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Abstract: In this paper, we investigate the exact and approximate controllability, finite time stability,
and β–Hyers–Ulam–Rassias stability of a fractional order neutral impulsive differential system. The
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Grönwall inequality is used to study the finite time stability and β–Hyers–Ulam–Rassias stability.
Finally, the main results are verified with the help of an example.
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1. Introduction

Fractional dynamical systems are systems that contain fractional differential equations
of non-integer derivatives. Such systems are used to analyze fractional dynamics. Integrals
and derivatives of fractional orders are used to illustrate objects that can be described by
power-law non-locality, power-law long-range dependence, or fractal properties. Fractional
order systems are useful in investigating the rules of dynamical systems in electrochemistry,
physics, viscoelasticity, biology, and chaotic systems. In the past few decades, the growth of
science and engineering systems has considerably stimulated the employment of fractional
calculus in many subjects of the control theory, for example in stability, stabilization,
controllability, observability, observer design, and fault estimation. In fact, the use of
fractional calculus can improve and generalize well-established control methods. A variety
of results have been established for the controllability of nonlinear fractional systems [1–9].

On the other hand, the stability theory of differential equations plays a vital role
in the qualitative analysis of differential systems. There are different types of stability.
Among these, one of the most important types is Hyers–Ulam stability (HUR) which was
introduced by Ulam in 1940 and then generalized by Rassias in 1978 as Hyers–Ulam–
Rassias stability (HURS). As this type of stability guarantees a bound between the exact
and approximate solutions, it is often required in a variety of applications, including
optimization, approximation, and numerical analysis; for more detals, we refer interested
readers to [10–18]. Another important type of stability is finite time stability (FTS), which
was first presented in 1953 [19]. It is concerned with the behavior of a system in a specified
time interval. In order to extract sufficient conditions for FTS, researchers can employ the
Lyapunov technique, characteristic equation method, or Grönwall approach [20–30].

Nawaz et al. [31] derived conditions for the controllability of a fractional differential
system with control and state delay. Li and Wang [32] considered an explicit solution
formula and derived the controllability criteria for a differential system with delay in the
state. Sakthivel et al. [33] investigated fractional differential systems for approximate
controllability. Their results were established by assuming the associated linear system to
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be approximately controllable. Denghao and Wei [34] studied the finite time stability of a
neutral fractional system with time delay of the following form:{

CDδ
0ς(µ) = H0ς(µ) +H1ς(µ− h) +H2

CDδ
0ς(µ− h), µ ∈ [0, τ],

ς(µ) = φ(µ), µ ∈ [−h, 0],

where CDδ
0 provides the Caputo fractional derivative of order δ, ς(µ) ∈ Rn,H0,H1,H2 are

system matrices of suitable dimensions, h > 0 represents the delay term which depends on
past history, and φ(µ) denotes a continuously differentiable function on [−h, 0].

Motivated by the aforementioned works, in this paper we investigate a neutral impulsive
and delay system for controllability and stability analysis, which takes the following form:

CDδ
0ς(µ) = H0ς(µ) +H1ς(µ− h) + Bv̂(µ) +H2

CDδ
0ς(µ− h) + z(µ, ς), µ ∈ [0, τ], µ 6= µk,

ς(µ) = φ(µ), µ ∈ [−h, 0],
ς(µ+

k ) = ς(µ−k ) + Ik(µ, ς(µ−k )), k = 1, 2, . . . , m,

(1)

where τ is a fixed number. Here, for k ∈ M = {1, 2, . . . , m}, µk satisfies
0 < µ1 < µ2 < . . . < µm. In addition, H0 is the infinitesimal generator of a C0 semi-
group T (µ) on a Banach space Z,H1 andH2 are bounded linear operators, B is a bounded
linear operator from U into Z, the control parameter v̂ is provided in L2(I, U), U is a Banach
space, z(µ, ς) : [0, τ]× Z → Z, and Ik(µ, ς(µ−k )) : [0, τ]× Z → Z are given functions, which
satisfy certain assumptions in the following sections. FTS has been thoroughly researched
by scholars using various methodologies; however, the present study uses the generalized
Grönwall approach. To the best of our knowledge, this is the first time that a the neutral
impulsive fractional system has been investigated in the sense of β–HURS and FTS.

The rest of this paper is organized as follows. Section 2 presents the preliminaries
and hypothesis. Section 3 provides results for the controllability of system (1). Section 4
deals with the stability analysis, while Section 5 provides a valid example. Finally, Section 6
briefly summarizes the outcomes.

2. Preliminaries

Consider the space of all continuous functions C(I, Z), where I = [0, τ] ⊆ R, endowed
with the norm:

||ς||C = sup
µ∈I
{||ς(µ)||, for all ς ∈ C(I, Z)}.

In addition, consider the Banach space

PC(I, Z) :=
{

ς : I→ Z, ς ∈ C((µk, µk+1), Z), k = 0, 1, . . . , m
}

with norm defined by

||ς||PC = sup
{
||ς(µ)||, for all µ ∈ I

}
.

Definition 1. For any linear space Z over a field F, ‖ · ‖β : Z → [0, ∞) is said to be β-norm if:

(i) ‖ς‖β = 0 if ς = 0;
(ii) ‖$ς‖β = |$|β‖ς‖β, for any ς ∈ Z with $ ∈ F;
(iii) ‖ς + ξ‖β ≤ ‖ς‖β + ‖ξ‖β.

The space under consideration is then a Pβ-Banach space associated with norm
‖ς‖Pβ

= sup{‖ς(µ)‖β}.

Definition 2 ([35]). The fractional integral, in the Riemann-Liouville sense, of order δ ∈ R+

with a lower limit zero of a function z ∈ L1(I,R+), is provided by

Iδ
0 z(µ) =

1
Γ(δ)

∫ µ

0
(µ− s)δ−1z(s)ds,
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where
Γ(δ) =

∫ ∞

0
µδ−1e−µdµ, δ > 0.

Definition 3 ([35]). For a function z ∈ Cn((0, ∞),R), the Caputo derivative of a fractional
order δ ∈ R+ is defined as

CDδ
0z(µ) =

1
Γ(n− δ)

∫ µ

0
(µ− s)n−δ−1z(n)(s)ds,

where n = [δ] + 1, in which [δ] represents the integer part of δ and Cn((0, ∞),R) is the
space of all n-times continuously differentiable functions from (0, ∞) to R.

Lemma 1 ([35]). The general solution of the fractional differential equation of the order δ > 0 with
the form

CDδ
0z(µ) = β(µ),

is provided by

Iδ
0 [

CDδ
0z(µ)] = Iδ

0 β(µ) + K0 + K1µ + K2µ2 + · · ·+ Kn−1µn−1,

where n = [δ] + 1 and Ki ∈ R, i = 0, 1, 2, . . . , n− 1.

Remark 1 ([34]). Using Lemma 1 and applying the integral on both sides of (1), the solution can
be expressed in the form of the equivalent volterra integral equation

ς(µ) =φ(0) +H2(ς(µ− h)− ς(−h)) +
1

Γ(δ)

∫ µ

0
(µ− s)δ−1(H0ς(s) +H1ς(s− h)

+ Bv̂(s) + z(s, ς))ds +
m

∑
r=1

Ir(µk, ς(µk)). (2)

Proceeding with the method followed by [36], the mild solution of System (1) (referring to [37],
Definition 7) can be presented as follows:

ς(µ) =


Pδ(µ)(φ(0)−H2ς(−h)) +H2ς(µ− h)
+
∫ µ

0 (µ− s)δ−1Qδ(µ− s)[H1ς(s− h) + Bv̂(s) + z(s, ς(s− h))]ds
+∑0<µk<µ Pδ(µ− µk)Ik(ς(µk)), µ ∈ [0, τ],

φ(µ), µ ∈ [−h, 0].

(3)

where

Pδ(µ) =
∫ ∞

0
ξδ(θ)T (µδθ)dθ, Qδ(µ) = δ

∫ ∞

0
θξδ(θ)T (µδθ)dθ,

ξδ(θ) =
1
π

∞

∑
n=1

(−1)n−1θ−nδ−1 Γ(nδ + 1)
n!

sin(nπδ), θ ∈ (0, ∞).

Lemma 2 ([38]). The operatorsPδ(µ), Qδ(µ) appearing in Definition 1 have the following properties:

(i) For any µ ≥ 0, the operators Pδ(µ) and Qδ(µ) are linear. Moreover, if
supµ≥0‖T (µ)‖ ≤ K, then the operators Pδ(µ) and Qδ(µ) are bounded, i.e., for any ς ∈ Z,
there holds

‖Pδ(µ)ς‖ ≤ K‖ς‖, ‖Qδ(µ)ς‖ ≤
K

Γ(δ)
‖ς‖.

(ii) Operators Pδ(µ)(µ ≥ 0) and Qδ(µ)(µ ≥ 0) are strongly continuous, i.e., for all ς ∈ Z and
0 ≤ µ1 ≤ µ2 ≤ τ, we have

‖Pδ(µ1)ς−Pδ(µ2)ς‖ → 0, ‖Qδ(µ1)ς−Qδ(µ2)ς‖ → 0, as µ1 → µ2.
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(iii) For µ > 0, Pδ(µ) and Qδ(µ) are compact operators if T (µ) is compact.

Definition 4 (Exact Controllability [27]). System (1) is known to be exactly controllable on
[0, τ] if, for every φ ∈ C([−h, 0]; Z), and ς1 ∈ PC(I, Z), there exists ṽ ∈ PC(I, U) such that the
solution ς(µ) of (1) corresponding to ṽ satisfies ς(0) = φ(0) and ς(τ) = ς1.

Definition 5 (Approximate Controllability [39]). System (1) is called approximately controllable
on [0, τ] if, for every φ ∈ C([−h, 0]; Z), ς1 ∈ PC(I, Z), and ε ≥ 0, there exists ṽ ∈ PC(I, U)
such that the corresponding solution ς(µ) of (1) satisfies ς(0) = φ(0) and ‖ς(τ)− ς1‖Z ≤ ε.

Remark 2 ([40]). A semilinear impulsive system is exactly controllable if, for any initial condition
ς0 and final condition ς1, we are able to find a control ṽ such that the operator F defined by the
right side of the system solution has a fixed point.

Definition 6 (Finite time stability). For a system to be finite time stable with respect to {0, [0, τ], q,
η, ε}, η < ε, the following criteria must be fulfilled:

‖φ(µ)‖ ≤ η, and ‖υ̂(µ)‖ ≤ qυ̂, ∀µ ∈ [0, τ],

which implies that
‖ς(µ)‖ ≤ ε, ∀µ ∈ [0, τ],

where η, ε ∈ [0, ∞].

Definition 7 (β–Hyers Ulam–Rassias stability). System (1) is said to be β–HUR stable with respect
to (ψβ, ϕβ) if we can find a positive constantZz,ϕ,β such that for any solution ς ∈ PC(I, Z)∩ C(I, Z)
of (11) and any ε > 0 there exists a solution y of system (1) in PC(I, Z) satisfying

||y(µ)− ς(µ)||β ≤ Zz,ϕ,βεβ
(

ϕβ(µ) + ψβ
)

, µ ∈ I.

Lemma 3 (Grönwall lemma [41]). For µ ≥ 0 with

v̂(µ) ≤ q(µ) +
∫ µ

0
p(x)v̂(x)dx + ∑

0<µk<µ

γr v̂(µ−k ), (4)

where γ > 0 and q is nondecreasing, it is the case that for µ ∈ R+, we have

v̂(µ) ≤ q(µ)
(

1 + γk

)k
exp

( ∫ µ

0
p(x)dx

)
, where k ∈ M. (5)

Remark 3. If we replace γk with γk(µ), then

v̂(µ) ≤ q(µ) ∏
0<µk<µ

(
1 + γk(µ)

)
exp

( ∫ µ

0
p(x)dx

)
, where k ∈ M. (6)

Lemma 4 (Generalized Grönwall Inequality [34]). Suppose ς(µ), a(µ) are non-negative and
locally integrable on 0 ≤ µ < τ, g(µ) ≤ K = constant, and δ > 0 with

ς(µ) ≤ a(µ) + g(µ)
∫ µ

0
(µ− s)δ−1ς(s)ds (7)

on this interval; then,

ς(µ) ≤ a(µ) + g(µ)
∫ µ

0

[ ∞

∑
n=1

(g(µ)Γ(δ))n

Γ(nδ)
(µ− s)nδ−1a(s)

]
ds, 0 ≤ µ < τ. (8)
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Corollary 1. Let a(µ) be a non decreasing function on [0, τ); then,

ς(µ) ≤ a(µ)Eδ(g(µ)Γ(δ)µδ)

where Eδ = ∑∞
k=0

xk

Γ(kβ+1) , x ∈ C, Re(β) > 0.

Lemma 5 ([42]). Let ς ∈ PC(I, Z) satisfy the following inequality:

‖ς(µ)‖ ≤ c1(µ) + c2

∫ µ

0
(µ− s)q−1‖ς(s)‖ds + ∑

0<µk<µ

Ik‖ς(µk)‖,

where c1(µ) is non-negative continuous on I, and c2, θk are constants. Then,

‖ς(µ)‖ ≤ c1(µ)(1 + IEβ(c2Γ(β)µβ))kEβ(c2Γ(β)µβ), f or µ ∈ (µk, µk+1].

Definition 8. The function f : U → Z is called a contraction if, for every ς, Θ ∈ U, there exists a
constant 0 ≤ k < 1 such that

d( f (ς), f (Θ)) ≤ kd(ς, Θ),

where (U, d) is a metric space.

3. Controllability

The exact and approximate controllability of the fractional neutral system are proved
in this section. Before stating our main results, the following conditions are imposed:
[C1]: The semigroup T (µ) generated by H0 is uniformly bounded on Z, i.e., there is a
constant K > 0 such that supµ∈[0,∞) ‖T (µ)‖ ≤ K.
[C2]: The nonlinear function z(µ, ς) is continuous in µ for all ς ∈ Z, while ∃ is a positive
constant Lz such that

‖z(µ, ς)− z(µ, y)‖ ≤ Lz‖ς− y‖,

for all ς, y ∈ Z.
[C3]: There exist constants LIk , k = 0, 1, · · · , such that

‖Ik(µ, ς)− Ik(µ, y)‖ ≤ LIk‖ς− y‖, ∀ς, y ∈ Z

and ∑m
k=1 LIk = LI.

[C4]: The function z : I× Z → Z is uniformly bounded, and ∃ N > 0 such that ‖z(µ, ς)‖ ≤
N for all (µ, ς) ∈ I× Z.
[C5]: Qδ(µ) is compact.
[C6]: The following inequalities hold:

(
σ2 +K

{ σ01

Γ(δ)

√
τ2δ−1

2δ− 1
+ LI

})
<

1
2

and (
σ2 +K

{σ01 + Lz

Γ(δ)

√
τ2δ−1

2δ− 1
+ LI

})
<

1
2

.

3.1. Exact Controllability

We define the operator F by

(Fς)(µ) =


Pδ(µ)(φ(0)−H2ς(−h)) +H2ς(µ− h) +

∫ µ
0 (µ− s)δ−1Qδ(µ− s)[H0ς(s) +H1ς(s− h)

+Bv̂(s) + z(s, ς(s− h))]ds + ∑0<µk<µ Pδ(µ− µk)Ik(ς(µk)), µ ≥ 0,
φ(µ), −h ≤ µ ≤ 0.

(9)
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In view of Remark 2, the problem of finding the exact controllability is reduced to
finding a fixed point for F . This is achieved with the help of Banach contraction mapping.

Theorem 1. Let conditions [C1]− [C3] hold true. Then, for a given control function v̂(·) ∈ U, the
problem (1) is exactly controllable on C([−h, τ]; Z).

Proof. Step 1: Consider the sphere Bk = {ς(·) ∈ C([−h, τ], Z) : ‖ς‖ ≤ R} such that

max{‖φ‖,K(1 + σ2)‖φ‖+
K

Γ(δ)

[√ τ2δ−1

2δ− 1
KB‖v̂‖+

Lzτδ

δ

]
} ≤ R

2
.

We can show that F (Bk) ⊂ Bk. If µ ∈ [−h, 0), it is readily obtainable that ‖Fς‖ = ‖φ‖ ≤
R. For any ς ∈ Bk, if µ ∈ [0, τ], then under assumption [C2] and per Lemma 2(i) we have

‖(Fς)(µ)‖ ≤‖Pδ(µ)‖‖(φ(0)−H2ς(−h))‖+ ‖H2ς(µ− h)‖+
∫ µ

0
(µ− s)δ−1‖Qδ(µ− s)‖

∥∥∥{H0ς(s) +H1ς(s− h)

+ Bv̂(s) + z(s, ς(s))
}∥∥∥ds + ∑

0<µk<µ

‖Pδ(µ− µk)‖‖Ik(ς(µk))‖

Let σ0 = ‖H0‖, σ1 = ‖H1‖, σ2 = ‖H2‖, σ01 = max{‖H0‖, ‖H1‖}, then

‖(Fς)(µ)‖ ≤K‖φ(0)‖+Kσ2‖ς(−h)‖+ σ2‖ς(µ− h)‖+ K
Γ(δ)

[
KB

∫ µ

0
(µ− s)δ−1‖v̂(s)‖ds

+ (σ0 + σ1)
∫ µ

0
(µ− s)δ−1‖ς(s− h)‖ds + Lz

∫ µ

0
(µ− s)δ−1ds

]
+KLI‖ς(µ)‖

≤K(‖φ(0)‖+ σ2‖φ(−h)‖) + σ2R +
K

Γ(δ)

[√ τ2δ−1

2δ− 1

(
KB‖v̂‖+ σ01R

)
+KLIR +

Lzτδ

δ

]
≤K(1 + σ2)‖φ‖+

K
Γ(δ)

[√ τ2δ−1

2δ− 1
KB‖v̂‖+

Lzτδ

δ

]
+
[
σ2 +

Kσ01

Γ(δ)

√
τ2δ−1

2δ− 1
+KLI

]
R

≤κ +
(

σ2 +K
{ σ01

Γ(δ)

√
τ2δ−1

2δ− 1
+ LI

})
R,

where

κ = K(1 + σ2)‖φ‖+
K

Γ(δ)

[√ τ2δ−1

2δ− 1
KB‖v̂‖+

Lzτδ

δ

]
.

In view of the definition of R and condition [C6], we obtain ‖(Fς)(µ)‖ ≤ R. Therefore,
F maps the ball Bk of radius R into itself.

Step 2: We now show that F is a contraction mapping on C([−h, τ]; Z). If µ ∈ [−h, 0),
the claim is obviously valid. If µ ∈ [0, τ], then for any ς, y ∈ C([−h, τ]; Z), it follows from
assumption (C2) that we have
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‖Fς(µ)−Fy(µ)‖ ≤‖H2ς(µ− h)−H2y(µ− h)‖+
∫ µ

0
(µ− s)δ−1‖Qδ(µ− s)‖

[
‖H0ς(s)−H0y(s)‖

+ ‖H1ς(s− h)−H1y(s− h)‖
]
ds +

∫ µ

0
(µ− s)δ−1‖Qδ(µ− s)‖‖z(s, ς)− z(s, y)‖ds

+ ∑
0<µk<µ

‖Pδ(µ− µk)‖‖Ik(ς(µk))− Ik(y(µk))‖

≤σ2‖ς(s− h)− y(s− h)‖+ K
Γ(δ)

[
σ01

∫ µ

0
(µ− s)δ−1‖ς(s− h)− y(s− h)‖ds

+ Lz

∫ µ

0
(µ− s)δ−1‖ς(s)− y(s)‖ds)

]
+

m

∑
k=1
LIk‖ς(µk)− y(µk)‖

≤
(

σ2 +K
{σ01 + Lz

Γ(δ)

√
τ2δ−1

2δ− 1
+ LI

})
‖ς− y‖.

Hence, following [C6], F is a contraction on Bk. Therefore, F has a unique fixed point in
Bk, which is the solution of the system.

3.2. Approximate Controllability

Consider the linear fractional control system

CDδ
0ς(µ) =H(µ)ς(µ) + B(µ)ṽ(µ), µ ∈ [0, τ],

ς(0) =φ(0). (10)

Let ςτ(ς0, v̂) be the state value of (1) at terminal time τ corresponding to v̂ and the
initial value ς0. The set R(τ, ς0) = {ςτ(ς0, v̂)(0) : v̂(·) ∈ L2(I, U)}is known as the reachable
set of system (1) at terminal time τ. The closure set is denoted by R(τ, ς0). A system is said
to be approximately controllable if R(τ, ς0) = Z, i.e., for any ε > 0, the system can steer
from ς0 to a neighborhood of ς1 within a distance ε from all points in the state space Z at
time τ.

We define the controllability Grammian operator by

Γτ
0 ς =

∫ τ

0
Qδ(τ, s)BB∗Q∗δ(τ, s)ςds,

and
Υ(ε, Γτ

0) = (εI + Γτ
0)
−1.

Here, B∗ is the adjoint of B and Q∗δ is the adjoint of Qδ.

Theorem 2. Assume that [C1]− [C4] hold; then, system (1) is approximately controllable on [0, τ]
if the linear system (10) is approximately controllable on [0, τ].

Proof. Let ς̂ε(·) be a fixed point of F in Bk. Any fixed point of F is a mild solution of the
system under control:

v̂ε(µ) = B∗Q∗(τ − µ)R(ε, Γτ
0)p(ς̂ε)

and satisfies

ς̂ε(τ) = ςτ − εR(ε, Γτ
0)p(ς̂ε),

where

p(ς̂ε) = ςτ −P(τ)φ(0)−
∫ τ

0
(τ − s)δ−1Qδ(τ − s)z(s, ς(s))ds.
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Per [C4], we have ∫ τ

0
‖z(s, ς̂ε(s))‖2ds ≤ τN2.

Consequently, the sequence {z(s, ς̂ε(s))} is bounded in L2(I, Z). Thus, there is a subsequence
{z(s, ς̂ε(s))} that converges weakly to z(µ) in L2(I, Z). The compactness of Qδ(µ) now
implies thatQδ(τ − s)z(s, ς̂ε(s))→ Qδ(τ − s)z(s) in L2(I, Z), and accordingly we obtain

‖p(ς̂ε)− w‖ = ‖
∫ τ

0
(τ − s)δ−1Qδ(µ− s)[z(s, ς̂ε(s))− z(s)]ds‖

≤ sup
0≤µ≤τ

‖
∫ µ

0
(µ− s)δ−1Qδ(µ− s)[z(s, ς̂ε(s))− z(s)]ds‖

→ 0 as ε→ 0, where

w = ςτ −P(τ)φ(0)−
∫ τ

0
(µ− s)δ−1Qδ(τ − s)z(s)ds.

Then, we obtain

‖ςε(τ)− ςτ‖ =‖εΥ(ε, Γτ
0)(w)‖+ ‖εΥ(ε, Γτ

0)‖‖p(ςε)− w‖
≤‖εΥ(ε, Γτ

0)(w)‖+ ‖p(ςε)− w‖ → 0

as ε→ 0+.
Consequently, the approximate controllability is proved.

4. Stability Results

This section deals with finite time stability and Ulam-type stability for system (1).

4.1. FTS Results

The finite time stability of system (1) is presented in the following theorem, given a
necessary and sufficient condition.

Theorem 3. The neutral fractional system (1) is finite time stable subject to the following condition:(
1 + 2ν2 +

ν01µδ

Γ(δ + 1)

)
η +
KBqv̂ + m
Γ(δ + 1)

µδ(1 + LEδ

(Lz + ν01

Γ(δ)
Γ(δ)µδ)

)k
Eδ(
Lz + ν01

Γ(δ)
Γ(δ)µδ) < ε.

Proof. We designate norm of an element φ ∈ C by

‖φ‖ = sup
−h≤µ≤0

‖φ(µ)‖.

Let Z = C([−h, τ],Rn) be equipped with norm

‖ς(µ)‖ = sup
0≤µ≤τ

ς(µ), and ‖ςµ‖ = sup
−h≤µ≤0

‖ς(µ + θ)‖,

where ‖ς(µ)‖ ≤ ‖ςµ‖.

From Definition 1, solution (2) is provided by

ς(µ) =


φ(µ), µ ∈ [−h, 0],
φ(0)−H2φ(−h) +H2ς(µ− h) + 1

Γ(δ)

∫ µ
0 (µ− s)δ−1(H0ς(s) +H1ς(s− h) + Bv̂(s)

+z(ς, s))ds + ∑0≤µk≤µ Ikς(µk), µ ∈ [0, τ].

Applying the norm on both sides, we have
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‖ς(µ)‖ ≤‖φ(0)‖+ ‖H2φ(−h)‖+ ‖H2ς(µ− h)‖+ 1
Γ(δ)

∫ µ

0
|µ− s|δ−1‖H0ς(s) +H1ς(s− h)

+ Bv̂(s) + z(ς, s)‖ds + ∑
0≤µk≤µ

Ikς(µk),

‖ς(µ)‖ ≤(1 + ‖H2‖)‖φ‖+ ‖H2‖‖ς(µ− h)‖+ 1
Γ(δ)

∫ µ

0
|µ− s|δ−1‖H0‖‖ς(s)‖ds

+
1

Γ(δ)

∫ µ

0
|µ− s|δ−1‖H1‖‖ς(s− h)‖ds +

1
Γ(δ)

∫ µ

0
|µ− s|δ−1‖B‖‖v̂(s)‖ds

+
1

Γ(δ)

∫ µ

0
|µ− s|δ−1‖z(ς, s)‖ds + ∑

0≤µk≤µ

‖Ik‖‖ς(µk)‖.

Let the biggest singular value of matrix (·) be denoted by νmax(·). For simplicity, we
denote νmax(H0) by ν0, νmax(H1) by ν1, νmax(B) by KB , νmax(H2) by ν2, and νmax(H0) +
νmax(H1) by ν01. Therefore,

‖ς(µ)‖ ≤(1 + ν2)‖φ‖+ ν2‖ς(µ− h)‖+ ν0

Γ(δ)

∫ µ

0
|µ− s|δ−1‖ς(s)‖ds

+
ν1

Γ(δ)

∫ µ

0
|µ− s|δ−1‖ς(s− h)‖ds +

KB
Γ(δ)

∫ µ

0
|µ− s|δ−1‖v̂(s)‖ds

+
1

Γ(δ)

∫ µ

0
|µ− s|δ−1(m + Lz‖ς(µ)‖)ds + ∑

0≤µk≤µ

LIk‖ς(µk)‖.

For µ ∈ [0, τ], we have ‖ς(µ− h)‖ ≤ ‖φ‖ and

‖ς(µ)‖ ≤(1 + 2ν2)‖φ‖+
1

Γ(δ)

∫ µ

0
|µ− s|δ−1

{
ν0‖ς(s)‖+ ν1‖ς(s− h)‖+KB‖v̂(s)‖

+ (m + Lz‖ς(µ)‖)
}

ds + ∑
0≤µk≤µ

LIk‖ς(µk)‖, 0 ≤ µ ≤ τ.

Using relation
‖ς(µ− h)‖ ≤ sup

{µ−h≤θ≤µ}
‖ς(θ)‖,

we obtain

‖ς(µ)‖ ≤(1 + 2ν2)‖φ‖+
1

Γ(δ)

∫ µ

0
|µ− s|δ−1

{
ν01( sup

{µ−h≤θ≤µ}
‖ς(θ)‖+ ‖φ‖) +KB‖v̂(s)‖ds

+ (m + Lz‖ς(µ)‖)
}

ds + ∑
0≤µk≤µ

LIk‖ς(µk)‖, 0 ≤ µ ≤ τ,

and

‖ς(µ)‖ ≤
(

1 + 2ν2 +
ν01µδ

Γ(δ + 1)

)
‖φ‖+ KBqv̂ + m

Γ(δ + 1)
µδ +

Lz + ν01

Γ(δ)

∫ µ

0
|µ− s|δ−1

{
sup

{µ−h≤θ≤µ}
‖ς(θ)‖

}
ds

+ ∑
0≤µk≤µ

LIk sup
{µk−h≤θk≤µk}

‖ς(θk)‖, 0 ≤ µ ≤ τ.

Let

a(µ) =
(

1 + 2ν2 +
ν01µδ

Γ(δ + 1)

)
‖φ‖+ KBqv̂ + m

Γ(δ + 1)
µδ
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and
g(µ) =

Lz + ν01

Γ(δ)
.

Because the right-hand side of the above equation is a nondecreasing function, we have

‖ς(µ)‖ ≤ sup
{µ−h≤θ≤µ}

‖ς(θ)‖ ≤ a(µ) + g(µ)
∫ µ

0
|µ− s|δ−1 sup

{µ−h≤θ≤µ}
‖ς(θ)‖ds

+ ∑
0≤µk≤µ

LIk sup
{µk−h≤θk≤µk}

‖ς(θ)‖, 0 ≤ µ ≤ τ,

or

‖ςµ‖ ≤ a(µ) + g(µ)
∫ µ

0
|µ− s|δ−1‖ςµ‖ds + ∑

0≤µk≤µ

LIk‖ςµk (θ)‖, 0 ≤ µ ≤ τ.

Using the generalized Grönwall inequality, we obtain

‖ςµ‖ ≤ a(µ)(1 + LEδ

(
g(µ)Γ(δ)µδ)

)k
Eδ(g(µ)Γ(δ)µδ)

with L = max{Lk : k = 1, 2, . . . , m}. Taking ‖φ‖ < η, we then have

‖ς(µ)‖ ≤
(

1 + 2ν2 +
ν01µδ

Γ(δ + 1)

)
η +
KBqv̂ + m
Γ(δ + 1)

µδ(1 + LEδ

(Lz + ν01

Γ(δ)
Γ(δ)µδ)

)k
Eδ(
Lz + ν01

Γ(δ)
Γ(δ)µδ).

Hence, using the basic condition of Lemma 3, we have

‖ς(µ)‖ ≤ ε.

4.2. HURS Results

The β–HURS of the given system is discussed by considering a few assumptions:
[A1] : z : I× Z → Z, which satisfies the Caratheodory conditions, and the ∃ constant
Lz > 0 such that

||z(µ, ς)− z(µ, ς′)|| ≤ Lz||ς− ς′||

for every ς, ς′ ∈ Z.
[A2] : Ik ∈ C(I, Z) : Z → Z, for k = 1, 2, . . . , m, where there exist constants LIk > 0 such that

||Ik(µ, ςk, υ̂k)− Ik(µ, ς′k, υ̂k)|| ≤ LIk ||ςk − ς′k||,

for each ςk, ς′k ∈ Z.

[A3] : The inequality
{ m

∑
r=1
LIk + σ2 +

τδ

Γ(δ+1) (σ01 + Lzτ)
}
< 1 holds.

Choose ε > 0, ϕ, and ψ ≥ 0 from PC(I, Z). Assume the following inequality holds:


‖CDδ

0ς(µ)−H0ς(µ) +H1ς(µ− h) + Bv̂(µ) +H2
CDδ

0ς(µ− h) + z(ς, µ)‖ ≤ εϕ(µ), µ ∈ [0, τ], µ 6= µk,
‖ς(µ)− φ(µ)‖ ≤ εψ, µ ∈ [−h, 0],
‖ς(µ+

k )− ς(µ−k )− Ik(µ, ς(µ−k )) ≤ εψk, k = 1, 2, . . . , m.

(11)

Remark 4. Inequality (11) indicates that a function y ∈ PC([0, τ], Z)
⋂

C([0, τ], Z) is the solution
to inequality (11) if and only if we can find µ ∈ C([0, τ]), ψ ≥ 0 and a sequence µk, k ∈ M satisfying
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
||h(µ)|| ≤ εϕ(µ) and ||hr|| ≤ εψ, µ ∈ [0, τ], µ 6= µk and k ∈ M,
CDδ

0ς(µ) = H0ς(µ) +H1ς(µ− h) + Bv̂(µ) + CDδς(µ− h) + z(ς, µ) + h(µ), µ ∈ [0, τ], µ 6= µk,
ς(µ) = φ(µ), µ ∈ [−h, 0],
ς(µ+

k ) = ς(µ−k ) + Ik(µ, ς(µ−k )) + h(µk), k = 1, 2, . . . , m.

(12)

Remark 4 concludes that the solution of System (12) is

ς(µ) = φ(0) +H2φ(h) +H2ς(µ− h) +
1

Γ(δ)

∫ µ

0
(µ− s)δ−1(H0ς(s) +H1ς(s− h)

+Bv̂(s) + z(s, ς) + h(s))ds +
m

∑
k=1

Ik(µk, ς(µk)) + h(µk)).

Inequality (11) leads to

||ς(µ)− φ(0)−H2φ(h)−H2ς(µ− h)− 1
Γ(δ)

∫ µ

0
(µ− s)δ−1{H0ς(s) +H1ς(s− h)

+Bv̂(s) + z(s, ς)}ds−
m

∑
k=1

Ik(µk, ς(µk)))||

= || 1
Γ(δ)

∫ µ

0
(µ− s)δ−1h(s)ds +

m

∑
k=1

h(µk)||

≤ µδ

Γ(δ + 1)
||h(s)||ds +

m

∑
k=1
||h(µk)||

≤ µδ

Γ(δ + 1)
εϕ(µ) +

m

∑
k=1

εψ

≤ ε
(

mψ +
µδ

Γ(δ + 1)
ϕ(µ)

)
, where µ ∈ (µk, µk+1].

Theorem 4. Let assumptions [A1]− [A4] hold. Then, System (1) has a unique solution ς ∈ PC(I).

Proof. Define an operatorR : PC(I, Z)→ PC(I, Z) by

(Rς)(µ) =


φ(µ), µ ∈ [−h, 0],
ς(0) +H2(ς(µ− h)− ς(−h)) + 1

Γ(δ)

∫ µ
0 (µ− s)δ−1(H0ς(s) +H1ς(s− h)

+Bv̂(s) + z(ς, s))ds + ∑0≤µk≤µ Ikς(µk).

For any ς, ς′ ∈ PC(I, Z) and µ ∈ [−h, 0], we have

||(Rς)(µ)− (Rς′)(µ)|| = 0.

For µ ∈ (µm, τ], we have
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||(Rς)(µ)− (Rς′)(µ)|| ≤‖H2(ς(µ− h)− ς′(µ− h)) +
1

Γ(δ)

∫ µ

0
(µ− s)δ−1

[
H0(ς(s)− ς′(s))

+H1(ς(s− h)− ς′(s− h)) + (z(ς, s)− z(ς′, s))
]
ds

+ ∑
0≤µk≤µ

Ik(ς(µk)− ς′(µk))‖

≤‖H2‖‖ς− ς′‖+ 1
Γ(δ)

∫ µ

0
(µ− s)δ−1(‖H0‖‖ς− ς′‖+ ‖H1‖‖ς− ς′‖

+ Lz‖ς− ς′‖)ds + ∑
0≤µk≤µ

LIk‖ς− ς′‖

≤
{

m
∑

k=1
LIk + σ2 +

τδ

Γ(δ+1)(σ01 + Lzτ)
}
||ς− ς′||

<||ς− ς′||.

Then,R is contractive with respect to || · ||PC . Therefore,R has a unique fixed point,
which is the solution of System (1).

Consider the following assumptions:
[A∗1 ] : z : I× Z → Z, which satisfies the Carathéodory condition, and there exists a function
Lz ∈ C(I, Z) such that

||z(µ, ς)− z(µ, ς′)|| ≤ Lz(µ)||ς− ς′||,

for every µ ∈ I and ς, ς′ ∈ Z.

Considering the above assumptions and inequality (11), we present our result.

Theorem 5. Let [A∗1 ], [A2], and [A3] hold. Then, System (1) is β–HUR stable with respect to
(ψβ, ϕβ).

Proof. Let inequality (11) result in y as its solution. Then,

||y(µ)− φ(µ)|| = 0, µ ∈ [−h, 0].

For each µ ∈ (µk, µk+1], we have

||y(µ)− ς(0)−H2(ς(µ− h)− ς(−h))− 1
Γ(δ)

∫ µ

0
(µ− s)δ−1(H0ς(s) +H1ς(s− h)

+Bv̂(s) + z(ς, s))ds− ∑
0≤µk≤µ

Ikς(µk)||

≤ ε
(

mψ +
µδ

Γ(δ + 1)
ϕ(µ)

)
≤ ε

(
m +

µδ

Γ(δ + 1)

)(
ϕ(µ) + ψ

)
.

Therefore, for every µ ∈ (µk, µk+1] we obtain
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||y(µ)− ς(µ)||β

= ||y(µ)− ς(0)−H2(ς(µ− h)− ς(−h))− 1
Γ(δ)

∫ µ

0
(µ− s)δ−1(H0ς(s)

+H1ς(s− h) + Bv̂(s) + z(ς, s))ds− ∑
0≤µk≤µ

Ikς(µk)||β

≤
(
||y(µ)−H2(y(µ− h))− 1

Γ(δ)

∫ µ

0
(µ− s)δ−1(H0y(s) +H1y(s− h)

+Bv̂(s) + z(y, s))ds− ∑
0≤µk≤µ

Iky(µk)||
)β

+
(
‖H2‖‖(y(µ− h)− (ς(µ− h)‖+ 1

Γ(δ)

∫ µ

0
(µ− s)δ−1

[
‖H0‖‖y(s)− ς(s)‖

+‖H1‖‖y(s− h)− ς(s− h)‖+ ‖z(s, y(s))− z(s, ς(s))‖
]
ds
)β

+
( m

∑
k=1
||Ik(µk, y(µk))− Ik(µk, ς(µk))||

)β

≤
(

ε(m +
µδ

Γ(δ + 1)
)(ϕ(µ) + ψ)

)β
+
(

σ2||y(µ)− ς(µ)||+ 1
Γ(δ)

µ∫
0

[σ01 + Lz]||y(x)− ς(x)||dx
)β

+
( m

∑
k=1
LIk ||y(µk)− ς(µk)||

)β
.

Using

(p + q + r)γ ≤ 3γ−1(pγ + qγ + rγ), where p, q, r ≥ 0, and γ > 1,

and applying Grönwall’s Lemma 3, we have

||y(µ)− ς(µ)|| ≤ 3
1
β−1

1− 3
1
β−1

σ2

(
ε
(
(m +

µδ

Γ(δ + 1)
)(ϕ(µ) + ψ)

))
(

1 +
3

1
β−1

1− 3
1
β−1

σ2

LIEδ((σ01 + Lz)Γ(δ)µδ)
)k

( 3
1
β−1

1− 3
1
β−1

σ2

Eδ((σ01 + Lz)Γ(δ)µδ)
)

,

where LI =
m
∑

k=1
LIk . Hence, we obtain

||y(µ)− ς(µ)||β ≤ 31−β

(1− 3
1
β−1

σ2)β

(
ε
(

m +
µδ

Γ(δ + 1)

))β(
ϕ(µ) + ψ

)β

(
1 +

3
1
β−1

1− 3
1
β−1

σ2

LIEδ(σ01 + Lz)Γ(δ)µδ
)kβ

( 3
1
β−1

1− 3
1
β−1

σ2

Eδ(σ01 + Lz)Γ(δ)µδ
)β

≤ Zz,ϕ,ψεβ
(

ϕβ(µ) + ψβ
)

,
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where

Zz,ϕ,ψ =
31−β

(1− 3
1
β−1

σ2)β

(
ε
(

m +
µδ

Γ(δ + 1)

))β(
1 +

3
1
β−1

1− 3
1
β−1

σ2

LIEδ(σ01 + Lz)Γ(δ)µδ
)kβ

( 3
1
β−1

1− 3
1
β−1

σ2

Eδ(σ01 + Lz)Γ(δ)µδ
)β

.

5. Example

Consider the following fractional problem:
CDδ

0ς(µ) = H0ς(µ) +H1ς(µ− h) + Bv̂(µ) +H2Dδς(µ− h) + z(µ, ς), µ ∈ [0, 1]/{ 1
3},

ς(µ) = φ(µ), µ ∈ [−h, 0],
ς(( 1

3 )
+) = ς(( 1

3 )
−) + 1

20 ς( 1
3 ),

(13)

where

H0 =

(
0.2 0
0 0.2

)
,H1 =

(
0.3 0
0.1 0.1

)
,H2 =

(
0.2 0
0 0.1

)
,B =

(
1 0
0 0.5

)
, v̂ =

(
0.4
0.3

)
, z(µ, ς) =

cos µ

40

(
ς1
ς2

)
.

Clearly (A1) and (A2) hold for the reason that

‖z(µ, ς)− z(µ, ς′)‖ ≤|cos µ

40
|
∥∥∥ς− ς′

∥∥∥
≤ 1

40
‖ς− ς′‖,

and

‖I1

(
ς
(1

3

))
− I1

(
ς′
(1

3

))
‖ ≤

∥∥∥ ς( 1
3 )

20
−

ς′( 1
3 )

20

∥∥∥
≤ 1

20
‖ς(1

3
)− ς′(

1
3
)‖.

Entering δ = 4
5 , we have

m

∑
k=1
LIk + σ2 +

τδ

Γ(δ + 1)
(σ01 + Lzτ)

=
1

20
+ 0.2 +

τ
4
5

Γ( 4
5 + 1)

(
0.6 +

1
40

)
<1,

and thus (A3) holds. Therefore, the system has a unique solution.
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Now, taking m = 1, β = 1/2, ϕ = 2µ, ψ = 1, ε = 0.01, we have

||y(µ)− ς(µ)||β ≤ 31−β

(1− 3
1
β−1

σ2)β

(
ε
(

m +
µδ

Γ(δ + 1)

))β(
ϕ(µ) + ψ

)β

(
1 +

3
1
β−1

1− 3
1
β−1

σ2

LIEδ(σ01 + Lz)Γ(δ)µδ
)kβ

( 3
1
β−1

1− 3
1
β−1

σ2

Eδ(σ01 + Lz)Γ(δ)µδ
)β

≤ 4.28ε
1
2 (ϕ

1
2 (µ) + ψ)

(
1 + 4.76

( 1
20

)
E 4

5

(
0.6 +

1
40

)
Γ
(4

5

)
µ

4
5

) 1
2

(
4.76E 4

5

(
0.6 +

1
40

)
Γ
(4

5

)
µ

4
5

)1/2

≤ (20.4)(0.01)
1
2

(
ϕ

1
2 (µ) + ψ

1
2

)
.

Therefore, the system is 1
2 –HURS with respect to (ϕ

1
2 , ψ

1
2 ), with Zz,ϕ,ψ = 20.4.

6. Conclusions

In the present article, we have explained the exact and approximate controllability of
a neutral system of differential equations containing impulses and delays. Our results are
dominated by fixed point theory. The finite time stability and β–Hyers–Ulam–Rassias sta-
bility of the aforementioned system are discussed by employing Grönwall-type inequality.
Our obtained results are quite significant, as controllability is a qualitative property which
plays a central role in control problems. It provides feedback to stabilize an unstable system.
Finite time stability requires prescribed bounds on system variables. For systems that
are known to operate only over a finite interval of time, this means that whenever, based
on practical considerations, the system’s variables must lie within the specific bounds,
the Hyers-Ulam-Rassias stability of fractional differential systems guarantees a bound
between the exact and approximate solutions. Therefore, such an approach may be re-
quired in a number of applications, including optimization, approximation, and numerical
analysis. In the future, this study may be extended to include neutral integral fractional
differential systems.
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