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Abstract: In this paper, the Peyrard–Bishop–Dauxois model of DNA dynamics is discussed along
with the fractional effects of the M-truncated derivative and β-derivative. The Kudryashov’s R
method was applied to the model in order to obtain a solitary wave solution. The obtained solution is
explained graphically and the fractional effects of the β and M-truncated derivatives are also shown
for a better understanding of the model.

Keywords: soliton solutions; fractional Peyrard–Bishop–Dauxois DNA model; M-truncated and
β-fractional derivatives; Kudryashov’s R function method

1. Introduction

The study of DNA structures is essential in various fields of science. The main purpose
of this paper is to investigate the soliton oscillations for the fractional dynamical Peyrard–
Bishop–Dauxois (PBD) model of DNA dynamics. The governing equation of the PBD model
is a nonlinear evolution equation. The Peyrard–Bishop (PB) model for DNA denaturation
was presented in 1989 [1]. DNA denaturation is the process of breaking down the DNA
in such a way that the hydrogen bonds in the DNA break to unwind the double strands.
The proposed model was a simple yet useful extension of the Ising models, which were
previously being used to investigate DNA denaturation. Peyrard and Bishop further
developed and improved the PB model along with Dauxois [2–5].

The Peyrard–Bishop–Dauxois model (PBD) model has been successfully used in many
fruitful studies. Theodorakopoulos [6] used the PBD model in his study of bubble formation
during the denaturation process. Hillebrand et al. [7] used numerical simulations to present
a study on the bubbles’ lifetime using the PBD model. Ares et al. [8] applied the same
model to present a theoretical investigation of bubbles formed during DNA melting. They
showed that the theoretical results matched with the previously reported experimental
results. Some analytic results concerning the lengths of the thermal openings in the DNA
structure were presented by Ares and Kalosakas in [9]. The simple yet effective PBD
nonlinear model was found to be helpful in investigating the influence of heterogeneity on
the DNA structure [10,11]. More results on the dynamical and statistical properties of the
DNA structure were presented in [12–18].

The complex helical double-stranded structure of DNA molecules has been an inter-
est of research for biologists, physicists and mathematicians for many years. In recent
years, different useful extensions and modifications of the PBD dynamical model have
been proposed, owing to its applicability and effectiveness in explaining many physical
processes [19–21]. The thermal excitations in DNA molecules give rise to solitonic vibra-
tions. The solitons for the nonlinear vibrations of the DNA molecules were computed
in [22,23] in order to have a deeper insight into the dynamical properties. The PBD model
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has also been explored using the ansatz technique [24], improved tan( φ
2 )-expansion tech-

nique, exp(−φ(η))-expansion technique, generalized
(

G′
G

)
-expansion technique and the

exp-function technique [25].
At the same time, fractional calculus has become very popular during the last two

decades. The fractional differential equations are the generalized form of the standard
integer order differential equations. Over the years, different definitions of the fractional
order derivatives have been proposed, which have been successfully utilized in several
applications. The most widely used definitions include the definitions in Captuto’s sense
and Riemann–Liouville’s sense. However, various studies have shown that the these
previously well-accepted definitions have some limitations. The Caputo derivative is not
able to deal with the problems with a singular kernel, whereas the Riemann–Liouville
derivative has a seemingly more serious problem, i.e., it is unable to yield the derivative of
a constant equal to zero. Such limitations have prompted researchers for more generalized
definitions with a non-integer order.

Atangana et al. [26] introduced a fractional derivative that exhibits many useful mathe-
matical properties. The definition is now commonly referred to as the β-derivative. Another
recent attempt to define the fractional derivative was made by using the definition of the
Mittag–Leffler function [27]. Both of these definitions have been proven to satisfy the
basic mathematical laws of differential calculus, which encourages further explorations
using these newly defined concepts. Recently, the fractional order PBD model was in-
vestigated [28] considering the definition of the β-derivative. The authors computed the
traveling wave solutions of the considered model using different methods, keeping the
fractional derivative as the β-derivative.

The M-truncated and β-fractional derivatives are recently developed definitions of
fractional derivatives. Both proposed definitions are generalized forms of the classical
integer order derivative and satisfy many useful mathematical properties exhibited by the
classical integer order derivative. For example, the fractional derivative of a constant is
zero according to these two definitions, which is in line with results of the classical calculus.
The definition of the β-fractional derivative is simple and easily applicable. The M-truncated
derivative involves the use of an extra parameter due to the involvement of Mittag–Leffler
expansion, but it has been established as a good version of the fractional derivative because
it unifies the fractional derivatives proposed by Katugampola, Khalil et al. and Sousa et al.

The aim of this work is to present a comparison of the solution of the fractional
order PBD model for the M-truncated derivative and the β-derivative. The solution was
computed using a recent effective technique, namely, the Kudryashov’s R function method.
The main objective of the work was then achieved by presenting a graphical comparison of
the evolution in the shape of the constructed soliton for both definitions of the fractional
derivative. It is observed that the conservations laws for the fractional PBD model have
not been discussed in the literature to the best of our knowledge. Although this topic is
beyond the scope of the current work, it will be useful to present theoretical investigations
on the conservations laws of the considered model in future work.

The paper is organized as follows: in Section 2, the governing model is explained,
while in Section 3, the definitions of the β-derivative and M-truncated derivative are given.
Kudryashov’s R function method is described in Section 4. The application of the method
is presented in Section 5. The fractional effects on the obtained solution are graphically
illustrated in Section 6. The whole work is concluded in Section 7.

2. Governing Model

The Hamiltonian for the PBD model is considered by using the Morse’s potential,
which can be expressed as

Vp(Uq − µq) = r[exp(−u(Uq − µq))− 1]2. (1)
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The right side of Equation (1) is Morse’s potential, where u and r denote the width
and depth of Morse’s potential, respectively. Uq, µq denote the nucleotides’ displacements.
The expression for the Hamiltonian for hydrogen links can be expressed [23] as

G(U) =
1

2n
u2

q +
ψ1

2
∆2Uq +

ψ2

4
∆4Uq + τ(e−u

√
2Uq − 1)2, (2)

where ψ1 is the strength of linear coupling, ψ2 is the strength of nonlinear coupling and
uq = n ∂Uq

∂t denotes the momentum corresponding to the displacement Uq.
Equation (2) expresses the Hamiltonian for the description of the stretch in the hydro-

gen bonds of the DNA. This relation is essential for the derivation of a nonlinear evolution
equation for the dynamical behavior of DNA. Initiating with Equation (2), the standard
continuum approximation is used to derive an equation of motion, where the independent
variable U denotes the displacement. As a result, the nonlinear evolution equation for
DNA dynamics [23] can be written as

Utt − (Ψ1 + 3Ψ2(Ux)
2Uxx − 2pre−pU(e−pU − 1) = 0, (3)

where Ψ1 = ψ1
n s2, Ψ2 = ψ2

n s4, r = τ
n , p =

√
2u and s = the inter-site nucleotide distance.

The fractional order model corresponding to Equation (3) is discussed in [28] using the
β-derivative. In this research work, the following forms of the PBD model are to be studied.

The PBD model with the β-derivative is considered as

D2β
t (U)− (Ψ1 + 3Ψ2(Dβ

x (U))2)D2β
x (U)− 2pre−pU(e−pU − 1) = 0. (4)

The PBD model with the M-truncated derivative is considered as

D2β,α
M,t (U)− (Ψ1 + 3Ψ2(Dβ,α

M,x(U))2)D2β,α
M,x (U)− 2pre−pU(e−pU − 1) = 0. (5)

Both derivatives are explained in the next section.

3. Important Definitions
3.1. β-Derivative

The β-derivative [26] of a function l, where l(t) : [a, ∞]→ R, is given as

Dβ
t (l(t)) = lim

σ→0

l(t + σ(t + 1
Γ(β)

)1−β)− l(t)

σ
, β ∈ (0, 1]. (6)

The following properties are satisfied for β-differentiable functions l(t) and m(t),
with β ∈ (0, 1] [26,29].

Dβ
t (cl(t) + dm(t)) = c Dβ

t (l(t)) + d Dβ
t (m(t)), ∀ c, d ∈ R, (7)

Dβ
t (l(t)×m(t)) = m(t) Dβ

t (l(t)) + l(t) Dβ
t (m(t)), (8)

Dβ
t

(
l(t)
m(t)

)
=

m(t) Dβ
t (l(t))− l(t) Dβ

t (m(t))
(m(t))2 , (9)

Dβ
t (l(t)) =

d(l(t))
dt

(
t +

1
Γ(β)

)1−β

. (10)

The β-fractional integral can be expressed by the relation [26]

Iβ
t h(t) =

∫ t

0

(
y +

1
Γ(β)

)β−1
h(y)dy. (11)



Fractal Fract. 2022, 6, 616 4 of 14

3.2. M-Truncated Derivative

The M-truncated derivative [27] of a function l, where l(t) : [0, ∞]→ R, is given as

Dβ,α
M,t(l(t)) = lim

σ→0

l(t jEα(σt−β))− l(t)
σ

, t > 0, β ∈ (0, 1], α > 0, (12)

where jEα(.), α > 0 is a truncated one-parameter Mittag–Leffler function.
The following properties are satisfied for functions l(t) and m(t), which are β-derivable,

with β ∈ (0, 1] and α > 0 [30].

Dβ,α
M,t(cl(t) + dm(t)) = c Dβ,α

M,t(l(t)) + d Dβ,α
M,t(m(t)), ∀ c, d ∈ R, (13)

Dβ,α
M,t(l(t)×m(t)) = m(t) Dβ,α

M,t(l(t)) + l(t)Dβ,α
M,t(m(t)), (14)

Dβ,α
M,t

(
l
m

)
(t) =

m(t)Dβ,α
M,t(l(t))− l(t)Dβ,α

M,t(m(t))
(m(t))2 , (15)

Dβ,α
M,t(l ◦m)(t) = l′(m(t)) Dβ,α

M,tm(t), (16)

Dβ,α
M,t(t

ψ) = ψ tψ−α, ψ ∈ R. (17)

Let h be a function that is defined in (c, ∞], where c ≥ 0, and fix some 0 < β ≤ 1.
The left M-truncated integral can be expressed by the relation [27]

M Iβ,α
c h(t) =

∫ t

c
h(y)dγ(y, c) = Γ(α + 1)

∫ t

c
h(y)(y− c)β−1dy, (18)

with dγ(y, c) = Γ(α + 1)(y− c)β−1.
The right M-truncated integral is expressed by the relation

β,α
d IMh(t) =

∫ d

t
h(y)dγ(d, y) = Γ(α + 1)

∫ d

t
h(y)(d− y)β−1dy. (19)

4. Description of Kudryashov’s R Function Method [31]

Kudryashov’s R function method [31] is a recently developed mathematical technique
for the construction of traveling wave solutions of partial differential equations.

The R function can be written as

R(ξ) =
1

f e(δξ) + ge(−δξ)
, (20)

which satisfies the differential equation

R2
ξ = δR2(1−ωR2), where ω = 4 f g. (21)

Here, f , g and δ are parameters of the R function. The value of ω depends on the pa-
rameters f and g in the definition of the R function. This definition of the R function allows
us to express the nonlinear differential equation in terms of R and Rξ , thus simplifying the
equation to a great extent to obtain the exact solution. This is applicable to a large class of
integrable nonlinear differential equations. Without losing generality, ω can be taken as 1.

In this study, this method is applied due to its novelty, generality and simplicity in
solving the governing nonlinear model.

According to the Kudryashov’s R function method [31], firstly, a suitable wave trans-
formation is used to reduce a nonlinear partial differential of the form

P(U, Ux, Uxt, Ut, . . . ) = 0, (22)
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to an ODE as
D(v, vξ , vξξ , vξξξ , . . . ) = 0. (23)

The value of N is determined using the homogeneous balance, and then a solution is
assumed in the form

v = ΣN
l=0Cl R(ξ)l . (24)

In order to obtain a polynomial in R or in R and Rξ , Equation (24) and the derivatives
of R are put into Equation (23).

When the polynomial involves R, the powers of R are collected, whereas, in the case
of R and Rξ , the collection of powers is carried out accordingly. The resulting system
of equations can be solved to determine the values of the unknown parameters and Cl’s
parameter, which can be used to determine the solution of Equation (22).

5. Mathematical Analysis

The fractional model PBD model is considered, as described by Equations (1) and (4).
In order to solve these nonlinear equations, the transformation U(x, t) = v(ξ) is consid-
ered, where

ξ =
1
β

(
x +

1
Γ(β)

)β

− η

β

(
t +

1
Γ(β)

)β

, (for β-derivative), (25)

ξ =
Γ(α + 1)

β
(xβ − ηtβ), (for M-truncated derivative). (26)

Using these transformations, Equations (1) and (4) are reduced to the following ODE.

η2v′′ − (Ψ1 + 3Ψ2(v′)2)v′′ − 2pre−pv(e−pv − 1) = 0. (27)

Multiplication of Equation (27) with v′ and then integration with regard to ξ gives

(η2 −Ψ1)

2
(v′)2 − 3

4
Ψ2(v′)4 + re−pv(e−pv − 2) + a = 0. (28)

Here, a is an integration constant. Using the transformation

Ω(ξ) = e−pv(ξ), (29)

the following nonlinear ODE is retrieved.

(η2 −Ψ1)

2p2 Ω2(Ω′)2 − 3
4p4 Ψ2(Ω′)4 + rΩ5(Ω− 2) + aΩ4 = 0. (30)

The degree of nonlinear term is balanced with the degree of the highest order deriva-
tive in Equation (30) using the homogeneous balance principle described in [32], which
provides the value N = 2. Hence, the proposed method suggests that the solution can be
assumed in the form

Ω(ξ) = C0 + C1R(ξ) + C2R(ξ)2. (31)

The function Ω(ξ) is substituted from Equation (31) into Equation (30), and (21) is
used for simplification. As a result, a polynomial is obtained in terms of R. This can be
achieved with the help of Maple or Mathematica. Equating the coefficients of powers of R
to 0 yields a system of algebraic equations.

The following values of the unknowns are obtained by solving the system of equations
simultaneously.

η = η, C0 = 0, C1 = 0, C2 = ± (±r+
√
−ar+r2)ω
r , Ψ1 = ∓(±r +

√
−ar + r2)p2 + ap2 + η2,

Ψ2 = 1
12 p4(2r± 2

√
−ar + r2 − a).
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Substituting these values into Equation (31) yields

Ω(ξ) =

(
(r +
√
−ar + r2)ω

r

)(
1

f eξ + ge−ξ

)2

, (32)

or

Ω(ξ) =

(
(r +
√
−ar + r2)ω

r

)(
4 f

4 f 2eξ + ωe−ξ

)2

, (33)

which is substituted into Equation (29).
Since

Ω(ξ) = e−pv(ξ),

ln(Ω(ξ)) = −pv(ξ),

v(ξ) = − 1
p

ln(Ω(ξ)),

therefore, v(ξ) can be written as

v(ξ) = − 1
p

ln
((

(r +
√
−ar + r2)ω

r

)(
4 f

4 f 2eξ + ωe−ξ

)2)
. (34)

The resulting relation can be expressed as

U(x, t) = − 1
p

ln
((

(r +
√
−ar + r2)ω

r

)(
4 f

4 f 2eξ + ωe−ξ

)2)
, (35)

where ω = 4 f g and δ = 1 in the value of R.
Considering the β-derivative, the solution (35) can be written as

U(x, t) = − 1
p

ln
((

(r +
√
−ar + r2)ω

r

)
(

4 f

4 f 2e
1
β

(
x+ 1

Γ(β)

)β

− η
β

(
t+ 1

Γ(β)

)β

+ ωe
−

 1
β

(
x+ 1

Γ(β)

)β

− η
β

(
t+ 1

Γ(β)

)β
)2)

, (36)

where p =
√

2u and ω = 4 f g. The symbols u and r denote the width and depth of Morse’s
potential, whereas f and g are the parameters of the R function, respectively. Moreover,
β is the fractional order of the derivative, η is the speed of the soliton and a is a constant
of integration.

Considering the M-truncated derivative, solution (35) can be written as

U(x, t) = − 1
p

ln
((

(r +
√
−ar + r2)ω

r

)
(

4 f

4 f 2e
Γ(α+1)

β (xβ−ηtβ)
+ ωe−(

Γ(α+1)
β (xβ−ηtβ))

)2)
, (37)

where p =
√

2u and ω = 4 f g. The symbols u and r denote the width and depth of Morse’s
potential, whereas f and g are the parameters of the R function, respectively. Moreover,
β is the fractional order of the derivative, η is the speed of the soliton and a is a constant
of integration. The parameter α > 0 appears to be due to the truncated one-parameter
Mittag–Leffler function in the definition of the M-truncated derivative.
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6. Graphical Illustrations

The obtained solution for the β-derivative and M-truncated derivative is graphically
plotted to compare the influence of the change in the fractional order of both kinds of
derivatives. Figures 1–5 have been plotted to demonstrate the evolution of the wave profile
corresponding to the obtained solution, as the fractional order is gradually increased by
taking the values β = 0.5, β = 0.75, β = 0.83, β = 0.9 and β = 1, respectively. The graphs
for Equation (36) are presented in Figures 1a–5a, which show the evolution of the wave
profile using the definition of the β-derivative. For a better visualization of the physical
structure of the soliton corresponding to the obtained solution, two-dimensional contour
plots have been plotted as well. The contour plots corresponding to β = 0.5, β = 0.75,
β = 0.83, β = 0.9 and β = 1 are shown in Figures 1c–5c respectively.

The graphs for Equation (37) are presented in Figures 1b–5b, which show the evolution
of the wave profile using the definition of the M-truncated derivative. The corresponding
contours are shown in Figures 1d–5d.

It is clear from the graphical demonstration that the shape of the wave appears as
different for different values of the fractional order β using the β-derivative and M-truncated
derivative. However, it is observed that the wave profile tends to become increasingly
similar with an increase in the value of β. Ultimately, at β = 1, the soliton converges to
the unique form, as depicted by Figure 5. Hence, it can be concluded that both definitions
provide a solution that is in agreement with the usual Hamiltonian and the standard integer
order equation of motion for the PBD model when β converges to unity.

Further confirmation of this observation is provided by the comparison of the line
graphs of the obtained solution expressions for both definitions of the derivative.
Figures 1e–5e show the comparison of 2D line graphs corresponding to the β-derivative
and M-truncated derivative for different values of β at x = 1. It is evident from Figure 5e
that the wave profiles for both definitions of the derivative become coincident with each
other. A similar confirmation is provided by the 2D line graphs at t = 1, as depicted by
Figures 1f–5f. For sake of convenience, the values of η, f and a are taken as unity.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. In (a), the graph of Equation (36) is given with β = 0.5, whereas, in (b), the graph of
Equation (37) is given with β = 0.5 and α = 1. In (c,d), the 2D contours corresponding to the graphs
(a,b) are given. (e,f) show 2D comparison of both solutions for x = 1 and t = 1, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. In (a), the graph of Equation (36) is given with β = 0.75, whereas, in (b), the graph of
Equation (37) is given with β = 0.75 and α = 1. In (c,d), the 2D contours corresponding to the graphs
(a,b) are given. (e,f) show 2D comparison of both solutions for x = 1 and t = 1, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. In (a), the graph of Equation (36) is given with β = 0.83 whereas in (b) graph of Equation (37)
is given with β = 0.83 and α = 1. In (c,d), the 2D contours corresponding to the graphs (a,b) are
given. (e,f) show 2D comparison of both solutions for x = 1 and t = 1, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. In (a), the graph of Equation (36) is given with β = 0.9, whereas, in (b), the graph of
Equation (37) is given with β = 0.9 and α = 1. In (c,d), the 2D contours corresponding to the graphs
(a,b) are given. (e,f) show 2D comparison of both solutions for x = 1 and t = 1, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. In (a), the graph of Equation (36) is given with β = 1, whereas, in (b), the graph of
Equation (37) is given with β = 1 and α = 1. In (c,d), the 2D contours corresponding to the graphs
(a,b) are given. (e,f) show 2D comparison of both solutions for x = 1 and t = 1, respectively.

7. Conclusions

In this paper, the fractional PBD model was examined with the M-truncated derivative
and β-derivative using Kudryashov’s R technique. The obtained soliton solution was
graphically illustrated to depict the effects of the fractional order of the derivative for
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both the M-truncated derivative and β-derivative, as shown in Figures 1–5. The obtained
solution represents a dark soliton. It is evident that the wave profile has a localized decrease
in the wave amplitude. The changes in the shape of the soliton solution have been observed
by making variations in the value of fractional order β. The graphical interpretation of
the obtained solution reveals that the graphs for both definitions are different for the
same value of the fractional order β. However, as the value of β is increased, the wave
profile corresponding to both definitions of the fractional derivative becomes increasingly
similar. These observations show that both M-truncated and β derivatives provide results
that are in good agreement if the fractional order is nearly one. Ultimately, the graphs
related to the M-truncated derivative and the β-derivative tend to become the same as
the value of β approaches unity. The reported results are novel and Kudryashov’s R
technique has been utilized to explore the considered model for the first time in this work to
provide a comparison of the soliton solutions for β-fractional and M-truncated derivatives.
The proposed research may be helpful for providing a deeper insight into fractional order
nonlinear models and the related physical phenomena.
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