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Abstract: This study examines the Chen–Lee–Liu dynamical equation, which represents the propaga-
tion of optical pulses in optical fibers and plasma. A new extended direct algebraic technique and
Nucci’s scheme are used to find new solitary wave profiles. The method covers thirty-seven solitonic
wave profiles, including approximately all soliton families, in an efficient and generic manner. New
solitonic wave patterns are obtained, including a plane solution, mixed hyperbolic solution, periodic
and mixed periodic solutions, mixed trigonometric solution, trigonometric solution, shock solution,
mixed shock singular solution, mixed singular solution, complex solitary shock solution, singular
solution and shock wave solutions. The exact fractional solution is obtained using Nucci’s reduction
approach. The impact of the fractional order parameter on the solution is considered using both
mathematical expressions and graphical visualization. The fractional order parameter is responsible
for controlling the singularity of the solution which is graphically displayed. A sensitivity analysis
was used to predict the sensitivity of equations with respect to initial conditions. To demonstrate the
pulse propagation characteristics, while taking suitable values for the parameters involved, 2-D, 3-D,
and contour graphics of the outcomes achieved are presented. The influence of the fractional order ζ

is shown graphically. A periodic-singular wave with lower amplitude and dark-singular behaviour
is inferred from the graphical behaviour of the trigonometric function solution H1 and the rational
function solution H34 from the obtained solutions, respectively.

Keywords: analytical solution; perturbed Chen–Lee–Liu model; new extended direct algebraic
scheme; Nucci’s reduction method; sensitivity analysis

1. Introduction

Non-linear partial differential equations are a key means of thoroughly examining
trends in non-linear physical processes. In the areas of plasma, fiber-optics, mathematical
physics, telecommunication engineering, and optics, the Schrödinger equation is an excel-
lent tool for more precisely interpreting complex physical non-linear models. The extraction
of analytical exact solutions to the Schrödinger equations is an intriguing research area
since exact solutions are fundamental for addressing the physical properties of non-linear
systems in applied mathematics [1–3]. Du et al. [4] presented a simulation of non-local
wave propagation in unbounded multi-scale mediums. Xie and Zhang [5] developed an
efficient dissipation-preserving fourth-order difference solver for fractional-in-space non-
linear wave equations. Tian and Engquist [6] studied non-local operators for modeling
processes that have traditionally been described by local differential operators.

A number of methodologies and strategies have been developed to provide ana-
lytically exact solutions for partial differential equations with non-linearity, such as the
Kudryashov method [7,8], the sine-Gordon expansion scheme [9,10], the bilinear neural
network technique [11,12], the extended simple equation method [13], the F-expansion
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method [14,15], the unified auxiliary equation method [16,17], the G′
G −expansion ap-

proach [18], the Hirota bilinear method [19], the generalized exponential function
method [20], and many others [21–26].

Chirp-free brilliant optical solitons and chirped optical solitons were investigated by
Biswas et al. In 2018, the authors of [27,28] used a semi-inverse procedure and extended
the trial equation method for the Chen–Lee–Liu model. In 2019, A generic travelling wave
solution was discovered by Kudryashov [29] using the Weierstrass function approach
after analysing the Chen–Lee–Liu equation with perturbation effects. In 2020, Yldirim [30]
investigated solitary wave patterns and applied the Riccati equation approach to the Chen–
Lee–Liu model. In 2021, the Sardar sub-equation method was used by Esen et al. [31] to
produce new analytical solutions for the Chen–Lee–Liu system.

Recently, Tarla et al. [32] identified twelve solutions for the perturbed Chen–Lee–Liu
model using the Jacobi elliptic function approach, including trigonometric, exponential,
hyperbolic trigonometric, dark-bright, singular, and periodic soliton solutions. There
remain gaps in the literature and uncertainty surrounding many soliton-type solutions.
To address this gap, a generalised new extended direct algebraic technique is proposed
here. It yields 37 analytical solutions, almost all of which are soliton solutions, including
trigonometric, mixed-shock singular, hyperbolic trigonometric, mixed singular, exponential,
periodic, dark-bright, rational, complex solitary shock, singular, logarithmic, bright, dark,
dark singular, shock wave, bright singular, and periodic singular solutions.

We utilize the Chen–Lee–Liu model with perturbation [32],

iHt + αHxx + iβ|H|2Hx = i
[

γHx + µ(|H|2nH)x + δ(|H|2n)xH
]

, (1)

where µ and δ stand for self-steeping for short pulses and the non-linear dispersion coef-
ficient, respectively, and γ represents the inter-model dispersion coefficient. The group
velocity dispersion and the the non-linearity coefficient are α and β. The density of the
complex wave function is specified by the variable n in the last Equation (1). The CLL
model considered has applications in optical couplers, optoelectronic devices, soliton cool-
ing and meta-materials and specifies the dynamics of solitary waves in optical fibers [32].
The truncated M-fractional Equation (1) becomes,

i A
0 Dζ

t (H) + α A
0 D2ζ

xx(H) + iβ|H|2 A
0 Dζ

x(H) = i
[

γ A
0 Dζ

x(H) + µ A
0 Dζ

x(|H|2H)x + δ A
0 Dζ

x(|H|2)H
]

. (2)

at n = 1.
A new extended direct algebraic method applied to the perturbed (CLL) equation

enables generation of a variety of solitons.
The paper is structured as follows: Section 1 provides an introduction. Section 2

describes the scheme and applications. Section 3 is devoted to providing graphical repre-
sentations. Section 4 provides closing remarks.

2. Construction of Analytical Solutions
2.1. New Extended Direct Algebraic Method

Let us consider a non-linear PDE:

P(H,Ht,Hx,Htt,Hxx, . . .) = 0, (3)

where the P polynomial function comprises the partial derivatives of H(x, t). This can be
converted to an ordinary differential equation:

Q(Υ, Υ′, Υ′′, . . .) = 0. (4)
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The transformation is given in [32,33]:

H(x, t) = Υ(f)eιθ , (5)

where, f = k1x + k2t, θ = k3x + k4t. The prime is a derivative with respect to f in
Equation (4). Let Equation (4) have the solution:

Υ(f) =
m

∑
j=0

[
aj(R(f))j

]
, (6)

where,

R′(f) = ln[ρ]
(
B +AR(f) + CR2(f)

)
, ρ 6= 0, 1, (7)

C, B and A are real constants and ℵ = A2 − 4BC. The general roots concerning the
parameters B, A and C of Equation (7) are:

(Family 1): When A2 − 4BC < 0, and C 6= 0,

R1(f) = −
A
2C +

√
−ℵ

2C tanρ

(√
−ℵ
2

f
)

, (8)

R2(f) = −
A
2C −

√
−ℵ

2C cotρ

(√
−ℵ
2

f
)

, (9)

R3(f) = −
A
2C +

√
−ℵ

2C

(
tanρ

(√
−ℵf

)
±
√

mn secρ

(√
−ℵf

))
, (10)

R4(f) = −
A
2C +

√
−ℵ

2C

(
cotρ

(√
−ℵf

)
±
√

mn cscρ

(√
−ℵf

))
, (11)

R5(f) = −
A
2C +

√
−ℵ

4C

(
tanρ

(√
−ℵ
4

f
)
− cotρ

(√
−ℵ
4

f
))

. (12)

(Family 2): When A2 − 4BC > 0, and C 6= 0,

R6(f) = −
A
2C −

√
ℵ

2C tanhρ

(√
ℵ

2
f
)

, (13)

R7(f) = −
A
2C −

√
ℵ

2C cothρ

(√
ℵ

2
f
)

, (14)

R8(f) = −
A
2C +

√
ℵ

2C

(
− tanhρ

(√
ℵf
)
± i
√

mnsechρ

(√
ℵf
))

, (15)

R9(f) = −
A
2C +

√
ℵ

2C

(
− cothρ

(√
ℵf
)
±
√

mncschρ

(√
ℵf
))

, (16)
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R10(f) = −
A
2C −

√
ℵ

4C

(
tanhρ

(√
ℵ

4
f
)
+ cothρ

(√
ℵ

4
f
))

. (17)

(Family 3): When BC > 0 and A = 0,

R11(f) =
√
B
C tanρ

(√
BCf

)
, (18)

R12(f) = −
√
B
C cotρ

(√
BCf

)
, (19)

R13(f) =
√
B
C

(
tanρ

(
2
√
BCf

)
±
√

mn secρ

(
2
√
BCf

))
, (20)

R14(f) =
√
B
C

(
− cotρ

(
2
√
BCf

)
±
√

mn cscρ

(
2
√
BCf

))
, (21)

R15(f) =
1
2

√
B
C

(
tanρ

(√
BC
2

f
)
− cotρ

(√
BC
2

f
))

. (22)

(Family 4): When BC < 0 and A = 0,

R16(f) = −
√
−BC tanhρ

(√
−BCf

)
, (23)

R17(f) = −
√
−BC cothρ

(√
−BCf

)
, (24)

R18(f) =
√
−BC

(
− tanhρ

(
2
√
−BCf

)
± i
√

mnsechρ

(
2
√
−BCf

))
, (25)

R19(f) =
√
−BC

(
− cothρ

(
2
√
−BCf

)
±
√

mncschρ

(
2
√
−BCf

))
, (26)

R20(f) = −
1
2

√
−BC

(
tanhρ

(√
−BC
2

f
)
+ cothρ

(√
−BC
2

f
))

. (27)

(Family 5): When A = 0 and B = C,

R21(f) = tanρ(Bf), (28)

R22(f) = − cotρ(Bf), (29)

R23(f) = tanρ(2Bf)±
√

mn secρ(2Bf), (30)

R24(f) = − cotρ(2Bf)±
√

mn cscρ(2Bf), (31)
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R25(f) =
1
2

(
tanρ

(
B
2
f
)
− cotρ

(
B
2
f
))

. (32)

(Family 6): When A = 0 and C = −B,

R26(f) = − tanhρ(Bf), (33)

R27(f) = − cothρ(Bf), (34)

R28(f) = − tanhρ(2Bf)± i
√

mnsechρ(2Bf), (35)

R29(f) = − cotρ(2Bf)±
√

mncschρ(2Bf), (36)

R30(f) = −
1
2

(
tanhρ

(
B
2
f
)
+ cotρ

(
B
2
f
))

. (37)

(Family 7): When A2 = 4BC,

R31(f) =
−2B(Afln[ρ] + 2)

A2fln[ρ]
. (38)

(Family 8): When B = pq, (q 6= 0),A = p, and C = 0,

R32(f) = ρpf − q. (39)

(Family 9): When A = C = 0,

R33(f) = Bfln[ρ]. (40)

(Family 10): When A = B = 0,

R34(f) =
−1
Cfln[ρ]

. (41)

(Family 11): When B = 0 and A 6= 0,

R35(f) = −
mA

C
(
coshρ(Af)− sinhρ(Af) + m

) , (42)

R36(f) = −
A
(
sinhρ(Af) + coshρ(Af)

)
C
(
sinhρ(Af) + coshρ(Af) + n

) . (43)

(Family 12): When C = pq, (q 6= 0), A = p, and B = 0,

R37(f) = −
mρpf

m− qnρpf . (44)

sinhρ(f) =
mρf − nρ−f

2
, coshρ(f) =

mρf + nρ−f

2
,

tanhρ(f) =
mρf − nρ−f

mρf + nρ−f
, cothρ(f) =

mρf + nρ−f

mρf − nρ−f
,
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sechρ(f) =
2

mρf + nρ−f
, cschρ(f) =

2
mρf − nρ−f

,

sinρ(f) =
mρif − nρ−if

2i
, cosρ(f) =

mρif + nρ−if

2
,

tanρ(f) = −i
mρif − nρ−if

mρif + nρ−if , cotρ(f) = i
mρif + nρ−if

mρif − nρ−if ,

secρ(f) =
2

mρf + nρ−f
, cscρ(f) =

2i
mρf − nρ−f

,

where m, n > 0 are arbitrary constant deformation parameters.

2.2. Application to the Equation (3)

We use a fractional travelling wave transformation [32,33] to identify solutions to the
Equation (2):

H(x, t) = Υ(f)eiθ , where, f =
Γ[σ + 1]

ζ
(xζ − λtζ),

θ(x, t) =
Γ[σ + 1]

ζ
(−κxζ + ωtζ + η).

(45)

Equation (2) is subjected to the travelling wave transformation (45), resulting in an
ordinary differential equation.

iλΥ′ −ωΥ + αΥ′′ − 2iκαΥ′ − κ2αΥ + iβΥ′Υ2

+κβΥ3 − iγΥ′ − κγΥ− 3iµΥ′Υ2 − κµΥ3 − 2iδΥ′Υ2 = 0. (46)

Now, the given ordinary differential equation’s real and imaginary components may
be derived.

κ(β− µ)Υ3 + αΥ′′ − (ω + ακ2 + γκ)Υ = 0. (47)

(β− 3µ− 2δ)Υ′Υ2 − (λ + 2ακ + γ)Υ′ = 0. (48)

By setting the imaginary part components to zero, we get β = 3µ + 2δ and λ = −(γ +
2ακ). The real component (47) becomes subject to the aforementioned two constraints,

2κ(δ + µ)Υ3 + αΥ′′ − (ω + ακ2 + γκ)Υ = 0. (49)

For Equation (49), the homogeneous balancing principle results in j = 1. As a result,
the solution (53) for the Equation (49) may be written as,

Υ(f) = a0 + a1R(f), (50)

where, R′(f) = ln[ρ]
(
B +AR(f) + CR2(f)

)
, ρ 6= 0, 1. Equation (50) is placed into

Equation (49) and the system of equations is obtained by collecting coefficients of different
powers of R.
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R0 : αABln[ρ]2a1 + 2κ(µ + δ)a3
0 − (ακ2 + γκ + ω)a0 = 0,

R1 : α(A2 + 2C)ln[ρ]2a1 + 6κ(µ + δ)a2
0a1 − (ακ2 + γκ + ω)a1 = 0,

R2 : 3αACln[ρ]2a1 + 6κ(µ + δ)a0a2
1 = 0,

R3 : 2αC2ln[ρ]2a1 + 2κ(µ + δ)a3
1 = 0.

(51)

The solution of the aforementioned system (51) is obtained by utilizing the Mathematica,[
a0 = ±A

2

√
α

−κ(µ + δ)
ln[ρ], a1 = ±C

√
α

−κ(µ + δ)
ln[ρ],

ω = −κ(γ + ακ)− α

2
ℵln[ρ]2

] (52)

After substituting (52) into (50), we get,

H(x, t) = Λ
(
A
2
+ CRi(x− λt)

)
ei(−κx+ωt+η), (53)

where Λ = ±
√

α
−κ(µ+δ)

ln[ρ].

It can be seen that we can obtain many solutions by taking Ri(f) from (8)–(44).
(Family 1): When A2 − 4BC < 0 and C 6= 0.
The mixed trigonometric solutions are obtained as,

H1(x, t) = Λ
√
−ℵ
2

tanρ

(√
−ℵ
2

f
)

eiθ , (54)

H2(x, t) = −Λ
√
−ℵ
2

cotρ

(√
−ℵ
2

f
))

eiθ , (55)

H3(x, t) = Λ
√
−ℵ
2

(
tanρ

(√
−ℵf

)
±
√

mn secρ

(√
−ℵf

))
eiθ , (56)

H4(x, t) = Λ
√
−ℵ
2

(
cotρ

(√
−ℵf

)
±
√

mn cscρ

(√
−ℵf

))
eiθ , (57)

H5(x, t) = Λ
√
−ℵ
4

(
tanρ

(√
−ℵ
4

f
)
− cotρ

(√
−ℵ
4

f
)))

eiθ . (58)

(Family 2): When A2 − 4BC > 0 and C 6= 0.
The shock solution is obtained as,

H6(x, t) = −Λ

√
ℵ

2
tanhρ

(√
ℵ

2
f
)

eiθ , (59)

The singular solution is obtained as,

H7(x, t) = −Λ

√
ℵ

2
cothρ

(√
ℵ

2
f
)

eiθ , (60)
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The mixed complex solitary-shock solution is obtained as,

H8(x, t) = Λ

√
ℵ

2

(
− tanhρ

(√
ℵf
)
± i
√

mnsechρ

(√
ℵf
)))

eiθ , (61)

The mixed singular solution is obtained as,

H9(x, t) = Λ

√
ℵ

2

(
− cothρ

(√
ℵf
)
±
√

mn cschρ

(√
ℵf
)))

eiθ , (62)

The mixed shock-singular solution is obtained as,

H10(x, t) = −Λ

√
ℵ

4

(
tanhρ

(√
ℵ

4
f
)
+ cothρ

(√
ℵ

4
f
)))

eiθ . (63)

(Family 3): When BC > 0 and A = 0.
The trigonometric solutions are obtained as,

H11(x, t) = Λ
√
BC tanρ

(√
BCf

)
eiθ , (64)

H12(x, t) = Λ
√
BC cotρ

(√
BCf

)
eiθ , (65)

The mixed trigonometric solutions are obtained as,

H13(x, t) = Λ
√
BC
(

tanρ

(
2
√
BCf

)
±
√

mn secρ

(
2
√
BCf

))
eiθ , (66)

H14(x, t) = Λ
√
BC
(
− cotρ

(
2
√
BCf

)
±
√

mn cscρ

(
2
√
BCf

))
eiθ , (67)

H15(x, t) =
Λ
2

√
BC
(

tanρ

(√
BC
2

f
)
− cotρ

(√
BC
2

f
))

eiθ . (68)

(Family 4): When BC < 0 and A = 0.
The shock-wave solution is obtained as,

H16(x, t) = −Λ
√
−BC tanhρ

(√
−BCf

)
eiθ , (69)

The singular solution is obtained as,

H17(x, t) = −Λ
√
−BC cothρ

(√
−BCf

)
eiθ , (70)

The different complex combo-type solutions are obtained as,

H18(x, t) = Λ
√
−BC

(
− tanhρ

(
2
√
−BCf

)
± i
√

mn sechρ

(
2
√
−BCf

)))
eiθ , (71)

H19(x, t) = Λ
√
−BC

(
− cothρ

(
2
√
−BCf

)
±
√

mn cschρ

(
2
√
−BCf

)))
eiθ , (72)

H20(x, t) = −Λ
2

√
−BC

(
tanhρ

(√
−BC
2

f
)
+ cothρ

(√
−BC
2

f
)))

eiθ . (73)
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(Family 5): When A = 0 and B = C.
The periodic and mixed-periodic wave solutions are obtained as,

H21(x, t) = BΛ tanρ(Bf)eiθ , (74)

H22(x, t) = −BΛ cotρ(Bf)eiθ , (75)

H23(x, t) = BΛ
(

tanρ(2Bf)±
√

mn secρ(2Bf)
)

eiθ , (76)

H24(x, t) = BΛ
(
− cotρ(2Bf)±

√
mn cscρ(2Bf)

)
eiθ , (77)

H25(x, t) =
BΛ

2

(
tanρ

(
B
2
f
)
− cotρ

(
B
2
f
))

eiθ . (78)

(Family 6): When A = 0 and C = −B.
The single and mixed-periodic wave solutions are obtained in the following forms,

H26(x, t) = BΛ tanhρ(Bf)eiθ , (79)

H27(x, t) = BΛ cothρ(Bf)eiθ , (80)

H28(x, t) = −BΛ
(
− tanhρ(2Bf)± i

√
mn sechρ(2Bf)

)
eiθ , (81)

H29(x, t) = −BΛ
(
− cotρ(2Bf)±

√
mn cschρ(2Bf)

)
eiθ , (82)

H30(x, t) =
BΛ

2

(
tanhρ

(
B
2
f
)
+ cotρ

(
B
2
f
))

eiθ . (83)

(Family 7): When A2 = 4BC.
We derive only one solution as,

H31(x, t) = Λ
(
A
2
− 2CB(Af ln ρ + 2)

A2f ln ρ

)
eiθ . (84)

(Family 8): When A = p,B = pq, (q 6= 0) and C = 0.

H32(x, t) = Constant. (85)

(Family 9): When A = C = 0,

H33(x, t) = 0. (86)

(Family 10): When A = B = 0.
We derive only one solution as,

H34(x, t) = − Λ
f ln ρ

eiθ . (87)
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(Family 11): When B = 0 and A 6= 0.
The mixed hyperbolic solutions are obtained as,

H35(x, t) = ΛA
(

1
2
− mΛA(

coshρ(Af)− sinhρ(Af) + m
))eiθ , (88)

H36(x, t) = ΛA
(

1
2
−

(
sinhρ(Af) + coshρ(Af)

)(
sinhρ(Af) + coshρ(Af) + n

))eiθ . (89)

(Family 12): When A = p, C = pq, (q 6= 0 and B = 0).
The plane solution is obtained in the following form,

H37(x, t) = Λ
(
A
2
− C

(
mρpf

m− qnρpf

))
eiθ . (90)

3. Graphical Study

This section is devoted to graphical visualization of the obtained solutions.
Figure 1a,b present periodic-singular, 3-D and contour profiles of the trigonometric

function solution at fractional order 0.1.
Figure 1c,d present periodic-singular, 3-D and contour profiles of the trigonometric

function solution at fractional order 0.5.
Figure 1e,f present periodic-singular, 3-D and contour profiles of the trigonometric

function solution at fractional order 0.7.

Remark 1. As the fractional order moves towards the classical order, the singularity decreases. The
behaviour of the solution is not periodic with fractional order, while the solution is periodic with
classical periodic at the negative axis.

Figure 2a,b present bright soliton 3-D and contour profiles of the rational function
solution at fractional order 0.1.

Figure 2c,d present bright soliton 3-D and contour profiles of the trigonometric func-
tion solution at fractional order 0.5.

Figure 2e,f present almost bright solitons with less amplitude 3-D and contour profiles
of the rational function solution at fractional order 0.7.

Remark 2. Figure 1 presents the mixed-kink and periodic solution. As the fractional order moves
towards the classical order, the periodicity of behaviour also increases and the amplitude of the soliton
wave decreases. The bright soliton is going to be flat as the simple rational solution in Figure 2.

Figure 3a,b show the two-dimensional effects of fractional order and comparison to
the classical order for solutions H1 and H34, respectively.

Figures 4 and 5 are presenting the graphical behaviour of the exact solution which is
obtained by Nucci’s reduction method.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Trigonometric function solution of H1(x, t) for the values of α = −1, κ = 0.1, µ = 0.9, δ =

0.01, γ = −2. (a) 3-D wave profile at fractional order ζ = 0.1. (b) Contour wave profile at fractional
order ζ = 0.1. (c) 3-D wave profile at fractional order ζ = 0.5. (d) Contour wave profile at fractional
order ζ = 0.5. (e) 3-D wave profile at fractional order ζ = 0.7. (f) Contour wave profile at fractional
order ζ = 0.7.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Rational function solution of H34(x, t) for the values of α = −1, κ = 0.1, µ = 0.9, δ =

0.01, γ = −2. (a) 3-D wave profile at fractional order ζ = 0.1. (b) Contour wave profile at fractional
order ζ = 0.1. (c) 3-D wave profile at fractional order ζ = 0.5. (d) Contour wave profile at fractional
order ζ = 0.5. (e) 3-D wave profile at fractional order ζ = 0.7. (f) Contour wave profile at fractional
order ζ = 0.7.
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(a) (b)

Figure 3. Influence of fractional order with H34(x, t) for the values of α = −1, κ = 0.1, µ = 0.9, δ =

0.01, γ = −2. (a) 2-D impact of fractional order ζ on solution H1. (b) 2-D impact of fractional order ζ

on solution H34.
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Figure 4. Cont.
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(e) (f)

Figure 4. New exact solution by Nucci’s method (96) for the values of α = −0.5, κ = 0.2, ω = 0.5, δ =

0.01, γ = −2, ϕ1 = 2.5. (a) 3-D wave profile at fractional order ζ = 0.2. (b) 3-D wave profile at
fractional order ζ = 0.5. (c) Contour wave profile at fractional order ζ = 0.2. (d) Contour wave
profile at fractional order ζ = 0.5. (e) 2-D wave profile at fractional order ζ = 0.2. (f) 2-D wave profile
at fractional order ζ = 0.5.
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Figure 5. Cont.
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(e) (f)

Figure 5. New exact solution by Nucci’s method (96) for the values of α = −0.5, κ = 0.2, ω = 0.5, δ =

0.01, γ = −2, ϕ1 = 2.5. (a) 3-D wave profile at fractional order ζ = 0.7. (b) 3-D wave profile at
fractional order ζ = 0.9. (c) Contour wave profile at fractional order ζ = 0.7. (d) Contour wave
profile at fractional order ζ = 0.9. (e) 2-D wave profile at fractional order ζ = 0.7. (f) 2-D wave profile
at fractional order ζ = 0.9.

4. Nucci’s Reduction Approach

We use the reduction approach in this stage [34]. If we assume that the variables
change according to Galilean transformation, when employing this approach

Υ(f) = λ1(f), Υ′(f) = λ2(f).

The ordinary differential Equation (46) can be transformed into the planer dynamical
system, such as,

dλ1

df = λ2,

dλ2

df =
ω + ακ2 + γκ

α
λ1 −

2κ(δ + µ)

α
λ3

1.
(91)

The aforementioned system (91) being autonomous, we may now choose λ1 as a new
independent variable. As a result, system (91) becomes,

dλ2

dλ1
=

ω + ακ2 + γκ

λ2α
λ1 −

2κ(δ + µ)

λ2α
λ3

1. (92)

This is a first-order separable ODE with the exact solution provided by one time integration,

λ2(λ1) = ±

√
(α κ2 + γ κ + ω)λ2

1
α

−
κ (δ + µ)λ4

1
α

+ 2ϕ0, (93)

where, ϕ0 is the integration constant and yields the first integral such as,

ϕ0 =
(Υ′(f))2

2
∓
((

α κ2 + γ κ + ω
)
(Υ2(f))

2α
− κ (δ + µ)(Υ4(f))

2α

)
. (94)

Substituting Equation (93) into the first equation of the planer dynamical system (91)
we get,

dλ1

df = λ1

√
(α κ2 + γ κ + ω)

α
− κ (δ + µ)λ1

2

α
+ 2ϕ0. (95)
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The Equation (95) is also a first-order separable equation, and, hence, the general
solution is,

H(x, t) =

i
√

ακ2 + γκ + ω

√
−1 + tanh2

(
f
√

ακ2+γκ+ω√
α

+ ϕ1
√

ακ2 + γκ + ω

)
√

κ
√

δ + µ
eiθ(x,t), (96)

whenever ϕ0 = 0.

H(x, t) = ± eiθ(x,t)√
− α κ2+γ κ−

√
α2κ4+2 α γ κ3+8 α δ κ ϕ0+2 α κ2ω+8 α κ µ ϕ0+γ2κ2+2 γ κ ω+ω2+ω

α ϕ0

2 JacobiSN(Z,K),

(97)

whenever ϕ0 6= 0.

Z = 1
2α

(
− 2 α

(
α κ2 + γ κ−

√
α2κ4 + 2 α γ κ3 + 8 α δ κ ϕ0 + 2 α κ2ω + 8 α κ µ ϕ0 + γ2κ2 + 2 γ κ ω + ω2 + ω

)) 1
2

f,

K = 1
2

(
− 1

α ϕ0 κ (δ+µ)

(
α2κ4 + 2 α γ κ3 + γ2κ2+√

α2κ4 + 2 α γ κ3 + 8 α δ κ ϕ0 + 2 α κ2ω + 8 α κ µ ϕ0 + γ2κ2 + 2 γ κ ω + ω2α κ2+
4 α δ κ ϕ0 + 2 α κ2ω + 4 α κ µ ϕ0
+γ

√
α2κ4 + 2 α γ κ3 + 8 α δ κ ϕ0 + 2 α κ2ω + 8 α κ µ ϕ0 + γ2κ2 + 2 γ κ ω + ω2κ + 2 γ κ ω

+
√

α2κ4 + 2 α γ κ3 + 8 α δ κ ϕ0 + 2 α κ2ω + 8 α κ µ ϕ00 + γ2κ2 + 2 γ κ ω + ω2ω + ω2
)) 1

2

,

where f = Γ[σ+1]
ζ (xζ − λtζ), θ(x, t) = Γ[σ+1]

ζ (−κxζ + ωtζ + η).

Sensitivity Assessment

This section describes the sensitive behaviour of the planer dynamical system (91) to
check the sensitivity of the governing model. A sensitivity analysis is performed taking
into account the parametric values ω = 1, α = 1.5, κ = 0.9, µ = 2, γ = 5, δ = 0.9.

From Figure 6 it can be seen that only minor changes in the initial values have a large
impact on the dynamics of model. This means that the system is sensitive with respect to
the initial value.

(a) (b)

Figure 6. Cont.
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(c) (d)

Figure 6. Sensitivity analysis at different initial conditions. (a) Sensitive visualization for curve 1 at
(1.5, 0.03) and curve 2 at (1.05, 0.02). (b) Sensitive visualization for curve 1 at (1, 0.03) and curve 2 at
(1.04, 0.02). (c) Sensitive visualization for curve 1 at (0.5, 0.03) and curve 2 at (1.05, 0.02). (d) Sensitive
visualization for curve 1 at (0.9, 0.03) and curve 2 at (1.6, 0.02).

5. Conclusions

In this study, by utilising one of the generalised expansion strategies, several novel
soliton solutions to the Chen–Lee–Liu model with perturbation term are achieved. The new
extended direct algebraic approach provides 37 alternative varieties of soliton patterns.

• The acquired types of soliton include exponential, plane wave solution, shock wave
solution, rational, mixed-shock wave, trigonometric, complex shock wave solution,
hyperbolic trigonometric, periodic, singular, singular shock wave solution, dark-
singular, brilliant singular, and dark-bright solitons.

• The solutions are presented in 2-D, 3-D and contour profiles.
• A new fractional exact solution is obtained by utilizing Nucci’s reduction method.
• The governing model is very sensitive with respect to the initial conditions.
• For solution H1, the fractional-order shows more exciting behaviour, such as a larger

singularity as ζ moves to the classical order and bright solution behaviour is produced
when the fractional-order moves to the classical order for solution H34.

To demonstrate the graphical behaviour of optical pulses utilising the given analytical
solutions, some suitable values were selected for the associated free parameters. The
generated solutions can be used to interpret the non-linear model’s physical perspective.
The new extended direct algebraic technique and Nucci’s reduction method represent
strong and efficient mathematical techniques that may be used to provide exact analytical
solutions to a variety of other challenging mathematical phenomena.
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