx(1) =

DELH(0) =0, gy, (D§LX(1) = £ G (D530,
(1) =
(

y(0) =0, D2y(1 2 S D3y (k).
=1
Dg+y( >_0 Py Dg ( )) Zkzl ngq)Pz(Dgiy(WZk))r

where a;, 8; € (1,2],v; € (0,1], a; + B; € (3,4], i > vi+1,i = 1,2, &1, 11ks C1ks Cokr M2k
Cok € (0,1)fork=1,...,m—2, p1,p2 > 1, and f and g are nonnegative and nonsingular
functions. They applied the Leray-Schauder alternative theorem, the Leggett-Williams fixed
point theorem and the Avery-Henderson fixed point theorem in the proof of the existence
results. In [4], the authors studied the existence and nonexistence of positive solutions for
the system of Riemann-Liouville fractional differential equations with g;-Laplacian and
02-Laplacian operators

{ DY (s (D' (5))) + Af(5,x(5),y()) =0, s € (0,1), o
D22 (9o, (DR (5))) + puals, x(s), y(s)) =0, s € (0,1),

subject to the coupled nonlocal boundary conditions

¥0)(0) =0, j=0,...,p—2 D3 x(0) =0, DX x Z/‘ 2)dm, (2),
4
yi(0) =0, j=0,...,4—2; DZy(0) =0, Dfy( 2/ DE: x(0) M (0),

where A and i are positive parameters, y1, 2 € (0,1], 01 € (p—1,pl,02€ (g—1,9], p, 9 €
N,pg>3nmeNa € Rforallk=0,...,n0<a; <ay < <a, <Pp<dp—1,
Bo>1BreRforallk =0,...,m 0 < By <P <+ <PBm <ag<dp—1 a9 >1,
01, 02 > 1, the functions f, g € C([0,1] x Ry x Ry, R ), and the functions M;, j =1,...,n
and My, k =1,...,m are bounded variation functions. They presented sufficient conditions
on the functions f and g, and intervals for the parameters A and y such that problem (3),
(4) has positive solutions. In [5], the authors investigated the existence and multiplicity of
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positive solutions for the system (3) with A = u = 1, supplemented with the uncoupled
nonlocal boundary conditions

i KX, 1 1 L4
x(0) =0, j=0,...,p—2 DS x(0)=0, DY x(1) :k_zl/o DR () d (),
) m 1
Y0 =0, j=0,....9-2 DEy(0) =0, Dy =¥ [ Dfiu(eyan(@)
k=1

where n,m € N, ap € Rforallk =0,1,...,n,0 < <ap < - <y < g < —1,
ay > 1,‘31( € Rforallk =0,1,...,m,0 < ﬁl < ,32 < e < ,Bm < ﬁo < (52—1,‘30 >1,
the functions f and g from system (3) are nonnegative and continuous, and they may be
singular ats = 0 and/ors = 1, and 9ﬁj,j =1,...,nand My, k =1,...,m are functions of
bounded variation. They applied the Guo—Krasnosel’skii fixed point theorem in the proof
of the main existence results. In [6] the authors studied the existence and multiplicity of
positive solutions for the system (1) subject to general uncoupled boundary conditions
in the point ¢t = 1. We mention that our problem (1), (2) is different than the problems
from papers [4,6]. Indeed the orders of the first fractional derivatives in the system (3)
(from [4]) are positive numbers less than or equal to 1, and in our system (1) the first
fractional derivatives are numbers greater than 1 and less than or equal to 2. This difference
conducts to the consideration of different boundary conditions (more precisely, for our
problem, we have a bigger number of such boundary conditions)—see (2) and (4). Another
differences are the presence of the parameters in system (3)—here, we do not have any
parameters, and also the nonlinearities f and g from (3) which are nonsingular functions,
as opposed to our problem in which the functions § and g are singular; so here is a more
difficult case to study. On the other hand, the essential difference between the present
problem (1), (2) and the problem studied in [6], is given by the boundary conditions. In
[6] the last boundary conditions for the unknown functions are uncoupled in the point
1, and here in (2), the last boundary conditions for the unknown functions x and y are
coupled in the point 1; that is, the fractional derivative of order ag of function x in the point
1 is dependent of varied fractional derivatives of function y, and the fractional derivative
of order By of function y in 1 is dependent of various fractional derivatives of function x.
Hence the novelty of our problem (1), (2) is represented by a combination between the
existence of p-Laplacian operators in system (1), the dependence of the nonlinearities in (1)
on diverse fractional integrals, and the nature of the last boundary conditions in the point
1 which are coupled here. We also mention the recent papers [7-12] in which the authors
study fractional differential equations and systems with p-Laplacian operators, and some
recent monographs devoted to the investigation of boundary value problems for fractional
differential equations and systems, namely [13-17].

The paper is organized in the following way. In Section 2, some auxiliary results which
include the properties of the Green functions associated to our problem (1), (2) are given.
In Section 3 we present the system of integral equations corresponding to our problem,
and the main existence and multiplicity theorems for positive solutions of (1), (2), and
Section 4 contains their proofs. Finally, two examples which illustrate our obtained results
are presented in Section 5, and the conclusions are given in Section 6.

2. Auxiliary Results
In this section, we consider the system of fractional differential equations

D2 (¢, (DL y(1)) = 0(t), t€ (0,1),

with the coupled boundary conditions (2), where u, v € C(0,1) N L!(0, 1).

{ DYl (9o (DILx(1))) = u(t), t € (0,1), o
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We denote ¢,, (DJLx(t)) = h(t), ¢p,(DJ2y(t)) = k(t).
equivalent to the following three problems

{ DY h(t) = u(t), te (0,1),
1(0) =0, h(1) = [y h(T)dMy(1),

{ D2 k(t) = o(t), te (0,1),
k(0) =0, k(1) = [y k(t) dMo(7),

and
{ Dyix(t) = @q, (h(t)), t € (0,1),
D”y(t) P, (k(£)), t€(0,1),

with the boundary conditions

{ x(0)=0, j=0,...,p -2, Dgi x(1) = Yi- 1f0
y(0) =0, j=0,...,g—2, DRy(1) =i, fy D

Then problem (2), (5) is

0+y T dSﬁk(T),
(7) dNy (7).

By Lemma 4.1.5 from [16], the unique solution & € C[0, 1] of problem (6) is

1
h(t) = —/0 &1 (t, t)u(t)dr, t€[0,1],

where
t51—1 1
®1(t) =01t 0) + —— [ (7 aMo(0),

01(t,7) = (o))

for (t,7) € [0,1] x [0,1], with a; = 1 — [} g1~ 1dmy(g) # 0.

1
1 11—l - (t—1)h7l, 0<T<t<],
11—l o<t <1 <1,

(6)

@)

®)

©)

(10)

By the same lemma (Lemma 4.1.5 from [16]), the unique solution k € C[0, 1] of problem

(7) is

1
k(t) = — /0 (1, T)o(v) dt, te[o,1],

where

61

&yt 7) = galt,7) + © 02(2,7) A0 (),
w(t,T) = W

for (t,7) € [0,1] x [0,1], withay = 1 — [ 2~ 1dMy(Z) # 0.

2
1 Tl 1l (-1 o<t <t<],
2711 )21, 0<t<1<1,

(11)

By Lemma 2.2 from [4], the unique solution (x,y) € (C[0,1])? of problem (8), (9) is

=
—~

~~
~—

|

1 1
— [ @atT)gq (h(x)) dT — [ @4(t, ) g0 k(r

))dz, t€10,1],

1 1
y() = = [ ®s(t, 000, (1(D)dr ~ [ Selt,T)ge k() dr, t € [0,1],

(12)



Fractal Fract. 2022, 6, 610

50f 20

where
-1 by

G3(t, 1) = g3(t, T) +

o

m. 1
(g | (e dmiw>>,
1

1—1 n

B4(t,7) = M Y / 01i(8,7) d(9),
2—1 m

G5(t,7) = ff;(nr—% L /01 9i(0,7) dN(8),

66(t,T) = g4(t T t’n 162 (Z/ 941 19 T dm( ))

1 =11 -1 (-7~ 0<7r<t <],
93(t/T> = r( Y1—-1(1 _ ~\11—ao—1
1) LTI —gmTTh 0<t <7 <],
1 om- ﬂfl(l —r)n—w-l (g _mF-l 0<T <9<,
gSi(ﬂ/ T) Y1—Bi— _ A\r1i—ap—1
T(yi—pi) | oM Pl (l—mm—nl, 0<9 <7<,

fy e ] =l (1 —)r=hl —(t—)l, 0<T<t <],
alt7) = T(yp) | 2711 —1)2ho—l o<t <t <1,
()= — 1 9PN (1 — )bl (9 )T 0< T <9<,
BT T T, )| 92 -kl g<e<T<1,
forallt, 7,9 € [0 1,i=1,....,m,j=1,...,n,and by =Y 4 F(vz a fo gr—ai=lgomy (),
_ i—1 _ _ T()I(7)
by =X iy 71 ﬁ fO ¢nPld((), and b = T(vl—a;)F(n—ﬁo) — b1by #0.

Combining the above Formulas (10)-(12) for h(t), k(t), x(t), y(t), t € [0,1], we obtain
the following result.

Lemma 1. Ifa; # 0, ap # 0and b # 0, then the unique solution (x,y) € (C[0,1])? of problem
(5), (2) is given by

-1 1
«() = [ &30, 0)g, </0 1 (5, u(g) ¢ ) e
1
+ [ outt Don ([ eam @ dc i, vie o)
1 1
1) = [ os(t,gu ([ &1(r, (@) ¢ )ae
1 1
+/O B6(t, T) P, </0 62(T,C)U(§)d§>dr, vVt e[0,1].

Now by using the properties of functions gi, g2, 93, 93i, 1 = 1,...,m, g4, g4],
j= ,n (see [14,16]), we deduce the following properties of the functlons ;i =
1,. 6

Lemma 2. We suppose that a; > 0, ay > 0and b >0, 0, i = 1,...,nand‘)”tj, j=0,...,m
are nondecreasing functions. Then the functions &;, i =1,...,6 have the properties:

(@) &;:[0,1] x [0,1] — [0,00), i =1,...,6 are continuous functions.
(b)  &1(t, ) < J1(71), forall (t,T) € [0,1] x [0, 1], where

1 1
3O =n@+ - [ 0@ 0amE, yrep,

with b1 (1) = e )(1 —1)2~ 1 t€[0,1].
() &y(t,T) < Jo(7), forall (t,T) € [0,1] x [0,1], where

1 1
%) = ha(0) +— [ 02E 0 dM(@), ¥Te01]

az Jo
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with b2(T) = )(1 —1)271, 7 €[0,1].
(d)  &3(t,T) < Ja(1), forall (t,7) € [0,1] x [0,1], where

AngE

3(1) = () + ";( [ 2,0 dsniw)), vrelo,,

i=1

with h3(1) = )(1—r)71 “-1(1 - (1—-1)%), T€[0,1].
(e)  ®3(t,T) > tN~135(7), forall (t,7) € [0,1] x [0,1].
() G4(t,T) <Ja ( ), forall (t,T) € [0,1] x [0, 1], where
3a(T) = 727[%0 2/ aui(8,7) d;(9), YT e [0,1].

(9)  &4(t,T) = tN~13,(7), forall (t,T) € [0,1] x [0,1].
(h)  &s(t, ) < J5(7), forall (t,T) € [0,1] x [0,1], where

J5(7) =

bF 71_0‘0 2/ 93:(9,7) dM;(0), VT e[0,1].

(i)  &s(t,T) =t72"135(7), forall (t,7) € [0,1] x [0,1].
(G)  ®g(t, )ﬁj( ) orall (t,7) € [0,1] x [0,1], where

bz

n
36(1) = 0a(1) b(z/ 0si(6,7) A (8 >>, vre b,
with hy(1) = )(1—7)72 Po=1(1— (1 —1)P0), T€[0,1].
(k)  ®g(t,T) > 12~ 1:;6( ), forall (t,T) € [0,1] x [0,1].
Under the assumptions of Lemma 2, we find that J;(t) > 0 for all T € [0,1] and
i=1,...,6,and J1,3J2,33,J¢ Z 0. In addition, J4 = 0 if all the functions9;, i =1,...,n

are constant, and J5 = 0 if all the functions ‘Jt]-, j=1,...,m are constant.
We also deduce easily the next lemma.

Lemma 3. We suppose that a; > 0, a > 0andb > 0,9, i=1,...,n and‘ﬁj, j=0,...,m
are nondecreasing functions, u, v € C(0,1) N L1(0,1) with u(s) > 0, v(s) > 0 forall s € (0,1).
Then the solution (x,y) of problem (5), (2) satisfies the inequalities x(s) > 0, y(s) > 0 for all
s €[0,1], and x(s) > sM~1x(t) and y(s) > s72 1y (1) forall s,T € [0,1].

3. Main Theorems

By using Lemma 1, the pair of functions (x, y) is a solution of problem (1), (2) if and
only if (x,y) is a solution of the system

1) = [ @3t T)gu [ 01(00HEx(@,v(0), BLx(@), 13 9(@) ) e
+ [ et og ([ 62(r 000 x(@ 410, 30, By ),
o) = [ @t T)gu [ ©1(00Ex(@,v(0), BLx(@) 1 v(@)) dt ) ac
+ [ ot D)o [ @000 70,40 150, B (@) 4 )
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for all t+ € [0,1]. We introduce the Banach space 4 = C[0,1] with supremum norm
Ix]l = SUP4c(o1] |x(s)|, and the Banach space U = il x 4 with the norm ||(x,y)||y = ||x|| +

ly]]. We define the cone
Q={(x,y) €Y, x(s) >0, y(s) >0, Vs €[0,1]}.

We also define the operators €;, &, : ¥ — {land € : U — Y by

& )(0) = [ @2t T [ 010K @,y BLx(@), 129(@) ¢ ) e
+ [ et g ([ 02(r,00(€ x(@ 410, (), Brv(@) ),

ex( (1) = [ 050t 7)gu [ 010 0HEX(@,v(0), BLx(@), 12 9(@) ) e
+ [ et g ([ 0200000 x(@ 410, 130, Bv(@) ¢ ),

forallt € [0,1] and (x,y) € U, and €(x,y) = (¢1(x, ), €2(x,y)), (x,y) € V. We remark
that (x,y) is a solution of problem (1), (2) if and only if (x,y) is a fixed point of operator €.

We define the constants: Z; = fol Ji(1)éi(r)dt,i=1,2,8; = fol Ji(t)dt,j=3,...,6,
_ ~ a-1 - ~
and for 01,02 € (0,1), 01 < 03, 7 = f;z \J3(T)(f;1 ®1(7,0) d@) dt, Eg = ftgzde(T)

021

(J 6a(r,0)dg)™ dr
We now present the assumptions that we will use in our theorems.

(H1)d1,00 € (L2, m e (p—Lpl,preNp>3,12€(q—-149,9€N,g>3,nmeN,
U1, 2, v, 2 > 0,0 E R k=0,...,n0 < a1 <ap < -+ <y < Pp<712—1,
Bo>1, B eRk=0,....m0< B <Po< - <Bm=<a<7—1a >1,
Mm; : 0,1 - R, i=0,...,n and N; : [0,1] = R, j =0,..., m are nondecreasing
functions, ¢, (T) = |T|°i—2T, (pfjl_l = @o;, 0i = pipjl, i=12p0>1i=120aq >0,
ap > 0, b > 0 (given in Section 2).

(H2) The functions f, g € C((0,1) x R4, R}.) and there exist the functions &1, & € C((0,1),R4.)
and 1,4, € C([0,1] x RL,Ry) with My = [] (1 — )57 1&(t)dt € (0,00), My =
J3 (1= £)%271g(t) dt € (0,00), such that

f(t/ w1, W, w3, w4) S gl(t)l)bl(t/ w1, W, w3, w4)/
g(tr w1, W, w3, 7/()4) S EZ(t)lPZ(tr w1, W, w3, 7/04)/

foranyt € (0,1), w; e Ry, i=1,...,4.
H3)Thereexistl; >0, i=1,...,4withY*  [; >0,m; >0, i=1,...,4with %, m; >0,
i=1 i=1
and 0 > 1, 6, > 1 such that

t, w1, Wy, w3, W
P10 = limsup max Pu(t, w1, ), Ws, w4) N <c1
4 g0 t€01] @pr (01 +bws + lws + lawa))
t, w1, wy, w3, W
and ¢pp = limsup max Ya(t, w1, W, w3, 4) < c,

54 gy 1€01] Pp, (mywy + mows + maws + mywy)?2)
i

where

. 1= =11 (o1 1 =p1—1 0 (o1 o e -

T {mm{ <4P1 E dll(pl >> ’ <4p1 la, =8 Ul1l<p1 )) }/ if 55 #0; (491 1z, 58 dll(Pl )> ,if s = 0},
- _1n\ 1
= {min{ (4027132522 1dgz(Pz 1)) /

B P N7t s A St [ e =21 (=) "L L .
(492 1:‘2‘:“6)2 dzz(’oz )) }, if By # 0; <4P2 1a2a22 d22(p2 )> , if .:,4:0}, with d; = Zmax{ll,lzr ‘r(yl]3+1)'r(H124+1) }'

d, = Zmax{ml,mz, T

my
(1n+1)" IT'(ra+1) }
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(H4) There exists; >0, i =1,...,4with Y% ;5; > 0,t; >0, i=1,...,4with Y}  t; >0,
01,00 € (0,1), 0 < 0p and m>1n>1 such that

.. . t, wq, wy, w3, w
fo = liminf min it w1, wa, w3, ws) > c3,
Y | sjw—so0 t€]01,02] Py (5101 + 2wy + S3w3 + s474)
.. . t,wy, wy, w3, w
Of geo = liminf min a(t, w1, W, ws, wy) > cy,

Y4 b —oo t€[01,02] Ppy (F1W1 + taws + t3ws + tawy)
where
1-p1 1-p2 | 711 V2+72 1
3 = <2d3_.70'71 1> Ly = 172<2d4 Eg0 ’Yz 1> with dy = mm{slolw 1 52(7172 1,S 4 T(71) F(Wz)},

’ T(n+m) 7 54 F(“Yzﬂiz)
-1
LR ST S A T(n) 2 ')
d4—mm{t1 B T e e Togo) 4 T

(H5) There existu; >0, i=1,..., 4with Y} u; > 0,0, >0, i=1,...,4with Y} 0, >0
such that

Py (t, wy, wo, w3, Wy)

1o = limsup max e1,
T ugop—soo 1101 @py (11001 + 12202 + U303 + 144704)
-
. t, w1, W, w3, W
and o = limsup max Yt wn, wa, s, wy) < ey,

T4 vitysco 1E101] P2 (V1701 + 022 + V33 + V4ws)
L

where
—01—1,0 | o 1-p T 1-p2 Y Y
e < |:2.:4 (L3+L5)A1k1:| , e < [Zd (d4+d6)/\2k2} , with A7 = max{ZQl ,1}, Ny = max{ZQZ ,1},
k1= Zma"{”l'”2' RTER)Y r<uz+1>} k2 = 2“‘”{”1’”2' T 1) r(ml)}

(H6) There exist p; >0, i =1,...,4 with Zi:1 pi>0,q,>0,i=1,...,4with Zl 1qi >
01,00 € (0,1),01 <opandgy € (0,1], 62 € (0,1], 73 >1, na >1 such that

t, wq, wy, w3, w
fo = liminf min It w0, ws, w3, w,) > e3,
w4 pro—0 tefon,o] Qo ((P1101 + pawn + paws + paws)©r)
.. . t, w1, wy, w3, W
or go= liminf min a(t, w1, W), W3, Wy) > ey,
T4 g0 telonm] o, (101 + q2w2 + G3ws3 + gaws)52)
where ) )
_ —P1 _ —P2 . .
e3 = ((7171 1291kg1’5‘7) , ey = ((7172 1292k2238) , with k3 = mm{pﬂf{” v

+11-1 -1
(7{‘1 mn-lp ) o2t

Y2 I'(72) s 11— 121
P20y ,Ps T(71+71) /P41 T(72+12) },M—mm{qwl ;4207 ’

+ 1 + 1
0.1/1 M- (’)’ ) 2 T
B T+n) /74 ’Yz+Vz

01-1 HQl 1 1 01 z 1 Qlflw =01— 1 Q271,:, 02— 1
(H7) Ag' "E3E <3 Ay &4 1 Ag EsEy <4, Ayt EeE, <4,
where
Ay = max{maxte[o,l],wie[o,w],i:l,...,4lpl(t/wl/erw3rw4)rmaxte[o,l],wie[o,w},i:l,...,4 ¥2(t, wy, w2, w3,w4)}, with
_ 1 1 1 1
@ = max{1, rirlsy, ey T T )

Lemma 4. We suppose that (H1) and (H2) hold. Then € : Q — £ is a completely continuous
operator.

We introduce now the cone

Qo = {(xy) €Q x(t) 2T x|, y(r) =y, Y7 eo1]}.

If (H1) and(H2) are satisfied, then by Lemma 3 we obtain ¢(Q) C Qo and then the
operator €|q, : Qo — Qo (which we will denote again by €) is completely continuous. For
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x > 0 we denote by B the open ball centered at zero of radius x, and by B, and 9B its
closure and its boundary, respectively.
Our main existence results are the following theorems.

Theorem 1. We suppose that assumptions (H1)—(H4) hold. Then there exists a positive solution
(x(t),y(t)), t € [0,1] of problem (1), (2).

Theorem 2. We suppose that assumptions (H1), (H2), (H5), (H6) hold. Then there exists a
positive solution (x(t),y(t)), t € [0,1] of problem (1), (2).

Theorem 3. We suppose that assumptions (H1), (H2), (H4), (H6) and (H7) hold. Then there
exist two positive solutions (x1(t),y1(t)), (x2(t),y2(t)), t € [0,1] of problem (1), (2).
4. Proofs of the Results

Proof of Lemma 4. By (H2), we have &; = fo J1(7)é1(T)dt > 0and By = fo J2(7)¢2(7)
dt > 0. In addition, by using Lemma 2.2 we find

s gl 3 )] <o
s s ([ o) <

Using now Lemma 3, we deduce that the operator € maps Q into Q.

Next, we will show that € transforms the bounded sets into relatively compact sets.
Let S C 9 be a bounded set. So there exists L; > 0 such that ||(x,y)||y < L for all
(x,y) € S. Because 1 and ¢, are continuous functions, we find that there exists L, > 0

such that L, = max SUPr¢[0,1], w;€[0,A], i=1,...4 ¥1 (T, w1, w2, w3, wy), SUP-¢0,1], wic[0,A],i=1,....4

o (T, w1, Wy, w3, wy)}, where A = Lq max{l

Because

1 1 1 1 }
" T(u1+1)” T(pp+1)” T(vy+1)” T(vp+1) [°
1§, z(t)| < r(lﬂl) for w > 0 and z € C[0,1], by Lemma 2 we obtain that for any (x,y) € S
and t € [0,1]

1
&))< [ a0 [ 3@ ONE 010, Hx@), 12yt ) e

133

1 0 1
. 34(T)<vgz( 2OED (D), <€>,Ig;x<a>,lgiy<@>>d@)dr
1

0

<187 ([ 0@ )/
)

—1
—i—LQ2 Pos </

In a similar way we have
—1m01—1— —1-0—1—~
& (x,y)(t) <L EY Bs+ LY EF .

Therefore 1 1 _
[€1(x,y)| < Lgl_ ”91 g 5+ LQz r—Qz g,
[ s i S S Sy

forall (x,y) € S, and then ¢ (S), €,(S) and &(S) are bounded.
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In what follows, we prove that €(S) is equicontinuous. By Lemma 1, for (x,y) € S
and t € [0,1] we find

ey = [ [ggar i (2/ 03i(8,7) A (9 >>]
1
<o 61<r,@>f(g,x<@>,y<é>,féi (@) 20(0))at ) e
1—1 n
—0—/01 ;;('yzr(?o)) (;/01 94i(8,T) di)ﬁi(ﬁ)>
<90, ( [ e @)g(g (090 (), B0 e

- gl -]
<pu( [ er(r @)f(@x@),y(o, B1x(©), 30(0)) dc e

11
+/ =1 — )yn—ao—1
¢ Tln) 1=

<o [} 10 0HEX(@,v(0), BLx(@), 129(@) ¢ ) e
+15’71 1bl/ (Z/ g3:(9, T) dO; (8 )>
<o [ 10 0HEX(@, (0, BLx(@), 12 9(@) ¢ ) e

1—1
+bt;(72r7ﬁzo / (Z/ 94i (9, T) A (ﬁ))
<o [ 02500008 X(@),v(0), BLx(@), I y(@) ¢ ) e

Then for any t € (0,1), we obtain

(€1(x,))'( / 7 [(’)/1 — D21 — )%l (= 1) (t— 7)71’2}
<o [} 10 OHEX(@, (0, BLx(@, 1 y(@)c ) e
4 tl oy (= DI 21—yt

<o [ 10 0HEX(@, (0, BLx(@), 12 9(@)) ¢ ) ax

+(’)/1—1E)’t71251/ <i/olg3l 19’1' d‘ﬁ l9)>
<pu( [ 0101 OUO LIy @) ) e

(y1— )t~ Zf(vz L
+ E (8, T) do;(
br 72 _ IBO l g4l )

<o [ 0200 O >1"1 () (0 )
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So for any t € (0,1) we deduce

[(€1(x,y))'( 1 N <50, -1) Ot tn=2 —wl g (tfr)vl—z]
><qu1< Jt 4’1<§:x 0, 11x(0), Ié‘iy@)dé)dr
’71 —1/ At
<o ([ 960 (£x@ 0, B1x(@), 129(0) e ) i
+(71—1)bt712bl/ (i/gglﬂrd‘ﬂ()>
<o (] 310810091 (6,00, Bx©), Biv(©) a ) e
1

+(71[;1,£h_ ;1; 72) < /01 00 (8,7) 49T )
<pu( [ 200 D00 20(0) dc o
SLQl :?1 1{ 71_1 / t% 1—1’ Y1—o— 1+(t_T>7172} dr

1
- - 1—7)nn—%-1g4
o ) i

+W /Ol<i/01 93i(9,7) d‘ﬂi(l9)>d'r}

i=1

2—1m02— 1(r =DM 2T (2) !
+LQ ‘—‘g 1b1“(72—ﬁ0) /0 (121/ 941'(19’1—) dmtl(ﬁ)>d’l’

Hence for any t € (0,1) we find

B - 1 m-2 m—1
& (x,y)) (1) < LS lga 1{ ( + )
[(€1(x,)) ()] = r(%—l) Y-y y1—1

+(71_1)m2[’1/ ( (/ e 1971 Bi— ( T)%_“O_ld‘ﬁi(ﬂ))>d‘f}

e lge- 1(y1 — M~ zr (72)
2 72 b (2 — Bo)

- LQllwell[ 1 ( tn—2 n tn-t > (11— 1)”1_2[’152]
2 1“((71 - 1))7 Y1—ag Yy1—1 b(y1 —a0)T (1)
_ —1)m—2 by
4L 1EQ2 T
272 (2 —Bo+ 1)
_ pa-lge-1 1 < - " tn-1 ) " 7117 2b1 by }
2 71 _1;(71 - 1))7 T1—a 11—1) b(y1 —ag)l(y1 —1)
_ —1)m-2 by
412 1592 71
272 (12— Bo+ 1)

S _b(%—txo) (m-1 T(n)] 2 2 bl(2—Bo+1)
We denote by
b b6 t71_2 t')/l_l -1 t"yl—Zb
On(t) = ot oube) I ey = DT g ),

b(y1 —ag)T(y1—1)  T(71) bT(y2 —Bo+1)"
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Then for any t1,t; € [0,1] with t; < fp and (x,y) € S, we deduce

1))~ @) ()] = | [ (@) ()

< 1971En 1/t ©y (1) dr + L& Eg" 1/t @y (1) d

(13)

Because @1, ®, € L'(0,1), by (13), we conclude that ¢;(S) is equicontinuous. By using a
similar technique, we deduce that &,(S) is also equicontinuous, and so &(S) is equicontin-
uous. We apply now the Arzela-Ascoli theorem and we obtain that €;(S) and &,(S) are
relatively compact sets, and then &(S) is relatively compact, too. In addition, we can prove
that &;, €, and € are continuous operators on  (see Lemma 1.4.1 from [16]). Therefore,
the operator € is completely continuous on Q. [

Proof of Theorem 1. From (H3) we deduce that there exists r € (0,1) such that

P1(t, w1, wo, w3, ws) < 190, ((hwy + hwy + l3ws + Lywy)™), (14)
Po(t, wi, wo, w3, ws) < C2p, ((Mywy + mowy + maws + mywy)?),

forallt € [0,1), w; > 0,i =1,...,4 with Y* | Lw; < rand Y+, m;w; < r. We consider
firstly the case E4 # 0 and 5 # 0. We define r; < min{r/dy,r/dy,r}. For any (x,y) €
B, NQand T € [0,1] we find

B (7) + by(T) + I x(7) + LI y (7)
R T }||<x Wls =dill(xy)lo <dn <,
() may(r) + malgh x(x) k(o)

< 2max{m1,m2, F(v1+1)’ F(vz-i-l }||(x Yl = daf|(x,y) [l < dary <7

< Zmax{ll, Iy, 7

Therefore by (14) and Lemma 2, for any (x,y) € 9B, N Qg and ¢ € [0, 1] we deduce

o) < [ as0g ([ @50, 1(@) 1), B2n(@) ¢ e
+ [ 340 ([ 920006 7010, 1O 140 )b
= =s0u (| 2@F(6X(Q0(0), B1x(@, 100 ) )
+2ug0n (| 2008 X(@, (0, BLx(@, 1 v(@)
< =00 (| 5@ (6X@0), B1x(@, 100 )¢
+2agus (| (DR 3@ @), Byx(@), 1 0(©)
< 3¢, (/01 HDE(Q)er9p, ((llx +Ly(Q) + BIYx() + 1413‘13/(@)91)51@)
+2090n (| 08 cap (mx(@) + may(@) + it x@) + mality(©) ?) it )

< Eag,, (qopl( a5, y)0)™ ) ) @or (c1) 90, (En)
— 9 .—.
+E4¢0, (%((dzH XY ||m ? )fp@ €2) 90, (Z2
- 1 1 (9 - = 1 1,6 0
BB A ()19 + BaBS e dZH )%

11 =1 o el 1
3:.91 Ql d1||(xy)||m+ By QZ dy || (%, y)

<
<1l(x y)llm il y)lly = zll(x ]/)Hm

wi= 11 [1]
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In a similar manner we obtain

_- = 1 011,460 _ = 1 146
s =5 f?l oy ||1(x/y)||m +EeEy ¢y | (xny)llw
< gl e + 1l llo = 211G y) -

Then we conclude
[€(x y)llw = [[€1(x, )| + €y < [(x,y)lu, V(xy) €09B,yNQ.  (15)

If 24 = 0 or E5 = 0 we also find in a similar manner inequality (15).
In what follows, in (H4) we assume that ge > ¢4 (in a similar manner we study the
case foo > ¢3). Then there exists a positive constant C; > 0 such that

a(t, w1, wo, w3, Ws) > Cap, (t1wy + tawy + t3wsz + tywy) — Cy, (16)

forall f € [oq,00] and w; > 0,i = 1,...,4. From the definition of 103_, for any (x,y) € Qo
and T € [0,1], we find

B = oy =0 @ a2 s [N 07 e g

_ 1 1
= rH(T/H) / (T—tz)1 = lIgn—lr gz = 79‘31(/”) T"1+'Vl_1/ 21—z gy (17)
1) J0 1 0
[ I x| Tt 1710 (9q)
= 70 itn—lp V) = ——"1"7
I'(vy) () T(y1+v1)

and similarly

[yllT2 72711 (72)
T (72 +12)

where B(z1,zp) is the first Euler function defined by B(zj,z2) = f01 1711 — )21 4t,
21,23 > 0. Then by using (16) and (17), for any (x,y) € Qp and t € [07, 03] we obtain

I2y(t) >

& (x,y)(t) > /: &6 (t, 7)o, (/; &(7,0)9(2,x(2),y(2), I, x(2), I y(2)) dé) dt

> o™ [P aen) ([ eatr ) ea (3@ + 1200 + L) + 11290
—Cy)de)2 tar

-1 (7 ’ 721
> o 360 ( [ ®am ) [en(to? il + el
(%] (%]

-1 -1
otm 1T 71 o2t 1T - 02
i f T A 1020 e la) e
T(y1+v1) T(72+12)
T 0-V1+"/1_11"(,Y )
> Y2— 1/ / 6 g . t ’Yl 1t '72 1,t 1 1 ,
71 o J6(7) < o 2(T,{) e | ming to 20" S T tv)
-1 02—1
o) "
TP e LA S, Y E7 —C|d dt
o (2l 1| e
02—1

=0/* 1/01 Jo(7) </a1TQ52(T,€) [C4(2d4|\(x/y)||m)p2_l_Cl} dC) i

—_ -1 -1 Q2
Zao7 " [ea (2]l (x,y) o) - 1

—p2—1 —1)(p2—1 _ -1 -1 —pp—1 —1)(p2—1 02-1
:(ng 0(72 ) (o2 )C42p2 ldiz ”(x/y)H% _\:‘gz 01(72 ) (o2 )Cl)

- 02—1 —0r— _ _
— (nll(x, y)ll% 1 Cz) Gy = dgz 101(71 1)(p2 1)C1-
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So we find

02—1

-1
le(ey)llw = eyl = Exy)e) = (plyIf ' -c)" , ¥(xy) €.
We choose rp > max{l, ng_l /(2 — 1)92—1} and we deduce

1€, Yl = [(x,¥)llw, ¥ (x,y) € 9By, N Q. (18)

Now based on Lemma 4, the relations (15), (18) and the Guo-Krasnosel’skii fixed point
theorem we conclude that the operator € has a fixed point (x,y) € (By, \ By,) N Qo with
1 < |[(x,y)|lw < r2and x(s) > s |x|, y(s) > s727Y|y|| for all s € [0,1]. So ||x|| > 0
or ||y|| > 0, thatis x(s) > O foralls € (0,1] or y(s) > 0 for all s € (0,1]. Therefore,
(x(#),y(t)), t € [0,1] is a positive solution of problem (1), (2). [

Proof of Theorem 2. From assumption (H5) we deduce that there exist C3 > 0, C4 > 0
such that

1(t, w, wo, w3, ws) < e1@p, (Wwy + upwy + uzws + ugwy) 4 C3,

19
2 (t, w1, wp, w3, wy) < €2<Pp2(u1w1 + upwy + uzws + ugwy) + Cy, (19)

¥
2

forany t € [0,1) and w; >0, i =1,...,4. By using (H2) and (19), for any (x,y) € Qp and
t € [0,1] we obtain

& )0) < [ 9(@gn ([ NOHE 0, ¥(@) (@), Bl dE ) it
+ [[3u00n ([ 920006 70 1@), 1x (@), 12410 )b

< a0 (| 1OV x(@ 0, B1x@) v ¢
+2agun (| OB X(@, (0, K@), B v(@) 2

< Zagu [ 100 [rem (1x(0) + 1(@) + @)+ alfEy(0) + G|
+2agun (| 8(ORA0) expn (010) + 029(0) + 0L KE) + 0aB (D) + CiJE )

)
1 p1—1
< Z30, ( [ n0a@ [el(ulnu+uz||y||+r(”;1”i'l) e RS dC)
dg)

1 p2—1
+a4¢92</0 ﬁz(C)Cz(C)lez(UHﬂ+Uz||y||+ g’j“j”l)+rsz'_{”l)) e

S—

< H3¢y, [el (max{ul,uz, T(MH)’ F(Herl }ZH X,y ||sn) + C3]

«( A 31(6)61(&)616)91 1

+E4¢0, 32( {01,02, r(V1+1)’r(V2+1 }ZH(x y)||m) 7 +C4]

([ non@w)

=01—1o -1 1y a-1 -1 -1 1 02
==t m(ak eyl T+ G)T e E (el eyl 4 G)

In a similar way we find

— Q
&) () < B Es (k] g + G
+82 B (e () I8 + G )
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Hence we conclude
- 1~ 1 1 Q1
ler(xy)ll < EF 7 E (el eyl +G)
=01 1 1 -1
g a4( Gl )
1 1 1 Q01—
lea(xy)ll < EF 8 (el M (e y)lifs T+ G)
m0—1g 1 1 021
+E8” (e I +c)™
and then
~01~1/m | — -1 -1 a-1
lee )l < B (85 + Es) (k! (x )15 +Ca) 20

—02—1/— - -1 1
a2 (@ ) (ke eI )

for all (x,y) € Qp. We choose

20 lig | o 1, o1 1
r3 > max{ 1 ' (Bs+85)MCG +E7 (\~4 +E6)A2Cy2
> , o - '
- [5(1)1 (Es + Es)Aref' ™ '+ & 5 (H4 + Bg)Ages® kz}

Then by (20) and the inequalities (a + b)%~1 < A;(a% 1 4+ b%~1), fora,b > 0,i = 1,2 we
deduce
1€(x, y)llw < [|(x,¥)llw, ¥ (x,y) € 9By, N Qo. (21)

Now, in (H6) we assume that fy > e3 (the case gy > ey is treated in a similar way). So
there exists 74 € (0,1] such that

f(t, w1, wo, w3, wy) > ea@p, (P11 + paws + p3ws + pawy)*t), (22)

forallt € [oq,0%], w; > 0,i=1,...,4, Zle piw; < 74. We define 4 < min{74/%3,74},
where k3 = 2max{p1, P2, %, %} Hence for any (x,y) € §,4 NQandt € [0,1]
we find

p1x(7) + pay(7) + paly} () + palp}y(7)

= 2ma><{r71,vz, TRV %}H(%y)ﬂm =ksra <Ta.

Therefore, by using (22) and the inequalities Ig_lir () > x| %ﬂl(;’l) and I}? Ty(t) >
Ily H% forall T € [0,1] and (x,y) € Qo, we obtain for any (x,y) € B,, N Qp and
t € [oq,07]

x| oatt 7)o ([ 01(0 OHE 10,000, B0, 129t e
> [P ( [ @150 (prx(@) + pay(@) + palf (@)
>€1(P1*1) a-l

a2 y(0) dC) gt

T
2ol [P >(/ &1(v,0)es(prof"xll + pao Yy
(%] 01 -1

-1 1 c1(01—1) e
(1 +m) [(72+ p2 )
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-1 [ T Ftn 1 v
Zo’ih 1/‘7l J3(7) (/171 61(T,§)e3<min{p10€h 1/P20'Y2 1,p31(%_‘_Pl(1;),

Ho+7Y2— 1 gl(‘ol_l) -l
%1 T(72)
- =2 320(x, d dt
e } II( y)|m> 5)

-1

T Q1
o™ [Paale) ([T ertn Des(2hal e ) V) e

_ Ql e o [ T 01—1

o e ) [ ([ o)
1 1

=o' e Qljz“k“”ﬂi(x yIIg

> ot e T 29K By || (%, ) lw = [ (%, ) |-

Then we deduce
€, y)llw = €1 (x, y)l| = E1(x,y)(e1) > [[(x,¥)lw, V(x,y) € 9By, N Q. (23)

By Lemma 4, (21), (23) and the Guo-Krasnosel’skii fixed point theorem, we conclude that
¢ has a fixed point (x,y) € (B, \ By,) NQq,s0 74 < [|(x,y) |y < 73, and x(s) > s7171|x]],
y(s) > s7271||y|| for all s € [0,1], which is a positive solution of problem (1), (2). [

Proof of Theorem 3. Because assumptions (H1), (H2) and (H4) hold, then by Theorem 1
we deduce that there exists r, > 1 such that

1€Cxy)llw = (%, y)llw, ¥ (x,y) € 9By, N Q. (24)

Next because assumptions (H1), (H2) and (H6) hold, then by Theorem 2 we conclude that
there exists r4 < 1 such that

1€, y)llw = [(x,y)llw, ¥ (x,y) € 9By, N Q. (25)

Now, consider the set B = {(x,y) € U, ||(x,y)|lw < 1}. By assumption (H7) for any
(x,y) € 9B1 N Qg and t € [0, 1] we find

1 1
&) < [ B@ay ( [ 2@a@n (g,x@),y(o,lé‘ix(é),Ié*iy@))dg) gt
+ [ a0 ( [ 320808 %040, 13x), Igiy@))dg) dt
1 1 1 1
<487 [Naagn ([ @@ @) i+ 47 [Maugn ([ 92060 ¢ )
1 1 01—1
a5 ([faa) ([ n@a @)

(
a7 ([[utmae) @)
:Ag171H3Hg171+A82 Iz, 1
&))< [ 35gn ([ 3(©Oa @0 (20,90, (0, Biv(@) e i
+ [Fasgn ([ Jz@)gz(@)wz(ax<5>,y<é>,Ig;x@,Igiy@))dg)dr
<43 [Casgn ([ (é)é’l(é)dé)dTJrAgz [ e ([ 2260 i )it

J1
—ap (s ([ @@ )

[ —
o
i
R}
N
= —
™~
D
=
N
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Therefore we deduce || &1 (x,y)|| < 3, [|€2(x,y)|| < 4 forall (x,y) € 9B; N Q. So we obtain

1€Cxe,y)llw = € (x )l + 1€20xy)l| <1=[l(x,y)llw, ¥(x,y) €9B1NQ.  (26)

Then, by (24) and (26) we conclude that there exists a positive solution (x1,y1) € Qo
with 1 < [[(x1,y1)|w < rp for problem (1), (2). By (25) and (26) we deduce that there exists
another positive solution (xp,y2) € Qo with 4 < ||(x2,y2)|ls < 1 for problem (1), (2). Hence
problem (1), (2) has at least two positive solutions (x1(t),y1(t)), (x2(t),y2(t)), t €[0,1]. O

5. Examples

=B M) = F, v e 01, %) = {1 re

S
3 1 93 1 _J1 4. 29 4
{1, TE [0, 2) 287 TE |:§,].i| }, ml(T) — {g, TE [O,g), 247 T E |:§,
Te[0,1].
We consider the system of fractional differential equations

DY (parys (D3 2x(8)) ) = (b x(0),y(0), 1B/ °x(0), 1 7y(1)), t € (0,1), -
D32 (gasso (DY %w() ) = a (b x(6),y(6), 137/ *x(), 1 y(1)), te (0,1),
with the boundary conditions
1
x(0) = #'(0) = 0, DF2x(0) =0, gar/s(DF2x(1)) = § [ gz (DF2x(1)) dr,
Dy (1) = $DE v (1), (28)

9/29
y(0) = ¥'(0) = y"(0) = 0, DY/%y(0) =0, DY/*y(1) = (3) " DF/°y(}),
1
Dty(1) = 3034 () +3 /O DE/ex(7) dr.

We obtain here a; =~ 0.59183673 > 0, ap ~ 0.71155008 > 0, b; ~ 1.45311179,
by ~ 2.39587178, b ~ 1.09690108 > 0. Then assumption (H1) is satisfied. We also
find

3/4 _ ( )3/4 0<t<t<l1,
B34 —1)34 0<t<T<]1,

(
} 2/351—7 ,
(o

_ )
1 23— (t—1)¥3, 0<T<t<],
231 -1)%3, 0<t<t<1,
)
)

0t 1) = 1(5/3)
P21 -—n)Ve—(t—1)¥2, 0<T<t<1,
t3/2(1—71/6, 0<t<t<1,

93(tlT) = F(S/Z)

1 PrA-)Ve—(9-1)%4 0<T <<,
01(0,7) = I(7/4) { $/r1-1)V/6, 0<d<T <1,

1 P31 -V —(9-1)%3, 0<T <8<,
o (t7) = r(5/3){ $R1-)/6, 0<9<T<1,

1 t12/5(1 _ ‘L')3/20 _ (t _ T)12/5, 0<t<t<l1,
0a(t7) = r(17/5){ H2/5(1—1)3/0, g<t<T<1,

1 1926/15(1 _ T)3/20 _ (19 _ T)26/15/ 0<Tt<8<1,

gu1(0,7) = [(41/15) { §26/15(1 — 1)3/20 0 <9< T <1,

3/4

1
&1 (t, 1) = g1(t,7) + S;T/o 01(¢,7)dg,

&y (t 1) = (1%1.')—1—E 11'
2\t _92 7 5a292 3/ 7
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£3/2p, 7 4 3 1
B3(t,7) = g3(t,7) + b {8931 (5,T> + 5 ./0 932(%,7) dﬁ],
18t3/21(17/5) 1
t1)=—— g 2
By(t,T) 76T (23,/20) 041 <2,T>,
t12/51(5/2) [7 (4 3 1
tr) = (2 2 9,7)do
65( /T) br(7/6) |:8g31 (5/T> +2/0 932( /T) :|/
18t12/5p 1
®(t,7) = 0a(t,T) + ———an ( 5.7),
01(7) =tz (1= 1% 02(7) = 5 (1 - 1),
h3(T) = r(51/2) (1 7)1/6(1 - (1 - 7)4/3)/
b4(T) r(17/5) (1 - T)3/20(1 - (1 - T>9/4)/
for all £, 7,9 € [0,1]. In addition we deduce
31T = hi(0) + W (-7, T e o,
2/3 2/3
- hZ(T) 5a2F( 3) {( ) (1_T)2/3_ (%_7) ]/ 0<t< %/
dZ(T) = 1 2/3 .
b2 (1) + 5a2r(5 - ( -3, l<r<1,
3/4 3/4
7 4 4
b3(7) + §3 sre7my (S) (1-7)Vo~ (5 —T) }
3 1/6 5/3 4
N B +m (1—T)/—(1—T)/H,0§T§§,
3s(7) = by 7 (4\%* 1/6
03(7) + % | sT779) (E) (1-1)
3 4
o |(1-D)V6 = (1- 7)5/3} } o<,
18r'(17/5) 1)26/15 3/20 (1 26/15 1
a(1) = 76T (23/20)T (41/15) <§) (e T) 0Ty
at) = 26/15
18I'(17/5) 1 3/20 1
76T(23/20)T(41/15) (2) (I-1)%, 3<7<],
r(5/2) 7 4)3/4 176 (4 3/4
s s |(3) A-0Ye—(4-1
~ _ )T 2r(g/3) [(1 Ve -(1- T>5/3} }/ O=7= %'
Js(7) = . 3/4
(5/2) 7 (4) (1—1)1/6
BT (776) | 8T(7/4) \ 5
+ e (- DV - -3}, d <<,
26/15 26/15
. T TETALTS) [(D (-7~ (}-) } 0<t<l,
6\t) = 26/15
ha(T) + 7b1"1(i[1]§15) (%) 1-7)¥%, j<t<l.
Example 1. We introduce the functions
(3wq + 2wy + w3 + 5wy )197/8
f(t/ w1, W2, w3, w4) = 1 (1 — t)ZZ ’
(w1 + 7wy + 4wz + ZZU4)2%/9 (29)
g(t/ w1, Wy, ws, w4) = tz3(1 — t)z4 ’

fort € (0,1), w; >0,i=1,...,4 wherea > 1, b > 1,21 € (0,1),z2 € (0,%), 23 € (0,1),
z4 € (0,3). Here &(t) = W, G2(t) = &5 . mrop for t € (0,1), ¢ (t wy, wa, w3, wy) =
(3wy + 2wy + w3 + 5wy) 98 and Py (t, wy, wo, w3, wy) = (wy + Two + dws + 2wy )??/? for
t € [0,1, w; > 0,i =1,...,4 We also obtain M; = B(1 —z1,7/4 —z5) € (0,00),
My = B(1 —23,5/3 —z4) € (0,00). Then assumption (H2) is satisfied. In addition, in (H3),
fOTl] :3,12 :2,13 :1,14:5,91 = 1,m1 :1,m2:7,m3 :4,1114:2,92 zl,weﬁnd
P10 = 0and P9 = 0. In (H4), for [oq,02] C (0,1),s1 = 3,50 = 2,53 =1, 54 = 5, we obtain
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foo = 00. Then by Theorem 1 we deduce that problem (27), (28) with the nonlinearities (29) has at
least one solution (x1(t),y1(t)), t € [0,1].

Example 2. We define the functions

_ polt+3) (1 1o 1Y
f(t,W1,wz,w3,W4) - (t2+8)\4/t73 Zwl +w2+ 4w3+ 5w4
v
+(%w1 +ZU2+}IW3+%ZU4) 2}, Fe (0,1, w;>0,i=1,...,4, (30)
go(2 +sint)

a(t, wy, wp, w3, wy) = (w® 4“2 + In (w3 + wy + 1)),

(00—

tel01), w;>0,i=1,...,4,

where py >0, g9 > 0, v1 > 19/8, v € (0,19/8), v3 > 0. Here we have {1 (t) = te (0,1],

1
t+3 Y1
1 (t, w1, wp, w3, wy) = p(othrs)) [(%wl + wy + %wg + %m;) + (%un + wy + %w3—|—

(%) .
bwg) Tt 01w 2 0,i=1,...,4,5() = Ta tE 0D, galt w wy,ws,wy) =
%(W + e +In(ws +wy +1)), t € [0,1], w; > 0,i=1,...,4 We obtain M; =
B(1/4,7/4) € (0,00), My = 3} € (0,00). Then assumption (H2) is satisfied. For [01,02] C

(0,1), 51 = %, S =1,83 = %, Sy = %, we find foo = oo (in (H4)), and for py = %, P2 =1,

p3 =1 pa=1¢6€ (81%,1}, we have fy = oo (in (H6)). So assumptions (H4) and (H6)
are satisfied. Then after some computations we deduce 51 =~ 3.93816256, &, =~ 1.53523525,

E3 ~ 140740842, £, =~ 0.97489748, Bs ~ 1.04873754, &4 ~ 0.92404828, @ = 1, and

Ay = max{@((%)vl + (%)Uz),qomo(l—i—e—l—lnf&)}, where my = max,c[o ] %:fg)‘f ~

2.00035047. If

9 . 1 1 1 1
PO < U U min -1 —_ 7 —D —_ 7 -1 4 —_2 — 7
()" + (2™ 427/8:‘39/8\11 438/9%9/9Lz 427/8\:59/8&1 438/9%9/9Lz

1 . 1 1 1 1
qO < mln — - 4 — — 4 - — 7 —_ — 7
mo(1+e+1In3) 419/8519/8, " 429/9529/93, " 419/8519/85, " 429/929/%g,

then the inequalities A§/19E3E§/19 < %, Ag/293433/29 < }I, A8/19353t1%/19 < }I'
Ag/ 293633/ » < 411 are satisfied, (that is, assumption (H7) is satisfied). For example, if v; = 2,
vy = 3and pg < 0.0008, go < 0.0004, then the above inequalities are verified. By Theorem 3,
we conclude that problem (27), (28) with the nonlinearities (30) has at least two positive solutions

(xr1(£), y1(8)), (x2(8), y2(t)), t € [0,1].

6. Conclusions

In this paper we investigated the system of coupled fractional differential equations (1)
with p-Laplacian operators and Riemann-Liouville fractional derivatives of varied orders,
supplemented with general nonlocal boundary conditions (2) containing Riemann-Stieltjes
integrals and fractional derivatives of differing orders. The nonlinearities from the system
are dependent on various fractional integrals and they are nonnegative and singular in the
points t = 0 and t = 1. The last boundary conditions for the unknown functions x and y
are coupled in the point 1, in contrast to the boundary conditions from paper [6] in which
they are uncoupled in the point 1. We presented diverse assumptions on the functions f
and g so that problem (1), (2) has one positive solution (in Theorems 1 and 2), and two
positive solutions (in Theorem 3). We also gave the corresponding Green functions and
their properties used in the proof of the main results. We transformed our problem into a
system of integral equations and we associated an operator ¢ for which we looked for the
fixed points by applying the Guo-Krasnosel’skii fixed point theorem of cone expansion and
compression of norm type. We presented finally two examples for illustrating our main
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theorems. For some future research directions we have in mind the study of some systems
of fractional differential equations with other nonlocal coupled or uncoupled boundary
conditions.
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