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Abstract: Linear and nonlinear fractional-delay systems are studied. As an application, we derive
the controllability and Hyers–Ulam stability results using the representation of solutions of these
systems with the help of their delayed Mittag–Leffler matrix functions. We provide some sufficient
and necessary conditions for the controllability of linear fractional-delay systems by introducing a
fractional delay Gramian matrix. Furthermore, we establish some sufficient conditions of controlla-
bility and Hyers–Ulam stability of nonlinear fractional-delay systems by applying Krasnoselskii’s
fixed-point theorem. Our results improve, extend, and complement some existing ones. Finally,
numerical examples of linear and nonlinear fractional-delay systems are presented to demonstrate
the theoretical results.
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1. Introduction

The fractional delay differential equations and their applications have gained signifi-
cant attention owing to their successful modeling in several fields of science and engineer-
ing, such as disease, control theory, signal analysis, diffusion processes, biology, forced
oscillations, population dynamics, viscoelastic systems, computer engineering, and finance;
see, for instance, [1–8]. Recently, the representation of solutions of time-delay systems has
been considered. In particular, the pioneering study [9,10] produced several innovative
findings on the representations of solutions of time-delay systems, which were used in the
control problems and stability analysis; see, for instance, [11–21] and the references therein.

On the one hand, the controllability of systems is one of the most fundamental and
significant concepts in modern control theory, which consists of determining the control
parameters that steer the solutions of a control system from its initial state to its final
state using a set of admissible controls, where initial and final states may vary over an
entire space. In recent decades, there has been considerable interest in the controllability
analysis of fractional-delay systems of order α ∈ (0, 1) and α ∈ (1, 2), and several methods
for studying the controllability results have been developed, for example, the robust and
universal methods [22]; the Laplace transform technique, the Mittag–Leffler function and
fixed-point argument [23]; Martelli’s fixed-point theorem, multivalued functions, and co-
sine and sine families [24]; the Mittag–Leffler matrix functions and the Schauder fixed-point
theorem [20,25,26]; the Mittag–Leffler matrix function, the Gramian matrix, and the iterative
technique [27]; the solution operator theory, fractional calculations, and fixed point tech-
niques [28]; and the delayed fractional Gram matrix and the explicit solution formula [29].
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On the other hand, the Hyers–Ulam stability of fractional delay systems has been studied
recently by many authors; see, for example, [19,30,31] and the references therein.

However, to the best of our knowledge, no research has been conducted on the
controllability of linear fractional-delay systems of the form(CDα

0+y
)
(x) + Ay(x− h) = Bu(x), x ∈ Ω := [0, x1],

y(x) ≡ ψ(x), y′(x) ≡ ψ′(x), − h ≤ x ≤ 0,
(1)

and the controllability and Hyers–Ulam stability of the corresponding nonlinear fractional-
delay systems of the form(CDα

0+y
)
(x) + Ay(x− h) = f (x, y(x)) + Bu(x), x ∈ Ω,

y(x) ≡ ψ(x), y′(x) ≡ ψ′(x), − h ≤ x ≤ 0,
(2)

where CDα
0+ is called the Caputo fractional derivative of order α ∈ (1, 2] with the lower

index zero, h > 0 is a delay, x1 > (n− 1)h, y(x) ∈ Rn, ψ ∈ C([−h, 0],Rn), A ∈ Rn×n and
B ∈ Rn×m are any matrices, f ∈ C(Ω×Rn,Rn) is a given function, and u(x) ∈ Rm shows
control vector.

Elshenhab and Wang [11] have presented a novel formulation of solutions to the linear
fractional-delay systems(CDα

0+y
)
(x) + Ay(x− h) = f (x), x ≥ 0,

y(x) ≡ ψ(x), y′(x) ≡ ψ′(x), − h ≤ x ≤ 0,
(3)

of the following form:

y(x) = Hh,α
(

A(x− h)α)ψ(0) +Mh,α
(

A(x− h)α)ψ′(0)
− A

∫ 0

−h
Sh,α

(
A(x− 2h− ↓)α)ψ(↓)d↓

+
∫ x

0
Sh,α

(
A(x− h− ↓)α) f (↓)d↓, (4)

whereHh,α(Axα),Mh,α(Axα), and Sh,α(Axα) are known as the delayed Mittag–Lefflertype
matrix functions formulated by

Hh,α(Axα) :=



Θ, −∞ < x < −h,
I, − h ≤ x < 0,
I− A xα

Γ(1+α)
, 0 ≤ x < h,

...
...

I− A xα

Γ(1+α)
+ A2 (x−h)2α

Γ(1+2α)

+ · · ·+ (−1)r Ar (x−(r−1)h)rα

Γ(1+rα)
, (r− 1)h ≤ x < rh,

(5)

Mh,α(Axα) :=



Θ, −∞ < x < −h,
I(x + h), − h ≤ x < 0,
I(x + h)− A xα+1

Γ(2+α)
, 0 ≤ x < h,

...
...

I(x + h)− A xα+1

Γ(2+α)
+ A2 (x−h)2α+1

Γ(2+2α)

+ · · ·+ (−1)r Ar (x−(r−1)h)rα+1

Γ(2+rα)
, (r− 1)h ≤ x < rh,

(6)
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and

Sh,α(Axα) :=



Θ, −∞ < x < −h,

I (x+h)α−1

Γ(α) , − h ≤ x < 0,

I (x+h)α−1

Γ(α) − A x2α−1

Γ(2α)
, 0 ≤ x < h,

...
...

I (x+h)α−1

Γ(α) − A x2α−1

Γ(2α)
+ A2 (x−h)3α−1

Γ(3α)

+ · · ·+ (−1)r Ar (x−(r−1)h)α(r+1)−1

Γ(α(r+1)) , (r− 1)h ≤ x < rh,

(7)

respectively, where the notation Θ and I are the n× n null and identity matrix, respectively,
Γ is a gamma function, and r = 0, 1, 2, ....

Applying Formula (4), the solution of (2) can be represented as

y(x) = Hh,α
(

A(x− h)α)ψ(0) +Mh,α
(

A(x− h)α)ψ′(0)
− A

∫ 0

−h
Sh,α

(
A(x− 2h− ↓)α)ψ(↓)d↓

+
∫ x

0
Sh,α

(
A(x− h− ↓)α) f (↓, y(↓))d↓

+
∫ x

0
Sh,α

(
A(x− h− ↓)α)Bu(↓)d↓, (8)

Motivated by [11,16], the explicit solutions Formula (8) of (3) combined with the
delayed Mittag–Leffler matrix functions are employed as an application to derive controlla-
bility results on Ω = [0, x1].

The rest of this paper is structured as follows: in Section 2, we present some prelim-
inaries, some basic notation and definitions, and some useful lemmas. In Section 3, we
derive sufficient and necessary conditions for the controllability of (1) by introducing a
fractional delay Gramian matrix. In Section 4, we establish sufficient conditions of the
controllability of (2) by applying Krasnoselskii’s fixed-point theorem. In Section 5, we
discuss the Hyers–Ulam stability of (2) on the finite-time interval [0, x1]. Finally, we provide
numerical examples of linear and nonlinear fractional-delay systems to demonstrate the
theoretical results.

2. Preliminaries

Throughout the paper, we refer to C(Ω,Rn) as the Banach space of a vector-valued
continuous function from Ω→ Rn endowed with the norm ‖y‖C(Ω) = maxx∈Ω‖y(x)‖ for
a norm ‖·‖ on Rn, and the matrix norm as ‖A‖ = max‖y‖=1‖Ay‖, where A : Rn → Rn.
We define a space C1(Ω,Rn) = {y ∈ C(Ω,Rn) : y′ ∈ C(Ω,Rn)}. Let X, Y be two Banach
spaces and Lb(X, Y) be the space of bounded linear operators from X to Y. Now, Lp(Ω, Y)
indicates the Banach space of functions f : Ω → Y that are Bochner integrable normed
by ‖ f ‖Lp(Ω,Y) for some 1 < p < ∞. Furthermore, we let ‖ψ‖C = maxs∈[−h,0]‖ψ(s)‖ and
‖ψ′‖C = maxs∈[−h,0]‖ψ′(s)‖.

We mention some basic concepts and lemmas utilized throughout this paper.

Definition 1. ([5]). The Mittag–Leffler function with two parameters is given by

Eσ,τ(x) =
∞

∑
r=0

xr

Γ(σr + τ)
, σ, τ > 0, x ∈ C.

In the case of τ = 1, then

Eσ,1(x) = Eσ(x) =
∞

∑
r=0

xr

Γ(σr + 1)
, σ > 0.



Fractal Fract. 2022, 6, 611 4 of 17

Definition 2. ([5]). A function y : [−h, ∞)→ Rn has the Caputo fractional derivative of order
α ∈ (1, 2] with a lower index 0 given by

(
CDα

0+y
)
(x) =

1
Γ(2− α)

∫ x

0

y
′′
(↓)

(x− ↓)α−1 d↓, x > 0.

Definition 3. ([32]). The systems (1) or (2) are controllable on Ω = [0, x1] if there is a control
function u ∈ L2(Ω,Rm) such that (1) or (2) has a solution y : [−h, x1] → Rn with y(0) = y0,
y′(0) = y′0 satisfies y(x1) = y1 for all y0, y′0, y1 ∈ Rn.

Definition 4. ([33]). The system (2) is Hyers–Ulam stable on [0, x1] if there is, for a given constant
ε > 0, a function ϕ ∈ C(Ω,Rn) satisfying the inequality∥∥∥(CDα

0+ ϕ
)
(x) + Aϕ(x− h)− f (x, ϕ(x))− Bu(x)

∥∥∥ ≤ ε, x ∈ [0, x1], (9)

there exists a solution y ∈ C(Ω,Rn) of (2) and a constant M > 0 such that

‖ϕ(x)− y(x)‖ ≤ Mε, for all x ∈ [0, x1].

Remark 1. ([33]). A function ϕ ∈ C(Ω,Rn) is a solution of the inequality (9) if and only if there
is a function π ∈ C(Ω,Rn) such that

(i) ‖π(x)‖ ≤ ε, x ∈ Ω.
(ii)

(CDα
0+ ϕ

)
(x) = −Aϕ(x− h) + f (x, ϕ(x)) + Bu(x) + π(x), x ∈ Ω.

Lemma 1. ([17]). The following inequalities hold:∥∥Hh,α(Axα)
∥∥ ≤ Eα(‖A‖xα),∥∥Mh,α(Axα)

∥∥ ≤ (x + h)Eα,2
(
‖A‖(x + h)α),

and ∥∥Sh,α(Axα)
∥∥ ≤ (x + h)α−1Eα,α

(
‖A‖(x + h)α).

for any x ∈ [(r− 1)h, rh], r = 1, 2, ... .

Lemma 2. Let α > 0 and ϕ ∈ C(Ω,Rn) be a solution of the inequality (9). Then there exists, for
a given constant ε > 0, a solution ϕ∗ satisfying the inequality

‖ϕ(x)− ϕ∗(x)‖ ≤ xαε

α
Eα,α(‖A‖xα).

where

ϕ∗(x) = Hh,α
(

A(x− h)α)ψ(0) +Mh,α
(

A(x− h)α)ψ′(0)
− A

∫ 0

−h
Sh,α

(
A(x− 2h− ↓)α)ψ(↓)d↓

+
∫ x

0
Sh,α

(
A(x− h− ↓)α) f (↓, ϕ(↓))d↓

+
∫ x

0
Sh,α

(
A(x− h− ↓)α)Buϕ(↓)d↓.

Proof. From Remark 1, the solution of the equation(
CDα

0+ ϕ
)
(x) = −Aϕ(x− h) + f (x, ϕ(x)) + Bu(x) + π(x), x ∈ Ω,
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can be written as

ϕ(x) = Hh,α
(

A(x− h)α)ψ(0) +Mh,α
(

A(x− h)α)ψ′(0)
− A

∫ 0

−h
Sh,α

(
A(x− 2h− ↓)α)ψ(↓)d↓

+
∫ x

0
Sh,α

(
A(x− h− ↓)α) f (↓, ϕ(↓))d↓

+
∫ x

0
Sh,α

(
A(x− h− ↓)α)Buϕ(↓)d↓

+
∫ x

0
Sh,α

(
A(x− h− ↓)α)π(↓)d↓.

From Lemma 1, we obtain

‖ϕ(x)− ϕ∗(x)‖ ≤
∫ x

0

∥∥Sh,α
(

A(x− h− ↓)α)∥∥‖π(↓)‖d↓

≤ ε
∫ x

0
(x− ↓)α−1Eα,α

(
‖A‖(x− ↓)α)d↓

≤ xαε

α
Eα,α(‖A‖xα),

for all x ∈ Ω. This ends the proof.

Lemma 3. (Krasnoselskii’s fixed-point theorem, [34]). Let C be a closed, convex, and non-empty
subset of a Banach space X. Suppose that the operators A and B are maps from C into X such that
Ax + By ∈ C for every pair x, y ∈ C. If A is compact and continuous, B is a contraction mapping.
Then, there exists z ∈ C such that z = Az + Bz.

3. Controllability of Linear Fractional Delay System

In this section, we establish some sufficient and necessary conditions of controllability
of (1) by introducing a fractional delay Gramian matrix defined by

Wh,α[0, x1] =
∫ x1

0
Sh,α

(
A(x1 − h− ↓)α)BBTSh,α

(
AT(x1 − h− ↓)α

)
d↓. (10)

It follows from the definition of the matrix Wh,α[0, x1] that it is always positive semidef-
inite for x1 ≥ 0.

Theorem 1. The linear system (1) is controllable if and only if Wh,α[0, x1] is positive definite.

Proof. Sufficiency. Let Wh,α[0, x1] be positive definite; then, it will be non-singular and its
inverse will be well-defined. As a result, we can derive the associated control input u(x),
for any finite terminal conditions y1, y′1 ∈ Rn, as

u(x) = BTSh,α

(
AT(x1 − h− x)α

)
W−1

h,α [0, x1]β, (11)

where

β = y1 −Hh,α
(

A(x1 − h)α)ψ(0)−Mh,α
(

A(x1 − h)α)ψ′(0)
+ A

∫ 0

−h
Sh,α

(
A(x1 − 2h− ↓)α)ψ(↓)d↓. (12)
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From (8), the solution y(x1) of (1) can be formulated as

y(x1) = Hh,α
(

A(x1 − h)α)ψ(0) +Mh,α
(

A(x1 − h)α)ψ′(0)
− A

∫ 0

−h
Sh,α

(
A(x1 − 2h− ↓)α)ψ(↓)d↓

+
∫ x1

0
Sh,α

(
A(x1 − h− ↓)α)Bu(↓)d↓. (13)

Substituting (11) into (13), we obtain

y(x1)

= Hh,α
(

A(x1 − h)α)ψ(0) +Mh,α
(

A(x1 − h)α)ψ′(0)
− A

∫ 0

−h
Sh,α

(
A(x1 − 2h− ↓)α)ψ(↓)d↓ (14)

+
∫ x1

0
Sh,α

(
A(x1 − h− ↓)α)BBTSh,α

(
AT(x1 − h− ↓)α

)
d↓W−1

h,α [0, x1]β.

From (10), (12), and (14), we obtain

y(x1) = Hh,α
(

A(x1 − h)α)ψ(0) +Mh,α
(

A(x1 − h)α)ψ′(0)
− A

∫ 0

−h
Sh,α

(
A(x1 − 2h− ↓)α)ψ(↓)d↓+ β

= y1.

We can see from (3) and (4) that the boundary conditions hold. Thus, (1) is controllable.
Necessity. Assume that (1) is controllable. For the sake of a contradiction, suppose

that Wh,α[0, x1] is not positive definite, and there exists at least a nonzero vector z ∈ Rn

such that zTWh,α[0, x1]z = 0, which implies that

0 = zTWh,α[0, x1]z

=
∫ x1

0
zTSh,α

(
A(x1 − h− ↓)α)BBTSh,α

(
AT(x1 − h− ↓)α

)
zd↓

=
∫ x1

0

[
zTSh,α

(
A(x1 − h− ↓)α)B][zTSh,α

(
A(x1 − h− ↓)α)B]T

d↓

=
∫ x1

0

[
zTSh,α

(
A(x1 − h− ↓)α)B][zTSh,α

(
A(x1 − h− ↓)α)B]T

d↓

=
∫ x1

0

∥∥∥zTSh,α
(

A(x1 − h− ↓)α)B∥∥∥d↓.

Hence

zTSh,α
(

A(x1 − h− ↓)α)B = (0, . . . , 0) := 0T , for all ↓ ∈ Ω, (15)

where 0 denotes the n dimensional zero vector. Consider the initial points y0 = y′0 = 0 and
the final point y1 = z at x = x1. Since (1) is controllable, from Definition 3, there exists a
control function u1(x) that steers the response from 0 to y1 = z at x = x1. Then,

y1 = z = −A
∫ 0

−h
Sh,α

(
A(x1 − 2h− ↓)α)ψ(↓)d↓

+
∫ x1

0
Sh,α

(
A(x1 − h− ↓)α)Bu1(↓)d↓. (16)

Multiplying (16) by zT and using (15), we obtain zTz = 0. This is a contradiction to
z 6= 0. Thus, Wh,α[0, x1] is positive definite. This ends the proof.
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Remark 2. We note in the case of α = 2 in (1) that Theorem 1 coincides with the conclusion of
Corollary 1 in [16].

Remark 3. Under condition A, a nonsingular n× n matrix, we note in the case of α = 2, A = A2

in (1) that Theorem 1 coincides with the conclusion of Theorem 3.1 in [21] and Corollary 2 in [16].

4. Controllability of Nonlinear Fractional Delay System

In this section, we estabilish sufficient conditions of controllability of (2) using Kras-
noselskii’s fixed point theorem.

We impose the following assumptions:

(G1) The function f : Ω × Rn → Rn is continuous, and there exists a constant
L f ∈ Lq(Ω,R+) and q > 1 such that

‖ f (x, y1)− f (x, y2)‖ ≤ L f (x)‖y1 − y2‖, for all x ∈ Ω, y1, y2 ∈ Rn,

let supx∈Ω f (x, 0) = M f < ∞.

(G2) The linear operator Υ : L2(Ω,Rm)→ Rn defined by

Υ =
∫ x1

0
Sh,α

(
A(x1 − h− ↓)α)Bu(↓)d↓.

Suppose that Υ−1 exists and takes values in L2(Ω,Rm)/ ker Υ, and there exists a
constant M1 > 0 such that

∥∥Υ−1
∥∥ ≤ M1.

To establish our result, we now employ Krasnoselskii’s fixed point theorem.

Theorem 2. Let (G1) and (G2) hold. Then, the nonlinear system (2) is controllable if

M2

[
1 +

M1xα
1

α
Eα,α(‖A‖xα

1)‖B‖
]
< 1, (17)

where

M2 =
x

α− 1
q

1

(αp− p + 1)
1
p
Eα,α(‖A‖xα

1)
∥∥∥L f

∥∥∥
Lq(Ω,R+)

and
1
p
+

1
q
= 1, p, q > 1.

Proof. Before we start to prove this theorem, we shall use the following assumptions and
estimates: We consider the set

Bε =

{
y ∈ C([−h, x1],Rn) : ‖y‖C[−h,x1]

= sup
x∈[−h,x1]

‖y(x)‖ ≤ ε

}
.

Let x ∈ [0, x1]. From (G1) and Hölder inequality, we obtain∫ x

0
(x− ↓)α−1Eα,α

(
‖A‖(x− ↓)α)L f (↓)d↓

≤
(∫ x

0

(
(x− ↓)α−1Eα,α

(
‖A‖(x− ↓)α))p

d↓
) 1

p
(∫ x

0
Lq

f (↓)d↓
) 1

q

≤ Eα,α(‖A‖xα)

(∫ x

0
(x− ↓)(α−1)pd↓

) 1
p
(∫ x

0
Lq

f (↓)d↓
) 1

q

=
xα− 1

q

(αp− p + 1)
1
p
Eα,α(‖A‖xα)

∥∥∥L f

∥∥∥
Lq(Ω,R+)

. (18)
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Furthermore, consider the following control function uy:

uy(x) = Υ−1[y1 −Hh,α
(

A(x1 − h)α)ψ(0)−Mh,α
(

A(x1 − h)α)ψ′(0)
+A

∫ 0

−h
Sh,α

(
A(x1 − 2h− ↓)α)ψ(↓)d↓

−
∫ x1

0
Sh,α

(
A(x1 − h− ↓)α) f (↓, y(↓))d↓

]
(x), (19)

for x ∈ Ω. From (18), (19), (G1), (G2), and Lemma 1, we obtain∥∥uy(x)
∥∥ ≤ ∥∥∥Υ−1

∥∥∥(‖y1‖+
∥∥Hh,α

(
A(x1 − h)α)∥∥‖ψ(0)‖

+
∥∥Mh,α

(
A(x1 − h)α)∥∥∥∥ψ′(0)

∥∥
+‖A‖

∫ 0

−h

∥∥Sh,α
(

A(x1 − 2h− ↓)α)∥∥‖ψ(↓)‖d↓
+
∫ x1

0

∥∥Sh,α
(

A(x1 − h− ↓)α)∥∥‖ f (↓, y(↓))‖d↓)

≤ M1‖y1‖+ M1Eα

(
‖A‖(x1 − h)α)‖ψ‖C

+ M1x1Eα,2(‖A‖xα
1)
∥∥ψ′
∥∥

C

+ M1‖A‖‖ψ‖C

∫ 0

−h
(x1 − h− ↓)α−1Eα,α

(
‖A‖(x1 − h− ↓)α)d↓

+ M1

∫ x1

0
(x1 − ↓)α−1Eα,α

(
‖A‖(x1 − ↓)α)L f (↓)‖y(↓)‖d↓

+ M1

∫ x1

0
(x1 − ↓)α−1Eα,α

(
‖A‖(x1 − ↓)α)‖ f (↓, 0)‖d↓

≤ M1‖y1‖+ M1Eα

(
‖A‖(x1 − h)α)‖ψ‖C

+ M1x1Eα,2(‖A‖xα
1)
∥∥ψ′
∥∥

C +
M1‖A‖‖ψ‖Cxα

1
α

Eα,α(‖A‖xα
1)

+
M1xα− 1

q

(αp− p + 1)
1
p
Eα,α(‖A‖xα)

∥∥∥L f

∥∥∥
Lq(Ω,R+)

‖y‖C(Ω)

+
M1M f xα

1
α

Eα,α(‖A‖xα
1)

≤ M1‖y1‖+ M1M2ε + M1θ(x1), (20)

where

θ(x) = Eα

(
‖A‖(x− h)α)‖ψ‖C + xEα,2(‖A‖xα)

∥∥ψ′
∥∥

C

+
xα
(
‖A‖‖ψ‖C + M f

)
α

Eα,α(‖A‖xα).

Furthermore,∥∥uy(x)− uz(x)
∥∥

≤ M1

∫ x1

0

∥∥Sh,α
(

A(x1 − h− ↓)α)∥∥‖ f (↓, y(↓))− f (↓, z(↓))‖d↓

≤ M1

∫ x1

0

∥∥Sh,α
(

A(x1 − h− ↓)α)∥∥L f (↓)‖y(↓)− z(↓)‖d↓

≤ M1M2‖y− z‖C(Ω). (21)
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We also define the operators L1, L2 on Bε as follows:

(L1y)(x) = Hh,α
(

A(x− h)α)ψ(0) +Mh,α
(

A(x− h)α)ψ′(0)
− A

∫ 0

−h
Sh,α

(
A(x− 2h− ↓)α)ψ(↓)d↓

+
∫ x

0
Sh,α

(
A(x− h− ↓)α)Buy(↓)d↓, (22)

(L2y)(x) =
∫ x

0
Sh,α

(
A(x− h− ↓)α) f (↓, y(↓))d↓. (23)

Now, we see that Bε is a closed, bounded, and convex set of C([−h, x1],Rn). Therefore,
our proof is divided into three main steps.

Step 1. We prove L1y + L2z ∈ Bε for all y, z ∈ Bε.
For each x ∈ Ω and y, z ∈ Bε, using (20), we obtain

‖L1y + L2z‖C[−h,x1]

= sup
x∈[−h,x1]

‖(L1y + L2z)(x)‖

≤ sup
x∈[−h,x1]

{∥∥Hh,α
(

A(x− h)α)∥∥‖ψ(0)‖+ ∥∥Mh,α
(

A(x− h)α)∥∥∥∥ψ′(0)
∥∥

+‖A‖
∫ 0

−h

∥∥Sh,α
(

A(x− 2h− ↓)α)∥∥‖ψ(↓)‖d↓
+
∫ x

0

∥∥Sh,α
(

A(x− h− ↓)α)∥∥‖B‖∥∥uy(↓)
∥∥d↓

+
∫ x

0

∥∥Sh,α
(

A(x− h− ↓)α)∥∥‖ f (↓, z(↓))‖d↓
}

≤ Eα

(
‖A‖(x− h)α)‖ψ‖C + xEα,2(‖A‖xα)

∥∥ψ′
∥∥

C

+
xα‖A‖‖ψ‖C

α
Eα,α(‖A‖xα) +

M f xα

α
Eα,α(‖A‖xα)

+
xα

α
Eα,α(‖A‖xα)‖B‖(M1‖y1‖+ M1M2ε + M1θ(x1))d↓

+
xα− 1

q

(αp− p + 1)
1
p
Eα,α(‖A‖xα)

∥∥∥L f

∥∥∥
Lq(Ω,R+)

‖z‖C(Ω)

≤ θ(x1) + M2ε +
M1xα

α
Eα,α(‖A‖xα

1)‖B‖‖y1‖

+
M1M2εxα

α
Eα,α(‖A‖xα

1)‖B‖+
M1θ(x1)xα

α
Eα,α(‖A‖xα

1)‖B‖

≤ θ(x1)

[
1 +

M1xα
1

α
Eα,α(‖A‖xα

1)‖B‖
]
+

M1xα
1

α
Eα,α(‖A‖xα

1)‖B‖‖y1‖

+ M2

[
1 +

M1xα
1

α
Eα,α(‖A‖xα

1)‖B‖
]

ε.

Thus, for some ε sufficiency large, and from (17), we have L1y + L2z ∈ Bε.
Step 2. We prove L1 : Bε → C([−h, x1],Rn) is a contraction.
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For each x ∈ Ω and y, z ∈ Bε, using (21), we obtain

‖(L1y)(x)− (L1z)(x)‖ ≤
∫ x

0

∥∥Sh,α
(

A(x− h− ↓)α)∥∥‖B‖∥∥uy(↓)− uz(↓)
∥∥d↓

≤ ‖B‖M1M2‖y− z‖C(Ω)

∫ x

0

∥∥Sh,α
(

A(x− h− ↓)α)∥∥d↓

≤
xα

1‖B‖M1M2

α
Eα,α(‖A‖xα

1)‖y− z‖C(Ω)

≤ µ‖y− z‖C(Ω),

where µ := xα
1‖B‖M1 M2

α Eα,α
(
‖A‖xα

1
)
. From (17), note µ < 1; we conclude that L1 is a

contraction mapping.
Step 3. We prove L2 : Bε → C([−h, x1],Rn) is a continuous compact operator.
Firstly, we show that L2 is continuous. Let {yn} be a sequence such that yn → y as

n → ∞ in Bε. Thus, for each x ∈ Ω, using (23) and Lebesgue’s dominated convergence
theorem, we obtain

‖(L2yn)(x)− (L2y)(x)‖

≤
∫ x

0

∥∥Sh,α
(

A(x− h− ↓)α)∥∥‖ f (↓, yn(↓))− f (↓, y(↓))‖d↓

≤
∫ x

0
(x− ↓)α−1Eα,α

(
‖A‖(x− ↓)α)L f (↓)‖yn(↓)− y(↓)‖d↓ → 0, as n→ ∞.

Hence L2 : Bε → C([−h, x1],Rn) is a continuous.
Next, we prove that L2 is uniformly bounded on Bε. For each x ∈ Ω, y ∈ Bε, we have

‖L2y‖ = sup
x∈Ω
‖(L2y)(x)‖

≤ sup
x∈Ω

{∫ x

0

∥∥Sh,α
(

A(x− h− ↓)α)∥∥‖ f (↓, y(↓))‖d↓
}

≤ xα− 1
q

(αp− p + 1)
1
p
Eα,α(‖A‖xα)

∥∥∥L f

∥∥∥
Lq(Ω,R+)

‖y‖C(Ω)

+
M f xα

α
Eα,α(‖A‖xα)

≤ M2ε +
M f xα

1
α

Eα,α(‖A‖xα
1),

which implies that L2 is uniformly bounded on Bε.
It remains to be shown that L2 is equicontinuous. For each x2, x3 ∈ Ω, 0 < x2 < x3 ≤

x1 and y ∈ Bε, using (23), we obtain

(L2y)(x3)− (L2y)(x2)

≤
∫ x3

0
Sh,α

(
A(x3 − h− ↓)α) f (↓, y(↓))d↓

−
∫ x2

0
Sh,α

(
A(x2 − h− ↓)α) f (↓, y(↓))d↓

= Ψ1 + Ψ2,

where
Ψ1 =

∫ x3

x2

Sh,α
(

A(x3 − h− ↓)α) f (↓, y(↓))d↓,

and
Ψ2 =

∫ x2

0

[
Sh,α

(
A(x3 − h− ↓)α)− Sh,α

(
A(x2 − h− ↓)α)] f (↓, y(↓))d↓.
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Thus
‖(L2y)(x3)− (L2y)(x2)‖ ≤ ‖Ψ1‖+ ‖Ψ2‖. (24)

Now, we can check ‖Ψi‖ → 0 as x2 → x3, i = 1, 2. For Ψ1, we obtain

Ψ1 ≤
∫ x3

x2

(x3 − ↓)α−1Eα,α
(
‖A‖(x3 − ↓)α)L f (↓)‖y(↓)‖d↓

+
∫ x3

x2

(x3 − ↓)α−1Eα,α
(
‖A‖(x3 − ↓)α)‖ f (↓, 0)‖d↓

≤ (x3 − x2)
α− 1

q

(αp− p + 1)
1
p
Eα,α(‖A‖xα

3)
∥∥∥L f

∥∥∥
Lq(Ω,R+)

‖y‖C(Ω)

+
M f (x3 − x2)

α

α
Eα,α(‖A‖xα

3)→ 0, as x2 → x3.

For Ψ2, we obtain

‖Ψ2‖ ≤ ε
∫ x2

0

∥∥Sh,α
(

A(x3 − h− ↓)α)− Sh,α
(

A(x2 − h− ↓)α)∥∥L f (↓)d↓

+ M f

∫ x2

0

∥∥Sh,α
(

A(x3 − h− ↓)α)− Sh,α
(

A(x2 − h− ↓)α)∥∥d↓.

From (7), we know that the delayed Mittag–Leffler type matrix function Sh,α(Axα) is
uniformly continuous for x ∈ Ω. Thus,∥∥Sh,α

(
A(x3 − h− ↓)α)− Sh,α

(
A(x2 − h− ↓)α)∥∥→ 0, as x2 → x3.

Therefore, we have ‖Ψi‖ → 0 as x2 → x3, i = 1, 2, which implies that, using (24),

‖(L2y)(x3)− (L2y)(x2)‖ → 0, as x2 → x3,

for all y ∈ Bε. Thus, the Arzelà–Ascoli theorem tells us that L2 is compact on Bε.
Therefore, according to Krasnoselskii’s fixed-point theorem (Lemma 3), L1 + L2 has a

fixed point y on Bε. In addition, y is also a solution of (2) and (L1y + L2y)(x1) = y1. This
means that uy steers the system (2) from y0 to y1 in finite time x1, which implies that (2) is
controllable on Ω. This completes the proof.

Remark 4. We note in the case of α = 2 in (2) that Theorem 2 coincides with the conclusion of
Corollary 3 in [16].

Remark 5. Under condition A, there is a nonsingular n× n matrix; we note in the case of α = 2
and A = A2 in (2) that Theorem 2 coincides with the conclusion of Theorem 4.1 in [21] and
Corollary 4 in [16].

5. Hyers–Ulam Stability of Nonlinear Fractional Delay System

In this section, we discuss the Hyers–Ulam stability of (2) on the finite time interval
[0, x1].

Theorem 3. Let (G1), (G2), and (17) be satisfied. Then, the system (2) is Hyers–Ulam stable.

Proof. With the help of Theorem 2, let v ∈ C(Ω,Rn) be a solution of the inequality (9) and
y be the unique solution of (2), that is,
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y(x) = Hh,α
(

A(x− h)α)ψ(0) +Mh,α
(

A(x− h)α)ψ′(0)
− A

∫ 0

−h
Sh,α

(
A(x− 2h− ↓)α)ψ(↓)d↓

+
∫ x

0
Sh,α

(
A(x− h− ↓)α) f (↓, y(↓))d↓

+
∫ x

0
Sh,α

(
A(x− h− ↓)α)Buy(↓)d↓.

From Lemma 2, and by a similar way in the proof of Theorem 2 and by virtue of (21),
we obtain

‖v(x)− y(x)‖ ≤ ‖v(x)−v∗(x)‖+ ‖v∗(x)− y(x)‖

≤ xαε

α
Eα,α(‖A‖xα)

+
∫ x

0

∥∥Sh,α
(

A(x− h− ↓)α)∥∥‖B‖∥∥uv(↓)− uy(↓)
∥∥d↓

+
∫ x

0

∥∥Sh,α
(

A(x− h− ↓)α)∥∥‖ f (↓, v(↓))− f (↓, y(↓))‖d↓

≤
xα

1 ε

α
Eα,α(‖A‖xα

1)

+
xα

1‖B‖M1M2

α
Eα,α(‖A‖xα

1)‖v− y‖C(Ω)

+ M2‖v− y‖C(Ω)

=
xα

1 ε

α
Eα,α(‖A‖xα

1)

+ M2

(
1 +

xα
1‖B‖M1

α
Eα,α(‖A‖xα

1)

)
‖v− y‖C(Ω).

So,

‖v− y‖C(Ω) ≤
xα

1 ε

α(1− ρ)
Eα,α(‖A‖xα

1),

where

ρ := M2

(
1 +

xα
1‖B‖M1

α
Eα,α(‖A‖xα

1)

)
.

Thus,

‖v(x)− y(x)‖ ≤ Nε, N =
xα

1
α(1− ρ)

Eα,α(‖A‖xα
1).

This completes the proof.

Remark 6. Let α = 2 in (2). Then, Theorem 3 coincides with the conclusion of Theorem 3 in [16].

Remark 7. We note that Theorems 1–3 improve, extend, and complement some existing results
in [16,19,21,35].

6. Examples

In this section, we present applications of the results derived.

Example 1. Consider the following linear delay fractional controlled system:(CD1.5
0+ y
)
(x) + Ay(x− 0.5) = Bu(x), for x ∈ Ω := [0, 1],

y(x) ≡ ψ(x), y′(x) ≡ ψ′(x) for − 0.5 ≤ x ≤ 0,
(25)
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where

A =

(
1 2
0 1

)
, B =

(
1
2

)
, ψ(x) =

(
2x
x

)
, ψ′(x) =

(
2
1

)
.

Wenote that B ∈ R2×1 and u(x) ∈ R show the control vector. Constructing the corresponding
fractional delay Gramian matrix of (25) via (10), we obtain

W0.5,1.5[0, 1] =
∫ 1

0
S0.5,1.5

(
A(0.5− ↓)1.5

)
BBTS0.5,1.5

(
AT(0.5− ↓)1.5

)
d↓

=: O1 + O2,

where

O1 =
∫ 0.5

0
S0.5,1.5

(
A(0.5− ↓)1.5

)
BBTS0.5,1.5

(
AT(0.5− ↓)1.5

)
d↓,

for (0.5− ↓) ∈ (0, 0.5),

O2 =
∫ 1

0.5
S0.5,1.5

(
A(0.5− ↓)1.5

)
BBTS0.5,1.5

(
AT(0.5− ↓)1.5

)
d↓,

for (0.5− ↓) ∈ (−0.5, 0), and

H0.5,1.5

(
Ax1.5

)
:=


Θ, −∞ < x < −0.5,
I, − 0.5 ≤ x < 0,
I− A x1.5

Γ(2.5) 0 ≤ x < 0.5,

I− A x1.5

Γ(2.5) + A2 (x−0.5)3

Γ(4) , 0.5 ≤ x < 1,

M0.5,1.5

(
Ax1.5

)
:=


Θ, −∞ < x < −0.5,
I(x + 0.5), − 0.5 ≤ x < 0,
I(x + 0.5)− A x2.5

Γ(3.5) , 0 ≤ x < 0.5,

I(x + 0.5)− A x2.5

Γ(3.5) + A2 (x−0.5)4

Γ(5) , 0.5 ≤ x < 1,

and

S0.5,1.5

(
Ax1.5

)
:=



Θ, −∞ < x < −0.5,

I (x+0.5)0.5

Γ(1.5) , − 0.5 ≤ x < 0,

I (x+0.5)0.5

Γ(1.5) − A x2

Γ(3) , 0 ≤ x < 0.5,

I (x+0.5)0.5

Γ(1.5) − A x2

Γ(3) + A2 (x−0.5)3.5

Γ(4.5) , 0.5 ≤ x < 1.

Next, we can calculate that

O1 =

( 50961
400000

503601
1000000

503601
1000000

−57031
500000

)
, O2 =

( 3183
20000

3183
10000

3183
10000

3183
5000

)
.

Then,we obtain

W0.5,1.5[0, 1] = O1 + O2 =

( 114621
400000

821901
1000000

821901
1000000

261269
500000

)
,

and

W−1
0.5,1.5[0, 1] =

( −130634500000
131446670889

68491750000
43815556963

68491750000
43815556963

−23879375000
43815556963

)
.
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Therefore, we see that W0.5,1.5[0, 1] is positive definite. Furthermore, for any finite terminal
conditions y1, y′1 ∈ R2 such that y(x1) = y1 = (y11, y12)

T , y′(x1) = y′1 =
(
y′11, y′12

)T , as a
result we can establish the corresponding control as follows:

u(x) = BTS0.5,1.5

(
AT(0.5− x)1.5

)
W−1

0.5,1.5[0, 1]β,

where

β = y1 −M0.5,1.5

(
A(0.5)1.5

)
ψ′(0) + A

∫ 0

−0.5
S0.5,1.5

(
A(−↓)1.5

)
ψ(↓)d↓

=

(
y11 − 1127

500
y12 − 5337

5000

)
.

Hence, the system (25) is controllable on [0, 1] by Theorem 1.

Example 2. Consider the following nonlinear delay fractional controlled system:(CD1.8
0+ y
)
(x) + Ay(x− 0.6) = f (x, y(x)) + Bu(x), for x ∈ Ω1 := [0, 1.2],

y(x) ≡ ψ(x), y′(x) ≡ ψ′(x) for − 0.6 ≤ x ≤ 0,
(26)

where

A =

(
1 0
0 2

)
, B = I2×2, ψ(x) =

(
3x + 1

x2

)
, ψ′(x) =

(
3

2x

)
,

f (x, y(x)) =
(

0.5(x− 0.6) cos[y1(x)]
0.5(x− 0.6) cos[y2(x)]

)
.

Now, we set u(x) = ỹ, where ỹ ∈ R2. From the definition of Υ in (G2), we obtain

Υ =
∫ 1.2

0
S0.6,1.8

(
A(0.6− ↓)1.8

)
Bd↓ỹ

=
∫ 0.6

0
S0.6,1.8

(
A(0.6− ↓)1.8

)
d↓ỹ +

∫ 1.2

0.6
S0.6,1.8

(
A(0.6− ↓)1.8

)
d↓ỹ

=

( 578469
1000000 0

0 141647
250000

)
ỹ +

( 23783
100000 0

0 23783
100000

)
ỹ

=

( 816299
1000000 0

0 402209
500000

)
ỹ.

Define the inverse Υ−1 : R2 → L2(Ω1,R2) by

(
Υ−1ỹ

)
(x) :=

( 1000000
816299 0

0 500000
402209

)
ỹ.

Then, we obtain∥∥∥(Υ−1ỹ
)
(x)
∥∥∥ ≤ ∥∥∥∥( 1000000

816299 0
0 500000

402209

)∥∥∥∥‖ỹ‖ = 1.243‖ỹ‖,

and thus we obtain
∥∥Υ−1

∥∥ ≤ 1.243 =: M1. Hence, the assumption (G2) is satisfied by Υ.
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Next, keep in mind that |cos λ− cos δ| ≤ |λ− δ|, for all λ, δ ∈ R, we obtain

‖ f (x, y)− f (x, z)‖

= |0.5(x− 0.6)|
√
(cos[y1(x)]− cos[z1(x)])2 + (cos[y2(x)]− cos[z2(x)])2

≤ |0.5(x− 0.6)|
√
(y1(x)− z1(x))2 + (y2(x)− z2(x))2

= |0.5(x− 0.6)|‖y− z‖,

for all x ∈ Ω1, and y(x), z(x) ∈ R2. We set L f (x) = |0.5(x− 0.6)| such that L f ∈ Lq(Ω1,R+)
in (G1). By choosing p = q = 2, we have

∥∥∥L f

∥∥∥
L2(Ω1,R+)

=

(∫ 1.2

0
[0.5(↓ − 0.6)]2d↓

) 1
2

= 0.18974.

Then, we obtain

M2 =
(1.2)1.3

(2.6)
1
2
E1.8,1.8

(
2(1.2)1.8

)∥∥∥L f

∥∥∥
Lq(Ω,R+)

= 0.301.

Finally, we calculate that

M2

[
1 +

M1(1.2)1.8

1.8
E1.8,1.8

(
2(1.2)1.8

)
‖B‖

]
= 0.8815 < 1,

which implies that all the conditions of Theorems 2 and 3 are satisfied. Therefore, the system (26) is
controllable and Hyers–Ulam stable.

7. Conclusions

In this work, we established some sufficient and necessary conditions for the con-
trollability of linear fractional-delay systems by using a fractional delay Gramian matrix
and the representation of solutions of these systems with the help of their delayed Mittag–
Leffler matrix functions. Furthermore, we established some sufficient conditions for the
controllability and Hyers–Ulam stability of nonlinear fractional-delay systems by applying
Krasnoselskii’s fixed-point theorem and the representation of the solutions of these systems.
Finally, the effectiveness of the obtained results was illustrated by numerical examples.

Our future work includes extending and complementing the results of this paper to
derive the controllability and Hyers–Ulam stability results of fractional stochastic delay
systems with compact analytic semigroups or using the delayed Mittag–Leffler matrix
functions with various behaviors such as impulses and delays in multi-states.
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