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Abstract: An oscillating second-grade fluid through a rectangular cross duct is studied. A traditional
integer time derivative in the kinematic tensors is substituted by a fractional operator that considers
the memory characteristics. To treat the fractional governing equation, an analytical method was
obtained. To analyze the impact of the parameters more intuitively, the difference method was
applied to determine the numerical expression and draw with the help of computer simulation. To
reduce the cost of the amount of computation and storage, a fast scheme was proposed, one which can
greatly improve the calculation speed. To verify the correctness of the difference scheme, the contrast
between the numerical expression and the exact expression—constructed by introducing a source
term—was given and the superiority of the fast scheme is discussed. Furthermore, the influences of
the involved parameters, including the parameter of retardation time, fractional parameter, magnetic
parameter, and oscillatory frequency parameter, on the distributions of velocity and shear force at the
wall surface with oscillatory flow are analyzed in detail.

Keywords: second-grade fluid; rectangular duct; constitution relationship; fractional derivative;
fast algorithms

1. Introduction

The flow of fluid has widespread applications, including in aerospace, biomedicine,
oil exploitation etc. The classical fluid model is the Newtonian fluid in which the stress
tensor and the kinematic tensor have a linear relationship. It has a limitation in so far
that it can only describe most pure liquids such as water and alcohol. In addition to the
fluids listed, most fluids are non-Newtonian whose characteristics have many properties
that different from those of Newtonian ones [1]. Studying the flow mechanism has great
significance. There are many types of non-Newtonian fluids and this paper studies the
second-grade fluid [2–4], in which the shear force is characterized by the stretching tensor
and the Rivlin–Ericksen tensors.

Due to the special description of the constitution relationship, the second-grade fluid
has its own unique properties. In order to better discover its flow mechanism, the usual
method is to consider the flow through simple models. The common categories for this
include the flow on semi-infinite plates [5,6], two parallel infinitely long plates [7], the
flow in pipes or ducts [8], or the flow in a circular tube [9]. Non-Newtonian fluids in
rectangular channels have gained special interest for the engineering applications such as
in magnetohydrodynamic generators and marine mechanical equipment, interest which
has helped us to study the flow characteristics in depth [10]. Studying second-grade fluid in
a rectangular cross duct has important research significance and application value. Erdoğan
and İmrak [11] were the first scholars to study the unsteady motion of second-grade fluid
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through a rectangular cross duct with the influences of the side walls. It has been further
studied by many scholars. Considering heat transfer with relaxation time, Alamri et al. [12]
analyzed particle diffusion in the flow of second-grade fluid and discussed the effects of the
involved parameters on the profile graphically. Bernard [13] studied a three-dimensional
second-grade fluid with a tangential boundary condition in a polyhedron. By comparing
with the stress of the Newtonian fluid at the initial time, Erdoğan and İmrak [14] considered
the motion properties of second-grade fluid driven by the impulsive motion or sudden
pressure gradient. The comparison of the stress at the start time between the Newtonian
fluid and the second-grade fluid was discussed. Furthermore, the influence of the magnetic
field has important research significance. It has been applied to the Maxwell fluid [15],
Oldroyd-B fluid [16] et al., but it has fewer studies on the second-grade fluid.

Besides, many situations consider the steady-state motion of the second-grade fluid
for simplicity. However, for the practical situation, the velocity field produced by the flow
should vary with time due to the complexity of the fluid flow. The unsteady state has more
research significance for the second-grade fluid with the condition that the time derivative
in the constitutional relationship is integral to considering the local characteristics. With
further research, it has been found that the fractional model has gained support for its
memory characteristic [17]. At present, the fractional operators have been applied in
many viscoelastic fluids, such as the Maxwell model [18], Oldroyd-B model [19], Burgers’
model [20] et al. For the fractional second-grade fluid, the constitution relationship has
a similar form with the viscoelastic fluid, namely, they all have the fractional material
derivative term. The application of fractional operator on the motion of second-grade
fluid has been analyzed by Tan and Xu [21], Bazhlekova et al. [22], Kan and Wang [23],
Li et al. [24] et al. For flow driven by a special form of oscillatory pressure, it has been
widely applied in the motions in an isosceles right triangle tube with Maxwell fluid [25], in
a straight rectangular duct with the second-grade fluid [26], in a cylindrical domain with
the Oldroyd-B fluid [27], and in cylindrical domains with the fractional Burgers fluid [28].
To the best of the authors’ knowledge, the two-dimensional flow of second-grade fluid in
rectangular ducts driven by oscillatory pressure and considering a magnetic field has not
been considered in the literature so far.

There are many methods to solve the governing equation [29–31]. For the treatment of
the fractional second-grade fluid, the traditional method is to apply the integral transform
method to obtain an analytical solution [27,32,33], with the paradox that the principle of
causality causing the initial conditions is a non-rigorous enforcement. In other words,
these treatments for the start-up flow proposed by Christov [34,35] are incorrect. There
are many numerical methods [36] that can solve the fractional governing equation and the
numerical difference method has been applied to solve the corresponding mathematical
problem correctly.

The governing equation subject to the fractional second-grade constitutive relationship
is solved numerically. The difference is that the integer term has mature calculation meth-
ods, while the key is to treat the fractional derivative. The classical method is to choose the
L1 scheme [37] to approximate it, though it is limited by the huge amount of computation
and storage required for long-term numerical simulation, since the Caputo derivative
depends on historical information. This is an urgent problem to be solved at present. Using
exponential functions to approximate the Abel kernel function of Caputo derivatives, the
fast algorithm [38] has been developed. The main idea is to reduce the number of iterations
by constructing a recurrent relationship. At each time step, the convolution containing
the exponential kernel is calculated in O(1) time. Then the computational amount O

(
N2)

and storage O(N) for the direct L1-algorithm reduces to O(N log2 N) and O(log2 N) for
the fast algorithm, respectively. This has been applied to treat fractional diffusion models [39],
multi-term fractional sub-diffusion models [40], wave models [41] and the variable co-
efficient fractional diffusion wave models [42]. According to the numerical results, the
analyses are discussed and are detailed by graphical illustration.
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The paper’s outline is given as follows. The derivation of the mathematical model
of the second-grade fluid over a rectangular duct with an infinite length and which is
caused by a various pressure gradient is given in Section 2. The exact expression for
describing the second-grade fluid is deduced in Section 3. Section 4 gives the numerical
difference scheme of the formulated governing equation and the analyses of the solvability,
stability and convergence are proven in Section 5. Section 6 gives the fast evolution of the
difference scheme. Section 7 gives the comparison between the numerical expression and
the exact expression. Furthermore, the influences of the relevant parameters on the transfer
mechanism of the velocity field and the shear force at the wall surface are also analyzed.
The conclusions are summarized in Section 8.

2. The Derivation of the Mathematical Model

Consider the motions of an incompressible second-grade fluid. The laminar flow in a
straight duct with infinite length and the rectangular cross-section is considered and the
flow is controlled by pressure gradient with time/space oscillations. As shown in Figure 1,
the width and height of the rectangular section are 2a and 2b. The center in the cross-section
is defined as the origin and the boundaries along x direction and y direction are at the
positions x = ±a and y = ±b while z ∈ [0,+∞) along z direction. For simplicity, the body
forces are neglected in this paper.
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Figure 1. The motion of second-grade fluid in a rectangular cross duct.

The continuity equation is given as

∇ ·V = 0, (1)

where ∇ denotes the gradient operator.
As a development, for the fractional second-grade fluid when considering the memory

characteristics [21], the stress tensor τ has the following expression

τ = µA1 + α1 A2 + α2 A2
1, (2)

where µ refers to the dynamic viscosity, α1 and α2 denote the material moduli, A1 and A2
are the kinematic tensors with the expression as

A1 = ∇V + (∇V)T and A2 = Dα
t A1 + A1∇V + (∇V)T A1, (3)

where Dα
t denotes the Riemann–Liouville’s fractional operator of order α (0 < a < 1) [43],

the definition for a function f (t) defined on [t1, t2] is given as

Dα
t f (t) =

d
dt

(
1

Γ(1− α)

∫ t

t1

f (ξ)
(t− ξ)α dξ

)
. (4)
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For considering the Clausius–Duhem inequality and assuming that the minimum
at equilibrium for the Helmholtz free energy is [44,45], the material constants satisfy the
following restrictions

µ ≥ 0, α1 ≥ 0 and α1 + α2 = 0. (5)

Applying the periodic pressure gradient into the z-direction, the motion of second-
grade fluid in the direction is parallel to the axial coordinate with an oscillating form. The
velocity field is assumed as

V = [0, 0, w(x, y, t)]T , (6)

where w(x, y, t) refers to the velocity in the z-direction. For this consideration, it is sim-
ple to find that the continuity Equation (1) automatically satisfies consideration of the
velocity field (6).

Considering the effect of an electromagnetic field, the motion equation for describing
the second-grade fluid is denoted as follows

ρDtV = −∇p +∇ · τ − σ0B2
0V, (7)

where V corresponds to the velocity vector, ρ refers to the fluid density, p denotes the
hydrostatic pressure, the operator Dt refers to the material derivative, σ0 refers to electrical
conductivity and B0 is the magnetic field.

Combining the expansion of Equation (2) (see the Appendix A) with Equation (7), the
fractional governing equation can be derived as

∂w
∂t

= ν(1 + λDα
t )

(
∂2w
∂x2 +

∂2w
∂y2

)
−Mw− 1

ρ

∂p
∂z

, (8)

where ν = µ
ρ denotes the kinematic viscosity, λ = α1

µ refers to the retardation time, M =
σ0B2

0
ρ

corresponds to the magnetic parameter.
The initial conditions are

w(x, y, 0) = 0, (9)

and the boundary conditions regardless of slip are given as

w(±a, y, t) = w(x,±b, t) = 0. (10)

The initial boundary conditions of (9) and (10) are the Dirichlet type based on the
physical backgrounds considering a laminar flow in a straight duct with infinite length and
rectangular cross-section. When the boundary conditions change to Neumann, Robin or
some other kind of initial boundary conditions, the physical meaning of this paper changes.
However, the treatment process of the fractional governing equation with the difference
method and the fast algorithm is also applicable. The only difference is the boundary
discretization is slightly different.

Theorem 1. [43] Assume a positive α satisfies 0 ≤ n− 1 < α < n. Suppose the function f (t) in
region [t1, t2] has n− 1 continuous bounded derivative for every t2 > t1, then

Dα
t f (t) = CDα

t f (t) +
n−1

∑
j=1

f (j)(t1)(t− t1)
j−α

Γ(1 + j− α)
, t1 ≤ t ≤ t2, (11)

where CDα
t f (t) refers to the Caputo’s fractional derivative [43].

Through Theorem 1, we have Dα
t f (t) = CDα

t f (t) with the condition that second-grade
fluid flowing along a straight rectangular duct is subjected to the zero initial condition. In
the following discussions, we are able to substitute the Riemann–Liouville derivative with
Caputo’s derivative.
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3. Analytical Solution

In this part, we try to obtain the analytical solution of (8)–(10). Firstly, we consider the
equation:

∂u
∂t

= ν

(
∂2u
∂x2 +

∂2u
∂y2

)
−Mu, (12)

u(±1, y, t, τ) = u(x,±1, t, τ) = 0. (13)

To simplify the calculation, we introduce u(x, y, t, τ) = h(x + 1, y + 1, t, τ), after which
it becomes:

∂h
∂t

= ν

(
∂2h
∂x2 +

∂2h
∂y2

)
−Mh, (14)

h(0, y, t, τ) = h(x, 0, t, τ) = h(2, y, t, τ) = h(x, 2, t, τ) = 0 (15)

The solution of (14)–(15) is obtained by separation of variables. Defining
h(x, y, t, τ) = T(t, τ)Φ(x, y) and the operator ∆ = ∂2

∂x2 +
∂2

∂y2 , yields:

Φ
∂T
∂t

= νT∆Φ−MTΦ, (16)

Φ(0, y) = Φ(x, 0) = Φ(2, y) = Φ(x, 2) = 0 (17)

Denote
∆Φ = η ·Φ. (18)

It can be deduced immediately that

∂T
∂t

= (νη −M)T (19)

Equation (18) is a Helmholtz equation and the solution with the boundary conditions
(17) can be obtained: Φn,m = sin

( nπ
2 x
)

sin
(mπ

2 y
)
, where n, m ∈ N. It can then be deduced

that η can only be discrete values with the value η = − n2+m2

4 π2. It is simple to determine
the solution to Equation (19) as T = B(τ)e(νη−M)t, where B(τ) is an arbitrary function. The
solution of h(x, y, t, τ) has the following form

h(x, y, t, τ) =
+∞

∑
n=1

+∞

∑
m=1

Bn,m(τ)e−(vπ2 n2+m2
4 +M)t sin

(nπ

2
x
)

sin
(mπ

2
y
)

, (20)

and then

u(x, y, t, τ) =
+∞

∑
n=1

+∞

∑
m=1

Bn,m(τ)e−(vπ2 n2+m2
4 +M)t sin

(nπ

2
(x + 1)

)
sin
(mπ

2
(y + 1)

)
(21)

Denote 1
ρ

∂p
∂z = g(t). Equation (8) can be expressed as:

∂w
∂t

= ν(1 + λDα
t )

(
∂2w
∂x2 +

∂2w
∂y2

)
−Mw− g(t). (22)

Suppose there is a function u(x, y, t, τ) satisfying w(x, y, t) =
∫ t

0 u(x, y, t, τ)dτ. Substi-
tuting this expression into (21), yields

u(x, y, t, t) +
∫ t

0
∂u(x,y,t,τ)

∂t dτ =
∫ t

0 (ν∆u(x, y, t, τ)−Mu(x, y, t, τ))dτ

+ νλ
Γ(1−α)

d
dt

∫ t
0 (t− ξ)−α∫ ξ

0 ∆u(x, y, ξ, τ)dτdξ − g(t).
(23)
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From Equation (12), Equation (23) can be reduced as:

νλ

Γ(1− α)

d
dt

∫ t

0
(t− ξ)−α

∫ ξ

0
∆u(x, y, ξ, τ)dτdξ − u(x, y, t, t) = g(t). (24)

Substituting the solution (21) into Equation (24), yields[
− νλ

Γ(1−α)

+∞
∑

n=1

+∞
∑

m=1

(
n2+m2

4 π2
)

d
dt

∫ t
0 (t− ξ)−α∫ ξ

0 Bn,m(τ)dτe−(vπ2 n2+m2
4 +M)ξdξ

−
+∞
∑

n=1

+∞
∑

m=1
Bn,m(t)e−(vπ2 n2+m2

4 +M)t
]
· sin

( nπ
2 (x + 1)

)
sin
(mπ

2 (y + 1)
)
= g(t).

(25)

Perform the inner product with sin
( n0π

2 (x + 1)
)

sin
(m0π

2 (y + 1)
)

on both sides of
Equation (25) and integral interval chosen as [−1, 1]× [−1, 1]. Then for the left side of the
Equation (25), we have:

+∞
∑

n=1

+∞
∑

m=1
Cn,m(t)

∫ 1
−1

∫ 1
−1 sin

( nπ
2 (x + 1)

)
sin
(mπ

2 (y + 1)
)

sin
( n0π

2 (x + 1)
)

sin
(m0π

2 (y + 1)
)
dxdy

=
+∞
∑

n=1

+∞
∑

m=1

Cn,m(t)
4

∫ 1
−1

[
cos
(
(n−n0)π

2 (x + 1)
)
− cos

(
(n+n0)π

2 (x + 1)
)]

dx

·
∫ 1
−1

[
cos
(
(m−m0)π

2 (y + 1)
)
− cos

(
(m+m0)π

2 (y + 1)
)]

dy
= Cn0,m0(t)

(26)

where

Cn,m(t) = −
νλπ2(n2 + m2)

4Γ(1− α)

d
dt

∫ t

0
(t− ξ)−α

∫ ξ

0
Bn,m(τ)dτe−(vπ2 n2+m2

4 +M)ξdξ − Bn,m(t)e−(vπ2 n2+m2
4 +M)t

For the right-hand component of Equation (25), the integral is zero when n0 and m0
are even. Set n0 = 2k1 − 1, m0 = 2k2 − 1, where k1 and k2 are positive integers. Then we
have the following integral formula:

∫ 1

−1

∫ 1

−1
sin
(
(2k1 − 1)π

2
(x + 1)

)
sin
(
(2k2 − 1)π

2
(y + 1)

)
dxdy =

16
(2k1 − 1)(2k2 − 1)π2 . (27)

By a combination of Equations (26) and (27), the following equation can be obtained:

C(1)
n,m

Γ(1− α)

d
dt

∫ t

0
(t− ξ)−α

∫ ξ

0
Bn,m(τ)dτe−C(2)

n,mξdξ − Bn,m(t)e−C(2)
n,mt = C(3)

n,mg(t), (28)

where n = 2k1 − 1, m = 2k2 − 1, C(1)
n,m = −

(
n2+m2

4 π2
)

νλ, C(2)
n,m = vπ2 n2+m2

4 + M and

C(3)
n,m = 16

nmπ2 .

Denote ξ = t− γ, Equation (28) can be rewritten as:

C(1)
n,m

Γ(1−α)

(∫ t
0 γ−αBn,m(t− γ)eC(2)

n,m(γ−t)dγ− C(2)
n,m
∫ t

0 γ−α
∫ t−γ

0 Bn,m(τ)dτeC(2)
n,m(γ−t)dγ

)
−Bn,m(t)e−C(2)

n,mt = C(3)
n,mg(t).

(29)

Denote t = 0, we have the relationship:

Bn,m(0) = −C(3)
n,mg(0). (30)

Multiplying the left and right sides of (29) by eC(2)
n,mt and taking the derivative of t, yields:
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C(1)
n,m

Γ(1−α)

(
t−αBn,m(0)eC(2)

n,mt +
∫ t

0 γ−αBn,m
′(t− γ)eC(2)

n,mγdγ− C(2)
n,m
∫ t

0 γ−αBn,m(t− γ)eC(2)
n,mγdγ

)
− dBn,m(t)

dt = eC(2)
n,mtC(3)

n,m

(
C(2)

n,mg(t) + g′(t)
)

.
(31)

Resort to variable γ = t − ξ and multiply both sides of Equation (31) by e−C(2)
n,mt,

we have:

C(1)
n,m

Γ(1−α)

∫ t
0 (t− ξ)−α dBn,m(ξ)e−C(2)n,mξ

dξ dξ − dBn,m(t)e−C(2)n,mt

dt − C(2)
n,mBn,m(t)e−C(2)

n,mt

= C(3)
n,m

(
C(2)

n,mg(t) + g′(t)
)
− C(1)

n,m
Γ(1−α)

t−αBn,m(0).
(32)

Denoting An,m(t) = Bn,m(t)e−C(2)
n,mt and according to (30), we have

C(1)
n,m

dα+1 An,m

dtα+1 − dAn,m

dt
− C(2)

n,m An,m = C(3)
n,m

(
C(2)

n,mg(t) + g′(t)
)
− C(1)

n,m An,m(0)
Γ(1− α)

t−α, (33)

where n = 2k1 − 1, m = 2k2 − 1 and An,m(0) = −C(3)
n,mg(0). The analytical solution can be

obtained by referring to [46].
Then the solution to Equation (20) can be obtained as:

w(x, y, t) =
+∞

∑
n = 1

n = 2k1 − 1

+∞

∑
m = 1

m = 2k2 − 1

∫ t

0
Bn,m(τ)dτ · e−(vπ2 n2+m2

4 +M)t sin
(nπ

2
(x + 1)

)
sin
(mπ

2
(y + 1)

)
, (34)

where Bn,m(t) = eC(2)
n,mt An,m(t) and An,m(t) refers to the solution of (33).

4. Numerical Discretization Method
Numerical Scheme

Firstly, we divide the spatial region [−a, a]× [−b, b] with the uniform mesh points
xi = −a + ihx, i = 0, 1, · · · , Mx, yj = −b + jhy, j = 0, 1, · · · , My, in which hx = 2a/Mx,
hy = 2b/My. For the time region [0, T], we take tn = nτ with time step τ = T/N for
n = 0, 1, · · ·N. Define Ωh ≡

{(
xi, yj

)∣∣0 ≤ i ≤ Mx, 0 ≤ j ≤ My
}

and Ωτ ≡ {tn|0 ≤ n ≤ N }.
For a net function w =

{
wn

i,j

∣∣0 ≤ i ≤ Mx, 0 ≤ j ≤ My, 0 ≤ n ≤ N
}

defined on an
interval Ωh ×Ωτ , denote the following symbols for simplicity:

∇twn
i,j =

wn
i,j − wn−1

i,j

τ
, δxwn

i,j =
wn

i,j − wn
i−1,j

hx
, δywn

i,j =
wn

i,j − wn
i,j−1

hy
,

δ2
xwn

i,j =
wn

i+1,j − 2wn
i,j + wn

i−1,j

h2
x

, δ2
ywn

i,j =
wn

i,j+1 − 2wn
i,j + wn

i,j−1

h2
x

Furthermore, the exact solution is defined as Wn
i,j = w

(
xi, yj, tn

)
for simplicity. Ap-

plying the L1-scheme [37] for discretizing the fractional derivative, at the mesh points(
xi, yj, tn

)
, we have:

∂αWn
i,j

∂tα
=

τ−α

Γ(2− α)

(
c0Wn

i,j −
n−1

∑
k=1

(cn−k−1 − cn−k)Wk
i,j − cn−1W0

i,j

)
+ (R1)

n
i,j (35)

where ck = (k + 1)1−α − k1−α and
∣∣∣(R1)

n
i,j

∣∣∣ ≤ Cτ2−α.
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At the mesh points
(

xi, yj, tn
)
, the backward difference method is applied to discretize

the time derivative of order one

∂Wn
i,j

∂t
= ∇tWn

i,j + O(τ) (36)

Use of the central difference scheme yields the discretization schemes for the second
order space derivatives

∂2Wn
i,j

∂x2 = δ2
xWn

i,j + O
(

h2
x

)
and

∂2Wn
i,j

∂y2 = δ2
yWn

i,j + O
(

h2
y

)
(37)

Combining (35) and (37), we have the difference schemes for the mixed derivatives of
time and space:

∂α

∂tα

∂2

∂x2 Wn
i,j =

τ−α

Γ(2− α)

(
c0δ2

xWn
i,j −

n−1

∑
k=1

(cn−k−1 − cn−k)δ
2
xWk

i,j − cn−1δ2
xW0

i,j

)
+ (R2)

n
i,j, (38)

∂α

∂tα

∂2

∂y2 Wn
i,j =

τ−α

Γ(2− α)

(
c0δ2

yWn
i,j −

n−1

∑
k=1

(cn−k−1 − cn−k)δ
2
yWk

i,j − cn−1δ2
yW0

i,j

)
+ (R3)

n
i,j, (39)

where
∣∣∣(R2)

n
i,j

∣∣∣ ≤ C
(
τ2−α + h2

x
)

and
∣∣∣(R3)

n
i,j

∣∣∣ ≤ C
(

τ2−α + h2
y

)
.

Denote the discretization scheme for − 1
ρ

∂p
∂z at the points

(
xi, yj, tn

)
as gn

i,j. Through
the difference schemes (35)–(39), we have the final discretization scheme for the
governing Equation (8)

∇tWn
i,j + MWn

i.j − νδ2
xWn

i,j − νδ2
yWn

i,j

= νλ τ−α

Γ(2−α)

(
c0δ2

xWn
i,j −

n−1
∑

k=1
(cn−k−1 − cn−k)δ

2
xWk

i,j − cn−1δ2
xW0

i,j

)
+νλ τ−α

Γ(2−α)

(
c0δ2

yWn
i,j −

n−1
∑

k=1
(cn−k−1 − cn−k)δ

2
yWk

i,j − cn−1δ2
yW0

i,j

)
+ gn

i,j + Rn
i,j,

(40)

where
∣∣∣Rn

i,j

∣∣∣ ≤ C
(

τ + h2
x + h2

y

)
.

Substituting Wn
i,j with wn

i,j, we have the numerical difference scheme of Equation (8)

∇twn
i,j + Mwn

i.j − νδ2
xwn

i,j − νδ2
ywn

i,j

= νλ τ−α

Γ(2−α)

(
c0δ2

xwn
i,j −

n−1
∑

k=1
(cn−k−1 − cn−k)δ

2
xwk

i,j − cn−1δ2
xw0

i,j

)
+νλ τ−α

Γ(2−α)

(
c0δ2

ywn
i,j −

n−1
∑

k=1
(cn−k−1 − cn−k)δ

2
ywk

i,j − cn−1δ2
yw0

i,j

)
+ gn

i,j.

(41)

By merging the terms at the same time layer, making the left side the n-th time layer,
and the right side the time layer with the order less than n, Equation (41) can be rewritten
in another form:(

1
τ + M

)
wn

i,j −
ν
h2

x
(r1 + 1)

(
wn

i+1,j − 2wn
i,j + wn

i−1,j

)
− ν

h2
y
(r1 + 1)

(
wn

i,j+1 − 2wn
i,j + wn

i.j−1

)
= 1

τ wn−1
i,j − νr1

[
n−1
∑

k=1
(cn−k−1 − cn−k)

(
δ2

xwk
i,j + δ2

ywk
i,j

)
+ cn−1

(
δ2

xw0
i,j + δ2

yw0
i,j

)]
+ gn

i,j,
(42)

where r1 = λτ−α

Γ(2−α)
and gn

i,j = −
1
ρ

∂p(xi ,yj ,tn)
∂z .
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In what follows, the symbol E denotes the unit matrix which may be with a different
order in various sections. Considering the zero-boundary conditions, the discretization
scheme (42) can be rewritten in a matrix form:(

1
τ + M

)
Ewn − ν(r1+1)

h2
x

E⊗ K1wn − ν(r1+1)
h2

y
K2 ⊗ Ewn

= 1
τ Ewn−1 − νr1

[
n−1
∑

k=1
(cn−k−1 − cn−k)(E⊗ K1 + K2 ⊗ E)wk + cn−1(E⊗ K1 + K2 ⊗ E)w0

]
+ gn,

where the symbol ⊗ denotes the Kronecker product [47],

K1 =


−2 1
1 −2 1

. . . . . . . . .
1 −2 1


(Mx−1)×(Mx−1)

, K2 =


−2 1
1 −2 1

. . . . . . . . .
1 −2 1


(My−1)×(My−1)

,

wn =
(

wn
1,1, wn

2,1, . . . , wn
Mx−1,1, wn

1,2, wn
2,2, . . . , wn

Mx−1,2, . . . , wn
1,My−1, wn

2,My−1, . . . , wn
Mx−1,My−1

)T
,

gn =
(

gn
1,1, gn

2,1, . . . , gn
Mx−1,1, gn

1,2, gn
2,2, . . . , gn

Mx−1,2, . . . , gn
1,My−1, gn

2,My−1, . . . , gn
Mx−1,My−1

)T
.

The initial condition can be discretized as w0
i,j = 0 and the boundary conditions are

discretized as wn
0,j = wn

Mx ,j = wn
i,0 = wn

i,My
= 0. The above numerical method can be

applied to widespread situations, for example, the dynamics in porous media for solving
Richards’ equation [48]. For this equation, the treating method mentioned above can be
similarly applied.

Besides the velocity distribution, the shear force is another important quantity to
analyze. We consider the shear force τxz for xz-direction at the wall surface (x = 0), and the
difference scheme is given as:

τxz = (µ + α1Dα
t )

∂w
∂x

∣∣∣
x=0

≈
[
µ + α1τ−α

Γ(2−α)

]wn
1,j−wn

0,j
hx

− α1τ−α

Γ(2−α)

n−1
∑

k=1
(cn−k−1 − cn−k)

wk
1,j−wk

0,j
hx

− α1τ−αcn−1
Γ(2−α)

w0
1,j−w0

0,j
hx

.

Due to the symmetry of the velocity in the x- and y-directions, we deduce the shear
force along the yz-direction at the wall surface y = 0 to be the same as the xz-direction.

5. Feasibility Analysis

Denote Vh = {v|v} is a net function on Ωh ×Ωτ , vn
i,j = 0 when i = 0 and Mx or j = 0

and My. For wn, vn ∈ Vh, we denote the discrete inner products and norms:

(wn, vn) = hxhy

Mx−1

∑
i=1

My−1

∑
i=1

wn
i,jv

n
i,j and ‖ wn ‖2 = (wn, wn). (43)

Lemma 1. [49] The matrix A⊗ B is symmetric positive definite with the condition that both
A ∈ Rn×n and B ∈ Rn×n satisfy symmetric positive definite. For ∀0 6= v ∈ Rn2

, it holds that:

vT(A⊗ B)v > 0. (44)
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Lemma 2. [50] For all A and B, (A⊗ B)T = AT ⊗ BT .

Lemma 3. For w, v ∈ Ωh ×Ωτ , it is straightforward to check that
(

δ2
xwk, vk

)
= −

(
δxwk, δxvk

)
with the zero-boundary conditions by applying integration by parts.

Lemma 4. [37] For the symbols cj in (35), define the vector S = [S1, S2, . . . , SN ]
T and constant P,

it holds that:

τ−α

Γ(2− α)

N

∑
k=1

[
c0Sk −

k−1

∑
j=1

(
ck−j−1 − ck−j

)
Sj − ck−1P

]
Sk ≥

T−α

2Γ(1− α)

N

∑
k=1

S2
k −

T1−α

2τΓ(2− α)
P2

5.1. Solvability

Theorem 2. Denote wn
i,j as the numerical solution of Equations (8)–(10) for i = 0, 1, · · · , Mx,

j = 0, 1, · · · , My and n = 0, 1, · · ·N, then (42) is uniquely solvable.

Proof. Denote the coefficient matrix G =
(

1
τ + M

)
E− ν(r1+1)

h2
x

E⊗ K1 − ν(r1+1)
h2

y
K2 ⊗ E.

Firstly, using Lemma 3, we have:

GT =

(
1
τ
+ M

)
ET − ν(r1 + 1)

h2
x

ET ⊗ KT
1 −

ν(r1 + 1)
h2

y
KT

2 ⊗ ET = G

Furthermore, the matrix G can simply be verified as strictly diagonally dominant. Then,
the matrix G is positive definite. Therefore, the numerical difference scheme has a unique
solution. �

5.2. Stability

Theorem 3. The scheme (41) possesses unconditional stability, which satisfies:

‖wN
i,j‖

2 ≤ T
2M

max
1≤n≤N

‖gn
i,j‖

2

Proof. Multiplying both sides of Equation (41) by τhxhywn
i,j, and summing i, j, n from 1 to

Mx − 1, 1 to My − 1, 1 to N, respectively, we derive the following equation:

τhxhy
Mx−1

∑
i=1

My−1

∑
i=1

N
∑

n=1
wn

i,j∇twn
i,j + Mτhxhy

Mx−1
∑

i=1

My−1

∑
i=1

N
∑

n=1
wn

i,jw
n
i.j − ντhxhy

Mx−1
∑

i=1

My−1

∑
i=1

N
∑

n=1
wn

i,j

(
δ2

xwn
i,j − δ2

ywn
i,j

)
− νλτ−α

Γ(2−α)
τhxhy

Mx−1
∑

i=1

My−1

∑
i=1

N
∑

n=1

(
c0δ2

xwn
i,j −

n−1
∑

k=1
(cn−k−1 − cn−k)δ

2
xwk

i,j − cn−1δ2
xw0

i,j

)
wn

i,j

− νλτ−α

Γ(2−α)
τhxhy

Mx−1
∑

i=1

My−1

∑
i=1

N
∑

n=1

(
c0δ2

ywn
i,j −

n−1
∑

k=1
(cn−k−1 − cn−k)δ

2
ywk

i,j − cn−1δ2
yw0

i,j

)
wn

i,j

= τhxhy
Mx−1

∑
i=1

My−1

∑
i=1

N
∑

n=1
wn

i,jg
n
i,j.

By applying the inequation a(a− b) ≥ 1
2
(
a2 − b2) and considering the zero initial

condition, the first term satisfies:

τhxhy
Mx−1

∑
i=1

My−1

∑
i=1

N
∑

n=1
wn

i,j∇twn
i,j ≥

1
2 hxhy

Mx−1
∑

i=1

My−1

∑
i=1

N
∑

n=1

[(
wn

i,j

)2
−
(

wn−1
i,j

)2
]

= 1
2 hxhy

Mx−1
∑

i=1

My−1

∑
i=1

[(
wN

i,j

)2
−
(

w0
i,j

)2
]
= 1

2

(
‖wN‖2 − ‖w0‖2

)
= 1

2‖wN‖2.
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Considering the relationship between the norm and inner product, the second term
yields

Mτhxhy

Mx−1

∑
i=1

My−1

∑
i=1

N

∑
n=1

wn
i,jw

n
i.j = Mτ

N

∑
n=1

(
wn

i,j, wn
i,j

)
= Mτ

N

∑
n=1
‖wn‖2

By using the Lemma 3, for the third term, we have

−ντhxhy
Mx−1

∑
i=1

My−1

∑
i=1

N
∑

n=1
wn

i,j

(
δ2

xwn
i,j + δ2

ywn
i,j

)
= ντhxhy

Mx−1
∑

i=1

My−1

∑
i=1

N
∑

n=1
δxwn

i,jδxwn
i,j + ντhxhy

Mx−1
∑

i=1

My−1

∑
i=1

N
∑

n=1
δywn

i,jδywn
i,j

= ντ
N
∑

n=1
‖δxwn‖2 + ντ‖δywn‖2 ≥ 0

By applying Lemma 4, the fourth term satisfies:

− νλτ−α

Γ(2−α)
τhxhy

Mx−1
∑

i=1

My−1

∑
i=1

N
∑

n=1

(
c0δ2

xwn
i,j −

n−1
∑

k=1
(cn−k−1 − cn−k)δ

2
xwk

i,j − cn−1δ2
xw0

i,j

)
wn

i,j

= νλτ−α

Γ(2−α)
τhxhy

Mx−1
∑

i=1

My−1

∑
i=1

N
∑

n=1

(
c0δxwn

i,j −
n−1
∑

k=1
(cn−k−1 − cn−k)δxwk

i,j − cn−1δxw0
i,j

)
δxwn

i,j

≥ νλτhxhy
Mx−1

∑
i=1

My−1

∑
i=1

[
T−α

2Γ(1−α)

N
∑

n=1

(
δxwn

i,j

)2
− T1−α

2τΓ(2−α)

(
δxw0

i,j

)2
]

= νλτT−α

2Γ(1−α)

N
∑

n=1
‖δxwn‖2 − νλT1−α

2Γ(2−α)
‖δxw0‖2 ≥ 0.

Similarly, for the fifth term, it satisfies

− νλτ−α

Γ(2− α)
τhxhy

Mx−1

∑
i=1

My−1

∑
i=1

N

∑
n=1

(
c0δ2

ywn
i,j −

n−1

∑
k=1

(cn−k−1 − cn−k)δ
2
ywk

i,j − cn−1δ2
yw0

i,j

)
wn

i,j ≥ 0.

By using the Cauchy–Schwartz inequality, the last term changes as:

τhxhy

Mx−1

∑
i=1

My−1

∑
i=1

N

∑
n=1

wn
i,jg

n
i,j = τ

N

∑
n=1

(
wn

i,j, gn
i,j

)
≤ Mτ

N

∑
n=1
‖wn‖2 +

τ

4M

N

∑
n=1
‖gn‖2.

As a conclusion, we deduce:

‖wN‖2 ≤ τ

2M

N

∑
n=1
‖gn‖2 ≤ T

2M
max

1≤n≤N
‖gn‖2.

�

5.3. Convergence

Define the error en
i,j = wn

i,j − w
(
xi, yj, tn

)
. Taking the difference between the

Equations (40) and (41), we deduce that the error satisfies:

∇ten
i,j + Men

i.j − νδ2
xen

i,j − νδ2
yen

i,j

= νλ τ−α

Γ(2−α)

(
c0δ2

xen
i,j −

n−1
∑

k=1
(cn−k−1 − cn−k)δ

2
xek

i,j − cn−1δ2
xe0

i,j

)
+νλ τ−α

Γ(2−α)

(
c0δ2

yen
i,j −

n−1
∑

k=1
(cn−k−1 − cn−k)δ

2
yek

i,j − cn−1δ2
ye0

i,j

)
+ O

(
τ + h2

x + h2
y

)
.

(45)



Fractal Fract. 2022, 6, 666 12 of 23

Theorem 4. The scheme (41) is convergent with the following form:

‖eN‖2 ≤ T
2M

(
τ + h2

x + h2
y

)2
. (46)

Proof. Similar to the proof of the stability, substituting the source term with the error, we
have:

‖eN‖2 ≤ τ

2M

N

∑
n=1

(
τ + h2

x + h2
y

)2
=

T
2M

(
τ + h2

x + h2
y

)2
. (47)

�

6. Acceleration of the Fractional Derivative

The traditional treating method for the fractional derivative is to use the L1 scheme
with an expensive cost of computation and storage due to the non-locality that the fractional
derivative contains. The difference scheme at t = tn contains a summation of all values
from zero to the current time and the total cost at every spatial point is O

(
N2). To reduce

the computational and storage cost, a fast algorithm [38] is applied. Here we summarized
the main idea of the fast algorithm.

The definition of Caputo’s fractional derivative of order 0 < α < 1 can be expressed as
the summation of two terms, a local part Cl(tn) and a history part Ch(tn):

CDα
t w(t)

∣∣
t=tn

= 1
Γ(1−α)

∫ tn
0 (tn − s)−α ∂w(s)

∂s ds

= 1
Γ(1−α)

∫ tn
tn−1

1
(tn−s)α

∂w(s)
∂s ds + 1

Γ(1−α)

∫ tn−1
0

1
(tn−s)α

∂w(s)
∂s ds

:= Cl(tn) + Ch(tn).

(48)

For the local portion, we approximate ∂w(s)
∂s by w(tn)−w(tn−1)

τ , yields

Cl(tn) ≈
w(tn)− w(tn−1)

τΓ(1− α)

∫ tn

tn−1

ds
(tn − s)α =

w(tn)− w(tn−1)

ταΓ(2− α)
. (49)

We employ the integration by parts for the history part

Ch(tn) =
1

Γ(1− α)

[
w(tn−1)

τα
− w(t0)

tα
n
− α

∫ tn−1

0

w(s)

(tn − s)α+1 ds

]
. (50)

Treating the kernel 1
tα+1 in the convolution integral is the key. Referring to [38], for any

time interval [τ, T], the kernel 1
tα+1 can be approached by an efficient sum-of-exponentials

approximation with a prescribed absolute error ε. Specifically speaking, there are real
positive numbers wl and sl (l = 1, · · · , Nexp) such that∣∣∣∣∣ 1

tα+1 −
Nexp

∑
l=1

ωle−sl t

∣∣∣∣∣ ≤ ε, for any t ∈ [τ, T], (51)

where Nexp is of the order

Nexp = O
(

log
1
ε

(
log log

1
ε
+ log

T
σ

)
+ log

1
σ

(
log log

1
ε
+ log

1
σ

))
. (52)

Equation (4) is the main idea for the fast algorithm. The sum-of-exponentials approxi-
mation for the kernel 1

tβ can also be generalized for the order 0 < α < 2 [38,51].
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We substitute the kernel 1
tα+1 via the formular (51) to approximate the history portion as:

Ch(tn) ≈
1

Γ(1− α)

[
w(tn−1)

τα
− w(t0)

tα
n
− α

Nexp

∑
l=1

wlWhis,l(tn)

]
, (53)

where Whis,l(tn) =
∫ tn−1

0 e−(tn−t)sl w(t)dt.

The function Whis,l(tn) is calculated for n = 1, 2, · · · , N and the following recurrent
relationship is derived

Whist,l(tn) = e−sl τWhist,l(tn−1) +
∫ tn−1

tn−2

e−sl(tn−τ)w(τ)dτ, Whist,l(t0) = 0. (54)

The integral in (54) could be rewritten as:

∫ tn−1

tn−2

e−sl(tn−τ)w(τ)dτ ≈ e−sl τ

s2
l τ

[(
e−sl τ − 1 + slτ

)
wn−1 +

(
1− e−sl τ − e−sl τslτ

)
wn−2

]
. (55)

To compute Whis,i(tn), as Equation (55) indicates, Whis,i(tn−1) is already computed
and stored and the cost is needed by only O(1) at each step. As (6.4) indicates, the cost
to evaluate the fractional derivative is needed O

(
Nexp

)
at each time step. That is to say, a

reduction from O(N) to O(log N) or O
(

log2 N
)

.
As a summation, the fast evolution of the Caputo’s fractional derivative at t = tn is

given as:

FDα
t w(x, y, tn) =

Wn −Wn−1

ταΓ(2− α)
+

1
Γ(1− α)

[
Wn−1

τα
− W0

tα
n
− α

Nexp

∑
l=1

ωlWhist,l(tn)

]
+ R1, (56)

where |R1| ≤ C
(
τ2−α + ε

)
and the recurrence relation satisfies (6.7) and (6.8).

Combining (56) and (37), we have:

∂α

∂tα

∂2

∂x2 wn
i,j =

δ2
xwn

i,j − δ2
xwn−1

i,j

ταΓ(2− α)
+

1
Γ(1− α)

[
δ2

xwn−1
i,j

τα
−

δ2
xw0

i,j

tα
n
− α

Nexp

∑
l=1

ωlδ
2
xwhist,l(tn)

]
, (57)

∂α

∂tα

∂2

∂y2 wn
i,j =

δ2
ywn

i,j − δ2
ywn−1

i,j

ταΓ(2− α)
+

1
Γ(1− α)

[
δ2

ywn−1
i,j

τα
−

δ2
yw0

i,j

tα
n
− α

Nexp

∑
l=1

ωlδ
2
ywhist,l(tn)

]
, (58)

where δ2
xwhist,l(tn) = e−sl τδ2

xwhist,l(tn−1) +
∫ tn−1

tn−2
e−sl(tn−τ)δ2

xw(τ)dτ, δ2
xwhist,l(t0) = 0,∫ tn−1

tn−2
e−sl(tn−τ)δ2

xw(τ)dτ ≈ e−siτ

s2
i τ

[
(e−siτ − 1 + siτ)δ

2
xwn−1 + (1− e−siτ − e−siτsiτ)δ

2
xwn−2],

δ2
ywhist,l(tn) = e−sl τδ2

ywhist,l(tn−1) +
∫ tn−1

tn−2
e−sl(tn−τ)δ2

yw(τ)dτ, δ2
ywhist,l(t0) = 0,∫ tn−1

tn−2
e−sl(tn−τ)δ2

yw(τ)dτ ≈ e−siτ

s2
i τ

[
(e−siτ − 1 + siτ)δ

2
ywn−1 + (1− e−siτ − e−siτsiτ)δ

2
ywn−2

]
.

By a combination, we deduce the final difference scheme:(
1
τ + M

)
wn

i,j −
νr2
h2

x

(
wn

i+1,j − 2wn
i,j + wn

i−1,j

)
− νr2

h2
y

(
wn

i,j+1 − 2wn
i,j + wn

i,j−1

)
= 1

τ wn−1
i,j + νλ

τα

(
1

Γ(1−α)
− 1

Γ(2−α)

)(
δ2

xwn−1
i,j + δ2

ywn−1
i,j

)
− νλ

Γ(1−α)tα
n

(
δ2

xw0
i,j + δ2

yw0
i,j

)
− νλα

Γ(1−α)

Nexp

∑
l=1

ωl

[
δ2

xwhist,l(tn) + δ2
ywhist,l(tn)

]
+ gn

i,j,

(59)

where r2 = λ
ταΓ(2−α)

+ 1.
The discretization scheme (59) can be rewritten in a matrix form:
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[(
1
τ + M

)
E− νr2

h2
x

E⊗ K1 − νr2
h2

y
K2 ⊗ E

]
wn

=
[

1
τ E + νλ

τα

(
1

Γ(1−α)
− 1

Γ(2−α)

)
(E⊗ K1 + K2 ⊗ E)

]
wn−1 + gn

− νλ
Γ(1−α)tα

n
(E⊗ K1 + K2 ⊗ E)w0 − ανλ

Γ(1−α)

Nexp

∑
l=1

ωl

[
δ2

xwhist,l(tn) + δ2
ywhist,l(tn)

]
.

(60)

7. Results and Discussion

Example 1. (Verification of the discretization scheme).

The governing equation is solved numerically that the fractional derivative is dis-
cretized by the traditional L1 difference method and the fast algorithm. How to verify the
correctness of the difference method is the key. As Section 3 indicates, the exact solution is
complicated. As a modification, a source term is introduced and the governing equation
changes as:

∂w
∂t

= ν

(
1 + λ

Dα

Dtα

)(
∂2w
∂x2 +

∂2w
∂y2

)
−Mw + f (x, y, t), (61)

with the initial distribution and the boundary distributions:

w(x, y, 0) = 0, (62)

w(±1, y, t) = w(x,±1, t) = 0. (63)

Define an exact solution for (61)–(63) as: w(x, y, t) = (x− 1)2(x + 1)2(y− 1)2(y + 1)2t2,
the expression of the source term can be deduced:

f (x, y, t) = (x− 1)2(x + 1)2(y− 1)2(y + 1)2t(2 + Mt)
−4νt2

(
2λ

Γ(3−α)
t−α + 1

)[(
3x2 − 1

)
(y− 1)2(y + 1)2 +

(
3y2 − 1

)
(x− 1)2(x + 1)2

]
.

(64)

Figure 2 presents the three-dimensional comparison behavior between the numerical
and exact expressions. Obviously, the distribution of the numerical solution is basically
the same as that of the exact solution, showing a bell-shaped curve that is high in the
middle and low at both ends. Tables 1 and 2 show the maximum error with the form
E
(
hx, hy, τ

)
= max

0≤i≤Mx ,0≤j≤My

∣∣∣en
i,j

∣∣∣, the convergence order for space with rs = log2
E(hx ,hy ,τ)

E(hx/2,hy/2,τ)
,

for time with rt = log2
E(hx ,hy ,τ)

E(hx ,hy ,τ/2)
and the computational time between the classical dif-

ference scheme and the fast scheme. The two tables show that the error is very small
when verifying the accuracy of the numerical scheme and the accuracy is O

(
h2

x + h2
y + τ

)
,

which is consistent with the analysis in the convergence in Theorem 3. Furthermore, the
computational time indicates that the superiority of the fast scheme is that it can greatly
reduce the calculation time without affecting the total accuracy.
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Figure 2. The three-dimensional comparison of velocity distributions for α = 0.5, M = 0.5
and λ = 0.1.

Table 1. The error and convergence order for space and the comparison of computational time
between the finite difference scheme and the fast scheme when α = 0.5, M = 1, ν = 1 and λ = 0.1.

Normal L1 Method Fast Algorithm

τ=1/20000 Error Order Time (s) Error Order TIME (s)

hx = hy = 1/22 1.4745× 10−1 1.4745× 10−1 6.58

hx = hy = 1/23 3.6738× 10−2 2.00 317.32 3.6738× 10−2 2.00 8.78

hx = hy = 1/24 9.1903× 10−3 2.00 2737.48 9.1903× 10−3 2.00 14.61

hx = hy = 1/25 2.3032× 10−3 2.00 16,424.92 2.3032× 10−3 2.00 43.06

hx = hy = 1/26 5.8123× 10−4 1.99 59,840.35 5.8123× 10−4 1.99 185.47

Table 2. The error and convergence order for time and the comparison of computational time between
the finite difference scheme and the fast scheme when α = 0.5, M = 1, ν = 1 and λ = 0.1.

Normal Scheme Fast Scheme

hx=hy=1/640 Error Order Time (s) Error Order Time (s)

τ = 1/22 3.9307× 10−2 2749.74 3.9307× 10−2 6.83

τ = 1/23 1.9424× 10−2 1.02 2851.14 1.9424× 10−2 1.02 14.90

τ = 1/24 9.5638× 10−3 1.02 3057.22 9.5638× 10−3 1.02 33.67

τ = 1/25 4.7173× 10−3 1.02 3579.91 4.7173× 10−3 1.02 70.72

τ = 1/26 2.3347× 10−3 1.01 4622.72 2.3347× 10−3 1.01 147.05

Example 2. The effects of the dynamic parameters on the distributions of velocity and shear force
subject to various pressure with cosine forms.

Figures 3–5 show the distribution of the velocity and shear force at x = 0 (wall surface)
with oscillating pressure gradient versus time with the form − 1

ρ
∂p
∂z = cos(t + 1) when we

choose ν = 1. The influences of the retardation time parameter on the velocity distributions
and the distribution of shear force at the wall are shown in Figure 3. For λ = 0, the
influences of the retardation time disappear. With the appearance of the retardation time
parameter, the big difference is that the overall distribution becomes lower with the physical,
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meaning that the retardation time parameter reflects a relaxation characteristic in slowing
down the velocity propagation and decreasing the magnitude of the shear force at the
wall. It can be concluded that a bigger the retardation time parameter corresponds to a
larger the relaxation characteristic. The magnetic parameter has important impacts on
the distributions of velocity and the shear force. The parameter M = 0 indicates that
the influence of the magnetic parameter is not considered. As shown in Figure 4, the
consideration of the magnetic field makes the distribution at a fixed position smaller, and
the value of the distribution becomes smaller when the magnetic parameter becomes bigger.
The fractional parameter makes the velocity transport consider the memory characteristic.
Figure 5 shows that the value of the distribution becomes smaller with an increase of
fractional parameter.
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Figure 4. The influences of magnetic parameter on the velocity distribution and the shear force τxz at
the wall surface for α = 0.5, λ = 0.1 and − 1

ρ
∂p
∂z = cos(wt + 1).

The oscillatory frequency has important impacts on velocity distributions and the
shear force distributions. Consider − 1

ρ
∂p
∂z = cos(wt + 1), the three-dimensional velocity

distributions and shear force distributions versus y and t with the effects of frequency are
exhibited in Figures 6 and 7, respectively. For w = 0, the pressure is constant and the
time parameter (for t > 0) has no effects on the distributions. For w 6= 0, the distributions
present as an oscillatory form and the bigger the frequency parameter is, the stronger
the oscillatory character of the distributions will be. To discuss the effects of the various
pressures with the space oscillatory flow, we consider − 1

ρ
∂p
∂z = cos(wz + 1) with different

w. The effects of frequency parameter on the velocity distributions and the shear force
distributions versus x and z are respectively exhibited in Figures 8 and 9. Similarly, the
distribution curve shows that the distribution exhibits as a normal form for w = 0. For
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w 6= 0, the distribution presents as an oscillatory form. Finally, the bigger the frequency
parameter, the stronger is the oscillation of the distribution curve.
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Figure 7. The three-dimensional distribution for shear force versus y and t with various
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ρ
∂p
∂z = cos(wt + 1) for different w = 0, 1, 2, 3

for α = 0.5, λ = 0.1 and M = 1.
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Figure 9. The three-dimensional distribution for shear force versus y and z with various
oscillatory pressure with cosine form versus space − 1

ρ
∂p
∂z = cos(wz + 1) for different w = 0, 1, 2, 3 for

α = 0.5, λ = 0.1 and M = 1.

8. Conclusions

This paper considered the motion of fractional second-grade fluid in a straight rect-
angular duct. Both the analytical solution and the numerical solution were obtained. For
faster computation, a fast scheme was proposed. Two examples were given. One illustrated
the accuracy of the numerical solution and the advantage of the fast scheme. The other
discussed the impacts of the involved parameters on the velocity distributions and the
shear force at the wall surface. The results show that the retardation time parameter plays
a role in a relaxation characteristic. The magnetic parameter and fractional parameter with
the memory characteristic made the distribution of velocity and shear force become slower.
The oscillation of the pressure versus space and time made the distribution present as an
oscillatory form and for a larger frequency parameter, the oscillation of the distribution
was stronger.
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Appendix A

The expanded form of (3) is given as:

A1 = ∇V + (∇V)T =

 0 0 0
0 0 0

∂w
∂x

∂w
∂y 0

+

0 0 ∂w
∂x

0 0 ∂w
∂y

0 0 0

 =

 0 0 ∂w
∂x

0 0 ∂w
∂y

∂w
∂x

∂w
∂y 0

,

A2 = Dα
t A1 + A1∇V + (∇V)T A1

=

 0 0 Dα
t

∂w
∂x

0 0 Dα
t

∂w
∂y

Dα
t

∂w
∂x Dα

t
∂w
∂y 0

+


(

∂w
∂x

)2
∂w
∂x

∂w
∂y 0

∂w
∂x

∂w
∂y

(
∂w
∂y

)2
0

0 0 0

+


(

∂w
∂x

)2
∂w
∂x

∂w
∂y 0

∂w
∂x

∂w
∂y

(
∂w
∂y

)2
0

0 0 0



=


2
(

∂w
∂x

)2
2 ∂w

∂x
∂w
∂y Dα

t
∂w
∂x

2 ∂w
∂x

∂w
∂y 2

(
∂w
∂y

)2
Dα

t
∂w
∂y

Dα
t

∂w
∂x Dα

t
∂w
∂y 0

.

Then the expression for the shear force is obtained

τ = µA1 + α1 A2 + α2 A2
1

=


α1

(
∂w
∂x

)2
α1

∂w
∂x

∂w
∂y (µ + α1Dα

t )
∂w
∂x

α1
∂w
∂x

∂w
∂y α1

(
∂w
∂y

)2
(µ + α1Dα

t )
∂w
∂y

(µ + α1Dα
t )

∂w
∂x (µ + α1Dα

t )
∂w
∂y α2

[(
∂w
∂x

)2
+
(

∂w
∂y

)2
]
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