
Citation: Zhang, B.; Zheng, H.; Chen,

Y. Multiple-Function Systems Based

on Regular Subdivision. Fractal Fract.

2022, 6, 677. https://doi.org/

10.3390/fractalfract6110677

Academic Editor: Maria Rosaria

Lancia

Received: 29 September 2022

Accepted: 12 November 2022

Published: 16 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Multiple-Function Systems Based on Regular Subdivision
Baoxing Zhang 1,*, Hongchan Zheng 2 and Yingwei Chen 1

1 School of Mathematics and Statistics, Hebei University of Economics and Business,
Shijiazhuang 050061, China

2 School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710072, China
* Correspondence: baoxingzhang@hueb.edu.cn

Abstract: Self-similar fractals can be generated using subdivision and the subdivision curves/surfaces
are actually attractors. Such a connection has been studied between fractals and an extended family
of subdivision including stationary and non-stationary schemes. This paper aims to move one step
further on such a connection and introduce multiple-function systems, which has a set of function
systems and choose one for each step of iteration. These multiple-function systems can be obtained
by deriving the iterated function systems based on the subdivision operators and applying some
modifications, including deleting some transformations, to them. Such multiple-function systems can
be arranged in a tree structure and can generate different attractors along different paths in the tree.
Several examples are presented to illustrate the performance of these multiple-function systems.
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1. Introduction

Fractals, such as the Koch snowflake, are self-similar and they can be generated as
attractors of iterated function systems [1]. On the other hand, subdivision schemes are
efficient tools to generate curves and surfaces [2–6], which are also self-similar and are
shown to be attractors. Thus, there is a connection between subdivision and fractals
generated by iteration function systems [7,8].

Such a connection has been exploited in different cases. In fact, Schaefer [7] studied
the connection between fractals and stationary subdivision. Since then, several important
studies on such a connection have been conducted. For instance, Levin et al. [9] presented
a generalized non-stationary version of fixed-point theory and investigated the connection
between fractals and non-stationary subdivision. Hu et al. [10] calculated the dimension of
the attractors generated by subdivision. Dyn et al. [11] generalized the results in [9] to the
case of an extended family of subdivision such as non-uniform subdivision.

In this paper, based on the above work, we intend to present a further study on
this connection and introduce a kind of multiple-function system, which can be seen as a
sequence of function systems. The inspiration comes from the multiple subdivision, which
owns a set of subdivision operators and chooses one for each step of subdivision [4,5].
The special structure of multiple subdivision equips them with directionality. We note
that the multiple-function systems introduced in this paper have no directionality, yet
they can indeed generate different interesting attractors. Such attractors are scale irregular
fractals [12], which are generated in this paper based on iterated function systems. The
building of multiple-function systems based on multiple subdivision with directionality
will be presented in a forthcoming paper.

In fact, to obtain the desired multiple-function systems, we first derive the iterated
function systems based on the given subdivision operators. Then, some modifications,
such as deleting some transformations, are made to such iterated function systems when
necessary and a set of new function systems can be obtained. In this way, the desired
multiple-function systems can be obtained, which choose one function system for each
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step of iteration. We note that Levin et al. [9] presented an interesting sequence of function
systems, which can be seen as tree function systems [11]. The multiple-function system
introduced here can also be arranged in a tree structure and different attractors can be
obtained along different paths in such a tree. For the new multiple-function systems, we
show the convergence and uniqueness of the attractor along each path. Several examples
are presented to illustrate the performance of the new multiple-function systems.

The rest of this paper is organized as follows. In Section 2, we provide a brief review of
the subdivision and existing results on the connection between different subdivisions and
fractals. In Section 3, we construct the multiple-function systems and Section 4 is devoted
to showing the existence and uniqueness of the corresponding attractors. In Section 5,
we present some examples to illustrate the attractors of the multiple-function systems.
Section 6 concludes this paper.

2. Subdivision and Iterated Function Systems

In this section, we present some basic knowledge and results about the subdivision
and iterated function systems with generalizations needed in the rest of this paper.

2.1. About Subdivision

Let l0(Zs) denote the linear space of real-valued sequences with finite support indexed
by Zs. For β ∈ Zs, let δβ be the sequence δβ = {δα,β, α ∈ Zs}, where

δα,β =

{
1, α = β,

0, otherwise.

Given an initial data sequence q0 ∈ l0(Zs), the subdivision Sa generates a denser sequence
of points from a coarser sequence of points through the following procedure,

qk+1(α) = (Saqk)(α) := ∑
β∈Zs

a(α−Mβ)qk(β), α ∈ Zs, (1)

where the 2× 2 matrix M is the dilation matrix with eigenvalues in the absolute value
greater than 1 and a ∈ l0(Zs) is the so-called mask with finite support. In fact, with the
mask a, the subdivision rules in (1) can be written in a matrix form as

qk+1 = Sqk. (2)

For the matrix S, each row sums to 1 and thus 1 is an eigenvalue of S with the right
eigenvector (1, · · · , 1)>. Recall that the scheme Sa becomes an interpolatory one if the
mask a satisfies

a(Mβ) = δβ, β ∈ Zs.

Let Zm = {0, · · · , m− 1}with m ∈ Z+ and {Sai : i = 1, · · · , m} be a set of subdivision
operators. Then, the multiple subdivision iterates subdivision operators Sai in an arbitrary
order controlled by an additional parameter ε = (ε1, ε2, · · · ) ∈ Z∞

m with elements of ε in
Zm. Let εn = (ε1, · · · , εn), εi ∈ Zm with length n and we consider the n-th iteration of the
subdivision operators Saε = Saε1

· · · Saεn . Then, there exists a mask aε such that

Saε c = ∑
α∈Z2

aε(· −Mεα)c(α), c ∈ l0(Z2),

where Mε := Mε1 · · ·Mεn . As a result of the special structure of multiple subdivision, we
can arrange a multiple-function system in a tree structure. Figure 1 shows the binary tree
structure of the multiple subdivision Saε when m = 2.
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Figure 1. The binary tree structure of the multiple subdivision Saε .

2.2. Iterated Function Systems with Generalizations

Let (X, d) be a complete metric space. For a function f : X → X, let the corresponding
Lipschitz constant be defined as

Lip( f ) = sup
x,y∈X,x 6=y

d( f (x), f (y))
d(x, y)

.

The function f is said to be contractive if Lip( f ) < 1. Denote by H(X) the collection of all
nonvoid compact subsets of X. Then, H(X) is a complete metric space endowed with the
Hausdorff metric

h(B, C) = max{d(B, C), d(C, B)},

where d(B, C) = supb∈B d(b, C) = supb∈B infc∈C d(b, c) [9].
An iterated function system consists of a finite family of continuous maps fi : X → X

with i ∈ {1, ..., s}, which we denote by F = {X; fi : i = 1, .., s}. For F : H(X)→ H(X)

F (B) := ∪ f∈F f (B), B ∈ H(X),

where f (B) := { f (b) : b ∈ B}, the Lipschitz constant is LF = maxi=1,...,s Lip( fi). A set A is
an attractor of the iterated function system F if F (A) = A, which can be generated by the
iteration procedure Ai+1 = F (Ai) with an initial set A0.

Schaefer et al. [7] presented the connection between a stationary subdivision Sa and
fractals and constructed the iterated function systems with

fi(X) = XP−1SiP, i = 1, · · · , s.

Here, the n× n matrix P is constructed with the n points in the following way: the first m
columns are the n given control points in Rm; the last column is a column of 1′s; the rest
columns are such that the matrix P is non-singular while the matrix Si with the same size
as P0 is the subdivision matrix obtained by breaking the matrix S in (2) into multiple n× n
submatrices. In this way, it can be seen that with X = P, the corresponding attractor is just
the limit of the subdivision scheme [7].

In [9], the authors generalized the above iterated function systems and presented the
relationship between fractals and non-stationary subdivision. Now, we cite the following
definitions and results.

Definition 1 ([9]). The backward trajectory Ψk(x) in X starting from x ∈ X is defined to be

Ψk(x) = T1 ◦ T2 · · · Tk(x).

Theorem 1 ([9]). Consider the Function Systems defined by Fi = {X; fi,1, fi,2, · · · , fi,ni}, i ∈
Λ ⊂ N, where fi,r : X → X, r = 1, · · · , ni, are contractive. Further, assume that ∃C ⊂ X, a
compact invariant domain of { fi,r}, and assume that, for the Lipschitz constants LFi ,

Σ∞
k=1

k

∏
i=1

LFi < ∞. (3)
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Then, the backward trajectories {ψk(A)} converge, for any initial set A ⊂ C, to a unique set
(attractor) P ⊂ C.

3. Multiple-Function Systems Based on Subdivision

This section is devoted to the construction of the multiple function systems based on
regular subdivision. To this end, we construct the corresponding iterated function systems
based on subdivision operators and obtain the set of function systems with some necessary
modifications.

Building Multiple-Function Systems Based on Regular Subdivision

Let Sa be a subdivision with the dilation matrix M. For such a subdivision operator,
we can obtain the corresponding iterated function system (see [7]) as

F = {X; f1, f2, · · · , fñ}, (4)

where fi : X → X is a continuous transformation defined as

fi(A) = AP−1SiP, A ⊂ Qn−1. (5)

Here, Qn−1 is the n− 1 dimensional hyperplane with points of the form (x1, · · · , xn−1, 1),
Si is the ith n× n subdivision matrix obtained from the subdivision operator Sa. Note that

P−1SiP =

(
Gi 0
bi 1

)
, where fi : Qn−1 → Qn−1, thus we actually have

fi(A) = (ĀGi + bi, 1), A = (Ā, 1) ⊂ Qn−1.

Now, we build the desired multiple-function systems based on the above iterated
function systems. For simplicity, let Sa1 and Sa2 denote two subdivision operators. For the
subdivision Sa1 and Sa2 , we choose the same initial points to form the matrix P and obtain
the two function systems as follows,

F̃ 0 = { f0,1, · · · , f0,ñ0}, F̃ 1 = { f1,1. · · · , f1,ñ1}.

Then, we make two kinds of modifications to the above iterated function systems: deleting
some transformations in one function systems and replacing a transformation in one
function system by another transformation in the other one. Then, we can obtain a set of
new two function systems as {F0,F1}, where

F0 = { f0,1, · · · , f0,n0}, F1 = { f1,1, · · · , f1,n1}.

Here, we can also choose F0 = F̃0 and F1 = F̃1 without modifications. In this way, we can
obtain the desired sequence of function system Fε as

Fε = Fε1 ◦ Fε2 ◦ · · · Fεk ◦ · · · . (6)

with ε = (ε1, ε2, · · · ) ∈ Z∞
2 , which is the desired multiple-function systems.

For such a multiple-function system, in each step of iteration, we choose one function
system from {F0,F1}. Therefore, similar to multiple subdivision and the work in [11], we
can rewrite Fε in a binary tree structure, as shown in Figure 2.
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Figure 2. The binary tree structure of the Function Systems Fε.

For such a multiple-function system, it can be seen that along the path Pε = (ε1, ε2, · · · )
in the above tree structure, we have a map as in (6) with a specific choice of ε. Together
with the definition of Fi, this map along the path Pε can also be written in the tree structure,
as shown in Figure 3, where εp ∈ {0, 1},

Figure 3. The tree structure of the function system Fε with certain choice of ε.

Remark 1. In fact, the attractor of Fε is the set ∪j1,j2,··· ,jk ,··· fε1,j1 ◦ fε2,j2 ◦ · · · fεk ,jk (A). When
Sa1 = Sa2 , we only make the modification by deleting some transformations to obtain different
function systems. Additionally, we can also get a set of p function systems and arrange the
corresponding multiple-function system in a p-ary tree structure.

4. Attractors of the Multiple-Function Systems

Now, we show the convergence of the multiple-function systems. To this purpose, we
need to show the convergence along all the paths in the tree structure, which means the
convergence of Fε for each choice of ε. For this, we first show the following result.

Lemma 1. Suppose p0 and p1 are two adjacent points in Rm. Then, along a path Pε in the
tree structure in Figure 3, fε1,j1 ◦ fε2,j2 ◦ · · · ◦ fεk ,kk

(p0) and fε1,j1 ◦ fε2,j2 ◦ · · · ◦ fεk ,kk
(p1) with

εk ∈ {0, 1}, jk ∈ {0, · · · , nεp}converges to a unique limit point in Rm as k tends to infinity.

Proof. From the definition of fεp ,jq , the maps along each path in Figure 3 converges. Now,
we show the unique limit of the adjacent points.

For the transformation fεp ,jq , fεp ,jq(A) = (ĀGεp ,jq + bεp ,jq , 1), A = (Ā, 1) ⊂ Qn−1.
Therefore, we have

fε1,j1 ◦ fε2,j2(A) = fε1,j1( fε2,j2(A))

= (ĀGε2,j2 + bε2,j2)Gε1,j1 + bε1,j1 , 1)

= (ĀGε2,j2 Gε1,j1 + bε2,j2 Gε1,j1 + bε1,j1 , 1).

Generally, we have

fε1,j1 ◦ · · · ◦ fεk ,jk (A) = (ĀGεk ,jk · · ·Gε1,j1 + bεk ,jk Gεk−1,jk−1
· · ·Gε1,j1 + bεk−1,jk−1

Gεk−2,jk−2
· · ·Gε1,j1

+ · · ·+ bε1,j1 , 1).
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Let A1= (Ā1, 1) and A2= (Ā2, 1) be the two n× n matrix made as the matrix P in Section 2.2
using n copies of p0 and p1. In this way, we have

|| fε1,j1 ◦ · · · ◦ fεk ,jk (A1)− fε1,j1 ◦ · · · ◦ fεk ,jk (A2)|| ≤ ||Ā1 − Ā2||||Gε1,j1 || · · · ||Gεk ,jk ||.

According to the eigenvalues of the subdivision matrix, the eigenvalues of Gεp ,jq are smaller
than 1, we have

lim
k→∞
|| fεk ,jk ◦ · · · ◦ fε1,j1(A1)− fεk ,jk ◦ · · · ◦ fε1,j1(A2)|| ≤ lim

k→∞
||Gε1,j1 || · · · ||Gεk ,jk ||||Ā1 − Ā2|| = 0.

This means that fεk ,jk ◦ · · · ◦ fε1,j1(A1) and fεk ,jk ◦ · · · ◦ fε1,j1(A2) converge to the same limit
point.

Remark 2. The matrix A0 and A1 here need not be invertible. Furthermore, by Lemma 1, for the
matrix P composed of n different points, the corresponding limit is a vector of n identical points in
Rm, which can also be verified following Remark 6.2 in [9].

Theorem 2. Let Sa1 and Sa2 be two convergent subdivision andFε with ε = (ε1, · · · ), εj ∈ {0, 1}
be the multiple-function system obtained based on Sa1 and Sa2 . Then, for each ε, the trajectory
Fε1 ◦ · · · Fεk (A) with A ⊂ Qn−1 converges to a unique attractor.

Proof. Let {LFi} be the corresponding contractive factors of the obtained function systems
Fi with i = 0, 1. For the k steps of iterations, if there are p steps of iterations using F1, there
are k− t steps of iterations using F0. Then, from the construction of the function systems
F0 and F1, we have

k

∏
i=1

LFi = Lk−t
F0

Lt
F1

.

Since Si converges, LFi < 1, thus,

∞

∑
k=1

k

∏
i=1

LFi ≤
∞

∑
k=1

Lk−t
F0

Lt
F1

< ∞.

Therefore, by Theorem 1, the backward trajectory {Ψk(A)} converges.
By Remark 2, starting the backward trajectory {Ψk(A)} initialized with A ⊂ Qn−1

converges to a vector of n equal points in Rm. Then, similar to the proof of Theorem 7.2
in [9], we can show that the trajectory converges to the same limit for any A ⊂ Qn−1.

Theorem 2 shows the convergence of a multiple-function system along a certain path.
Therefore, along different paths, the convergence can be shown and different attractors
can be obtained. Thus, the obtained attractor generated by the multiple-function system is
path-dependent. Moreover, since the attractor generated by a multiple-function system is
path-dependent, the corresponding dimension is also path-dependent. This can be shown
by the examples in Section 5.

5. Numerical Examples

This section is devoted to several numerical examples of the new multiple-function
systems. These numerical examples show the multiple-function systems can generate
different attractors along different paths.
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Example 1. The ternary D-D 2-pt subdivision can be characterized by the symbol a(z) =

z−2 (1+z+z2)2

3 . We choose the two points 0 and 1 in the x-axis, thus, we have the matrix P as
follows,

P =

(
0 1
1 1

)
.

The subdivision matrices we need are the following

S1 =

(
1 0
2
3

1
3

)
, S2 =

( 2
3

1
3

1
3

2
3

)
, S3 =

( 1
3

2
3

0 1

)
.

In this way, we have the function system F0 = { f0,1, f0,2, f0,3}, with

f0,i(A) = AP−1SiP, i = 1, 2, 3.

Now, based on F0, we give the second function system as F1 = { f1,1, f1,2} with f1,1 = f0,1,
f1,2 = f0,3. Therefore, we have the multiple-function system

F 1
ε = Fε1 ◦ Fε2 ◦ · · · ,

with ε = (ε1, · · · , εk, · · · ) and εi ∈ {0, 1}.

Figure 4 shows the attractors generated by this multiple-function system F 1
ε with

different choices of ε. In particular, when ε = (0, 0, · · ·), the obtained attractor is a line
and when ε = (1, 1, · · ·) the obtained attractor is actually the Cantor set. Furthermore,
the dimension of the attractor along the path (0, 0, · · · ) is d = 1 and the dimension of the
Cantor set along the path (1, 1, · · · ) is d = log3 2.
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Figure 4. Attractors generated by the multiple-function system F1
ε with ε = (0, 0, 0, 0, 0), (1,1,1,1,1),

(1,0,1,0,1), (0,1,0,1,0) (from left to right).

Example 2. Now, we give the scheme of the tensor product of the ternary D-D 2-pt scheme. In fact,

such a scheme can be characterized by the symbol a(z1, z2) = z−2
1 z−2

2
(1+z1+z2

1)
2(1+z2+z2

2)
2

9 .
Here, we choose the four points (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 2) to derive the matrix P as

P =


0 0 0 1
1 0 0 1
0 1 0 1
1 1 2 1

.

The corresponding subdivision matrices we need to obtain the contractive maps are as follows,
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S1 =


1 0 0 0
2
3

1
3 0 0

2
3 0 1

3 0
4
9

2
9

2
9

1
9

, S2 =


2
3

1
3 0 0

1
3

2
3 0 0

4
9

2
9

2
9

1
9

2
9

4
9

1
9

2
9

, S3 =


1
3

2
3 0 0

0 1 0 0
2
9

4
9

1
9

2
9

0 2
3 0 1

3

,

S4 =


2
3 0 1

3 0
4
9

2
9

2
9

1
9

1
3 0 2

3 0
2
9

1
9

4
9

2
9

, S5 =


4
9

2
9

2
9

1
9

2
9

4
9

1
9

2
9

2
9

1
9

4
9

2
9

1
9

2
9

2
9

4
9

, S6 =


2
9

4
9

1
9

2
9

0 2
3 0 1

3
1
9

2
9

2
9

4
9

0 1
3 0 2

3

,

S7 =


1
3 0 2

3 0
2
9

1
9

4
9

2
9

0 0 1 0
0 0 2

3
1
3

, S8 =


2
9

1
9

4
9

2
9

1
9

2
9

2
9

4
9

0 0 2
3

1
3

0 0 1
3

2
3

, S9 =


1
9

2
9

2
9

4
9

0 1
3 0 2

3
0 0 1

3
2
3

0 0 0 1

.

In this way, we can give the function system F0 = { f0,1, · · · , f0,9} with
f0,i(A) = AP−1SiP, i = 1, · · · , 9. Based on F0, we give the function system F1 as F1 =
{ f1,1, · · · , f1,8} with f1,i = f0,i, i = 1, · · · , 4, f1,i = f0,i+1, i = 5, · · · , 8. In this way, we can
derive the multiple-function system F 2

ε with the set of function systems {F0,F1}.

Figure 5 shows the attractors generated by this multiple-function system F 2
ε with

different choice of ε. In paticular, when ε = (1, 1, · · ·), the obtained attractor is actually the
Sierpinski garsket. Additionally, the dimension of the attractor obtained along the path
(0, 0, · · · ) is d = 2 and the dimension of the attractor obtained along the path (1, 1, · · · ) is
d = log3 8.

Figure 5. Attractors generated by the multiple-function system F2
ε with ε = (0, 0, 0, 0), (1,1,1,1),

(0,1,1,1), (0,1,0,1), (1,0,1,0), (0,0,0,1) (from left to right and top to bottom).

Example 3. The above two examples are obtained based on a single subdivision. Now, we give an
example of a multiple-function system based on different subdivision.

In fact, for the first function system F0, we choose the binary cubic B-spline scheme. We
choose the points (0, 0), ( 1

3 , 0), ( 1
2 ,
√

3
6 ), ( 2

3 , 0), (1, 0) and thus, the corresponding matrix P can be
written as

P =


0 0 1 0 1
1
3 0 0 1 1
1
2

√
3

6 0 0 1
2
3 0 0 0 1
1 0 0 0 1

.
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The subdivision matrices we need are as follows,

S0,1 =


1
2

1
2 0 0 0

1
8

3
4

1
8 0 0

0 1
2

1
2 0 0

0 1
8

3
4

1
8 0

0 0 1
2

1
2 0

, S0,2 =


0 1

2
1
2 0 0

0 1
8

3
4

1
8 0

0 0 1
2

1
2 0

0 0 1
8

3
4

1
8

0 0 0 1
2

1
2

,

and thus, the corresponding two maps are

f0,1(A) = AP−1S0,1P, f0,2(A) = AP−1S0,2P,

and we obtain the function system F0 = { f0,1, f0,2}. As for the second one, we keep the matrix P
and choose the subdivision for the Koch curve with the following subdivision matrices,

S1,1 =


1 0 0 0 0
2
3

1
3 0 0 0

2
3 0 1

3 0 0
1
3

2
3 0 0 0

0 1 0 0 0

, S1,2 =


0 1 0 0 0
0 2

3
1
3 0 0

1
3 0 2

3 0 0
0 1

3
2
3 0 0

0 0 1 0 0

,

S1,3 =


0 0 1 0 0
0 0 2

3
1
3 0

0 0 2
3 0 1

3
0 0 1

3
2
3 0

0 0 0 1 0

, S1,4 =


0 0 0 1 0
0 0 0 2

3
1
3

0 0 1
3 0 2

3
0 0 0 1

3
2
3

0 0 0 0 1

,

and the corresponding maps are

f1,i(A) = AP−1S1,iP, i = 1, · · · , 4,

and thus, we have the function system F1 = { f1,i, i = 1, · · · , 4}.

In this way, we can obtain the multiple-function system F 3
ε . Figure 6 shows the

attractors generated by this multiple-function system with different choice of ε.
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Figure 6. Attractors generated by the multiple-function system F3
ε with ε = (0, 0, 0, 0, 0), (1,1,1,1,1),

(1,0,1,1,1), (1,1,1,1,0) (from left to right and top to bottom).

6. Conclusions

This paper presents the multiple-function systems based on regular subdivision opera-
tors. The multiple-function systems introduced in this paper have a set of function systems
and choose one for each step of iteration. Thus, a multiple-function system Fε can generate
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different attractors with different choices of ε. Such multiple-function systems can be seen
as being obtained by making some necessary modifications to the iteration function systems
based on subdivision operators. For such multiple-function systems, we show that they
can be arranged in a tree structure and show the existence and uniqueness of the attractor
along each path in the tree structure. Although the new multiple-function systems can
generate different attractors, they cannot design certain fractal at certain position. There-
fore, in future work, we hope to design different transformations like location dependent
ones and obtain new multiple-function systems to control the attractor locally and design
certain fractal at certain position. Additionally, we hope to exploit the applications of the
multiple-function systems in fields such as data compression.
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