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Abstract: In the literature, all investigations dealing with regulator design in the AVR loop observe the
AVR system as a single input single output (SISO) system, where the input is the generator reference
voltage, while the output is the generator voltage. Besides, the regulator parameters are determined
by analyzing the terminal generator voltage response for a step change from zero to the rated value
of the generator voltage reference. Unlike literature approaches, in this study, tuning of the AVR
controllers is conducted while modeling the AVR system as a double input single output (DISO)
system, where the inputs are the setpoint of the generator voltage and the step disturbance on the
excitation voltage, while the output is the generator voltage. The transfer functions of the generator
voltage dependence on the generator voltage reference value and the excitation voltage change were
derived in the developed DISO-AVR model. A novel objective function for estimating DISO-AVR
regulator parameters is proposed. Also, a novel metaheuristic algorithm named hybrid simulated
annealing and gorilla troops optimization is employed to solve the optimization problem. Many
literature approaches are compared using different regulator structures and practical limitations.
Furthermore, the experimental results of 120 MVA synchronous generators in HPP Piva (Montenegro)
are presented to show the drawbacks of the literature approaches that observe generator setpoint
voltage change from zero to the rated value. Based on the presented results, the proposed procedure
is efficient and strongly applicable in practice.

Keywords: AVR systems; PID controllers; disturbance rejection; mathematical models; optimization;
parameter estimation

1. Introduction

In traditional electric energy systems (EES), which were dominantly based on pro-
ducing electric energy from hydro, thermal and nuclear power plants, the usual direction
of energy was from production facilities to consumers. Therefore, voltage regulation was
achieved through transformers, capacitors, batteries, and automatic voltage regulators of
synchronous machines. In these systems, the automatic voltage regulators (AVRs) were
of the mechanical type, contributing to the inertia of the system’s response. Nowadays,
integrating different renewable energy sources into EES has led to the fact that EES are
currently perhaps the most complex dynamic systems in the world from the viewpoint
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of the number of elements, dimensionality, distribution, management, and regulation.
Therefore, it is essential to maintain the voltage at each node within its permitted limits,
especially at the generators [1].

1.1. Literature Review

In traditional and modern EES, synchronous generators (SGs) represent the leading
and most critical voltage-regulation devices [2]. At present, voltage regulation is achieved
in microprocessor technology using AVRs [3], i.e., excitation systems [4]. The AVR loop
includes a large number of devices/elements: a synchronous machine, exciter, amplifier,
controller, and numerous sensors, which are coupled into a single regulation contour
together with other signals such as the value of the excitation current and generator
currents, VHz signal, power system stabilizer (PSS) signal, and others. The common
structure of the AVR system is depicted in Figure 1 [5], where e denotes the error signal, i.e.,
the difference between the reference voltage Vref and the terminal voltage Vt.
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Figure 1. The common structure of the automatic voltage regulator system.

Modeling, work analysis, testing, and design of AVR systems are highly complex
due to many elements and their non-linearity [6–12]. For this reason, each element of the
AVR contour is usually approximated, along with being described using possible simple
transfer functions in the literature [8,13–17], where each element, except the controller, is
represented using transfer functions of the first order [5,12,18–24]. However, some studies
also show that the generator in AVR loops is represented by a third-order system [25]. The
use of the third-order generator model complicates the analysis of the system. On the other
hand, it respects a more accurate machine model. Moreover, some publications also use
generator models presented via fuzzy logic, neural networks, and the like [25,26].

All the previously cited works deal with estimating regulator parameters or selecting
new regulator structures. The most often employed regulator in AVR loops is the ideal
proportional-integral-derivative (PID) regulator, which is characterized by three gains
—proportional, integral, and differential (Kp, Ki, and Kd) [13,21,27,28]. However, as the ideal
controller is impossible to be realized practically, publications also consider a real PID
controller, which, in addition to the previous gains, also has a variable that represents the
filter coefficient (denoted as N) [6,29,30]. Namely, in this type of regulator, the derivative
action is filtered. Besides, there is also the fractional-order PID (FOPID) regulator, in which
the functional routine of the ideal PID is improved by adding fractional calculus into the
typical structure of the PID controller [8,25,31–33]. Therefore, in FOPID, we have two
additional variables µ, and λ. Furthermore, recent studies investigate another amendment
of the ideal PID regulator, the so-called PID with second-order derivative, or PIDD2 [6,34],
or a mix between FOPID and PIDD2 called fractional-order proportional-integral-derivative
plus the second-order derivative controller (FOPIDD2) [35]. Unlike the ideal PID regulator,
the PIDD2 structure has one extra parameter to be four in total: Kp, Ki, Kd, and Kd2. Figure 2
shows the mathematical formulations of the mentioned regulators, where s represents the
Laplace operator variable.
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Figure 2. Types of regulators in AVR loops.

The parameters of regulators were estimated by minimization of the corresponding
criterion function (or objective function) to achieve the best possible response, i.e., the
desired response of the generator voltage when the reference value changed its value from
0 to 1 per unit (p.u) (nominal value). The most frequently used functions are depicted in
Figure 3. ITAE represents the time multiplied by the absolute value of the error [24], IAE
represents the integral of the absolute value of the error [31], ITSE is the integral of time
multiplied by weighted squared error [21], ISE is the integral of squared error [6], ZLG
is a well-known objective function named by the name of the author who first defined it
(Zwe-Lee Gaing [5]), OF is an abbreviation for the criterion function of the composition
of ITSE and ZLG [28] and so on. For ZLG and OF, β and µ represent constants, while ESS
denotes the steady state error, ts denotes the settling time, and tr denotes the rise time. It is
apparent that no sole objective function is used in the literature to estimate the parameters
of all PID controllers.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 3 of 24 
 

 

derivative plus the second-order derivative controller (FOPIDD2) [35]. Unlike the ideal 

PID regulator, the PIDD2 structure has one extra parameter to be four in total: Kp, Ki, Kd, 

and Kd2. Figure 2 shows the mathematical formulations of the mentioned regulators, 

where s represents the Laplace operator variable. 

 

Figure 2. Types of regulators in AVR loops. 

The parameters of regulators were estimated by minimization of the corresponding 

criterion function (or objective function) to achieve the best possible response, i.e., the de-

sired response of the generator voltage when the reference value changed its value from 

0 to 1 per unit (p.u) (nominal value). The most frequently used functions are depicted in 

Figure 3. ITAE represents the time multiplied by the absolute value of the error [24], IAE 

represents the integral of the absolute value of the error [31], ITSE is the integral of time 

multiplied by weighted squared error [21], ISE is the integral of squared error [6], ZLG is 

a well-known objective function named by the name of the author who first defined it 

(Zwe-Lee Gaing [5]), OF is an abbreviation for the criterion function of the composition of 

ITSE and ZLG [28] and so on. For ZLG and OF, β and μ represent constants, while ESS 

denotes the steady state error, ts denotes the settling time, and tr denotes the rise time. It 

is apparent that no sole objective function is used in the literature to estimate the param-

eters of all PID controllers. 

 

Figure 3. The most frequently used objective functions in estimating regulator parameters in AVRs. 

Ideal PID controller  

 

Real PID controller

 

FOPID controller 

 

Types of 

controllers in 

AVR loops 

PIDD2 controller

 

Figure 3. The most frequently used objective functions in estimating regulator parameters in AVRs.

In the literature, the optimal tuning of the regulator parameters relies on employing
meta-heuristic algorithms such as future search algorithm (FSA) [9], hybrid evolutionary
algorithm (HEA) [18], whale optimization algorithm (WOA) [13], combined GA-bacterial
foraging (GA-BF) [10], chaotic yellow saddle goatfish algorithm (CYSGA) [8], teaching
–learning-based optimization (TLBO) [36], simulated annealing-manta ray foraging op-
timization algorithm (SA-MRFO) [6], local unimodal sampling algorithm (LUSA) [19],
particle swarm optimization (PSO) [5], simplified PSO (SPSO) [24], craziness based PSO
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(CRPSO) [17], ant colony cptimization (ACO) [14], combined GA and PSO (GAPSO) [27],
invasive weed optimization (IWO) [37], sine cosine algorithm (SCA) [32], enhanced crow
search algorithm (ECSA) [11], symbiotic organisms search algorithm (SOSA) [38], artificial
bee colony (ABC) [21], taguchi combined genetic algorithm (TCGA) [39], chaotic optimiza-
tion algorithm (COA) [39], improved kidney-inspired algorithm (IKIA) [40], gradient-
based optimization algorithm (GBSA) [41], hybrid equilibrium optimizer (HEO) [41],
arithmetic optimization algorithm (AOA) [12], improved artificial bee colony algorithm
(IABCA) [31], equilibrium optimizer algorithm (EOA) [22], chaotic multi-objective opti-
mization (CMOO) [33], cuckoo search (CS) [16], differential evolution (DE) [21], chaotic
ant swarm (CAS) [15], and imperialist competitive algorithm (ICA) [42], chaotic yellow
saddle goatfish algorithm (CYSGA) [43], improved Lévy flight distribution algorithm (IL-
FDA) [44], memorizable-smoothed functional algorithm (MSFA) [45], Lévy flight-based
reptile search algorithm (LFRSA) [46], and Rao algorithm [47]. It can be noted that the
problem of estimating the parameters of the regulator is a major problem and is represented
in many publications. Many algorithms have been tested for this purpose, but their large
number and varieties show that the optimal algorithm has not yet been found.

1.2. Paper Novelty and Idea

All the previously published works have one common mutual access. Namely, the
parameters are determined to form a step disturbance from 0 to 1 reference value of the
generator voltage. However, in practice, such a way of energizing the generator to its
nominal value is neither possible nor realistic. Moreover, such a method would damage
the machine itself, especially the excitation winding, which should be several times higher
than the nominal value of the excitation voltage [48]. A comprehensive explanation of the
stated claim is introduced in the following sections. Furthermore, experimental results for
120 MVA from Hydro Power Plant Piva start in terms of start excitation will be presented
in this paper in order to confirm the drawbacks of many literature approaches.

Second, the literature examines the system’s robustness when the excitation voltage
changes while analyzing the system’s behavior and stability. However, these approaches
do not include excitation voltage change during regulator parameter design. Today’s
excitation systems are based on the application of thyristor bridges [4]. A small error in the
control angle of the thyristor ignition can cause changes in the excitation voltage, which
affects the generator voltage. Unlike the literature, in this work, the regulator parameters
are estimated considering the allowed generator reference voltage changes and potential
changes in the excitation voltage. In this way, the regulator’s designed parameters will
help the generator eliminate unwanted changes in the excitation voltage.

Thirdly, the paper will present a new metaheuristic algorithm of a hybrid nature,
which aims to determine the parameters of the regulator efficiently. The idea is to connect
two algorithms, one of which shows exceptional characteristics for searching unknown
parameters, and the other has confirmed characteristics for hybridization from the point of
view of defining the initial values of iterative processes.

1.3. Paper Contribution

The core contributions of this study are summarized as follows:

• The practical implementation of starting the generator is explained in detail by present-
ing the experimentally measured output of the generator voltage, excitation voltage,
and excitation current.

• A new approach to solving the estimation problem of regulator parameters is pre-
sented. It considers the change in the generator voltage within the permitted values of
the generator voltage and the change in the excitation voltage in real cases;

• Unlike the literature, the system is modeled as a DISO system rather than the common
SISO one;

• The DISO model of the AVR system is presented for both generator and excitation
voltage output;
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• A novel metaheuristic algorithm named hybrid simulated annealing and gorilla troops
optimization is proposed;

• A new fitness function is employed for parameter estimation. It considers the change
in the generator voltage triggered by the changes in the reference value of the generator
voltage and in the excitation voltage.

1.4. Paper Organization

This manuscript is organized into eight sections. Section 2 presents the commonly
used AVR description and represents it as a DISO system. A short note about synchronous
machine starting estimation is given in Section 3. Section 4 introduces the proposed novel
metaheuristic algorithm. Simulation results when the excitation voltage is not considered
are presented in Section 5. The simulation results that address the excitation voltage
limitation are presented in Section 6. Additional tests are presented in Section 7, and finally,
the concluding remarks are given in Section 8.

2. Proposed DISO-Model of the AVR

The main function of AVRs is maintaining the generator voltage on the predefined
value level (generator reference value) under all operating conditions. Also, its function is
to lessen the system voltage variation under abnormal conditions—faults, short circuits,
load fluctuation, and others. The AVR model includes components represented via a first-
order transfer function. Each transfer function consists of the unitless gain values (denoted
K) and the time constant values (denoted T) given in seconds.

Figure 4 represents the AVR model with two input signals (Vref stands for the generator
reference voltage, Vfa represents the additional field voltage, and Vt represents the generator
terminal voltage). Suffix A represents the amplifier, E represents the exciter, G represents
the generator, and S represents the sensor.
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Based on Figure 4, the following equation can be derived in the Laplacian domain:

E = Vre f (s)− WSVt(s),

Vt(s) = WG

(
Vf a + WE · WA · REG · E

)
.

(1)
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By solving these equations, one can obtain the following expression, where REG is a
regulator of any type:

Vt(s) =
WGWEWAREG

1+WGWSWEWA ·REG Vre f (s) +
WG

1+WGWSWEWA ·REG Vf a(s),

WG = KG
1+sTG

, WE = KE
1+sTE

, WS = KS
1+sTS

, WA = KA
1+sTA

.
(2)

In simple form, the previous equation can be expressed as follows:

Vt(s) = Wtr · Vre f (s) + Wt f · Vf a(s),

Wtr =
WGWEWA ·REG

1+WGWSWEWA ·REG ,

Wt f =
WG

1+WGWSWEWA ·REG .

(3)

In such a case, the excitation voltage is given as follows:

Vf (s) =
WEWA · REG

1 + WGWSWEWA · REG
Vre f (s) +

1
1 + WGWSWEWA · REG

Vf a(s). (4)

Therefore, the change in the generator voltage relies on changes in the generator
reference voltage and the field voltage. Thus, we derived the AVR mode similarly to the
DISO system (as depicted in Figure 4). Also, this model can be regarded as a DIDO model
if one considers the excitation voltage as an output signal. Similarly, one can also derive
expressions for the dependence of generator voltage on other signals, such as amplified
change or signal from the regulator.

3. Short Notes on Synchronous Generator Starting Excitation

The synchronous machine is the central, if not the most important, component in
power systems. These are electric machines whose powers range up to several hundreds
of MWs. The start of the synchronous machine is realized under the absolute supervision
of numerous sensors, monitoring many quantities. Namely, during the starting process
and machine loading, the regulation of the power through the turbine regulation and the
voltage through the automatic voltage regulation are intertwined. In the case of large
synchronous machines, as with the machines in the EES of Montenegro, excitation of the
generator when starting the machine can be realized in two modes—AVR mod (automatic
voltage regulation mode) and FCR mod (field current regulation mode). The automatic
mode reflects the application of the AVR contour—i.e., regulation of voltage, while the
manual mode is realized through the excitation current—i.e., regulation of field current.
Excitation of the machine starts after the generator is accelerated to a certain value via the
turbine regulation (in the EES of Montenegro, it is set to be 90% of the synchronous speed).
Therefore, after the generator speed reaches the appropriate value, one of the modes is
activated—the auto mode or the manual mode. However, both modes can be realized in
terms of the power supply from the generator branch (called shunt supply) and the power
supply from the sub-distribution of the 0.4 kV power plant. Therefore, for the first case
(shunt supply), an initial DC or AC (plus rectifier), starting power source is needed to
initiate the generator excitation. Therefore, the excitation current follows the generator
voltage in the shunt supply. The steps of these potential ways for generator excitation are
illustrated in Table 1.

This work presents the experimental results from 120 MVA generators from HPP Piva
(see Appendix A) in Montenegro to show the electric generator variables and changes
during starting excitation. Namely, the 120 MVA generator has a static excitation system
(UNITROL 6000), a self-excited-thyristor-controlled system factory-made by ABB. The
generator can be excited via all the presented modes. The control is realized using the
microprocessor technique, and the variables can be measured and monitored. In order to
show the generator starting excitation, the AVR mode with shunt supply is chosen.
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Table 1. The sequence of AVR and FCR modes.

AVR Mod FCR Mod

Shunt supply

Power supply from
sub-distribution of the 0.4 kV

power plant (or auxiliary
supply)

Shunt supply

Power supply from
sub-distribution of the 0.4 kV

power plant (or auxiliary
supply)

Switch for selecting excitation
power supply from the

generator branch

Switch for power supply from
sub-distribution of the 0.4 kV

power plant (or auxiliary
supply)

Switch for selecting excitation
power supply from the

generator branch

Switch for power supply from
sub-distribution of the 0.4 kV

power plant (or auxiliary
supply)

Start excitation Start excitation Start excitation Start excitation

Switch the breaker in the
0.4 kV excitation enclosure

Switch the contactor in the
0.4 kV sub-distribution power

plant of the generator

Switch the breaker in the
0.4 kV excitation enclosure

Switch the contactor in the
0.4 kV sub-distribution power

plant of the generator

Start DC or AC initial
excitation

Switch the breaker in the
0.4 kV excitation enclosure

Start DC or AC initial
excitation

Switch the breaker in the
0.4 kV excitation enclosure

Switch-off initial
excitation—filed current

reached the predefined value

Raising the voltage of the
generator via the ramp

function

Switch-off initial
excitation—filed current

reached the predefined value

Raising the field current via
the ramp function

Raising the voltage of the
generator via the ramp

function

Switch network monitoring
block that balances the voltage

of the generator and the
network

Increasing the field current via
the ramp function

The excitation current is
raised with the manual
control buttons until the

nominal value of the
generator voltage is obtained

Switch network monitoring
block that balances the voltage

of the generator and the
network

The generator is ready for
synchronization

The excitation current is
raised with the manual
control buttons until the

nominal value of the
generator voltage is obtained

The generator is ready for
synchronization

The generator is first accelerated to a speed higher than 90% of the nominal speed
and is excited from the additional power supply (DC voltage source). As the generator
rotates, its voltage will rise, as well as the field current. After a certain time, the initial DC
power is stopped, and the generator starts to be excited via a predefined ramp function
for voltage. Therefore, we have a ramp change of the generator reference voltage in the
AVR contour. During this change, the field current tracks the generator voltage. After
the generator reaches the nominal value, the synchronization system is activated, and the
generator is synchronized with the grid voltage. The experimentally measured changes in
the reference voltage, real generator voltage, and field current are presented in Figure 5.

Based on the previous explanation and the presented experimental results, it is clear
that in real situations, for a high-power synchronous generator, it is impossible to start
the machine to full voltage value with a step change of generator reference voltage from
0 to 1 p.u. Consequently, the estimation of regulator parameters observing this step change
of generator referent voltage is not realistic.
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4. Proposed Procedure for Regulator Design in AVRs

In this section, a proposed procedure for AVR regulator design is presented. Namely,
in the first part, we described the idea of this work, i.e., observation of the AVR system as a
DISO system, while the second part represents the description of the proposed algorithm
used in regulator design.

4.1. Novel Procedure for Parameters Design

It was clear that determining the parameters of the regulator is not realistic if a step
change from 0 to 1 p.u of the generator voltage is observed. Also, the observation of the
response of the generator voltage under the effect of a step change in the reference value of
the generator voltage is not representative.

Besides, the initial signal used to change the generator reference voltage from 0 to
1 p.u causes a significant change in the field voltage. In practice, this signal will cause a
very high value of the field voltage to get the appropriate level of the excitation–magnetic
field in the machine. However, the excitation winding cannot accept any value of the field
voltage because of electrical limitations. Such limitations of the allowed field voltage levels
were addressed in [2,41]. Furthermore, the influence of limiting the excitation voltage on
the parameters was considered in [41].

Thus, this work proposes a new approach to estimating the regulator parameters,
including the generator voltage response analysis when the voltage’s reference value is
changed within the limits of the allowed values (from 0.95 to 1.05 p.u).

In addition, our research goal (designing the parameters of the regulator) is to consider
the effect of changing the excitation voltage in modern power systems. In modern excitation
systems, the excitation voltage is obtained from thyristor rectifiers. It is well known
that a small error in the control angle of thyristor rectifiers can significantly change the
excitation voltage. For this reason, the effect of the change in the excitation voltage of 50%
was investigated.

Therefore, the parameters of the regulator are determined so that the variations in the
reference value of the generator voltage in addition to the influence of the change in the
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excitation voltage, are considered. In practice, the shift in generator setpoint voltage value
usually takes place, as with its change, the generator operator determines the value of the
reactive power and defines the voltage situation in the connected grid.

Therefore, it can be said that the goal of parameter estimation is to eliminate the
disturbance—i.e., canceling its effect of noncontrolled change of excitation voltage. In
the mathematical sense, the proposed objective function used for regulator parameters
determination has the following form:

OF =
(

1 − e−β
)
(50OS1 + ESS1) + e−β(ts1 − tr1) + IAE2 + 10(OS2 + ts2). (5)

The subscript ‘1’ refers to the change caused by the step change of the generator
reference voltage value, while ‘2’ refers to the change of the generator voltage caused by
the excitation voltage step change. The subscript “s” represents the settling time, while
the subscript “r” represents the rise time. The steady-state error is marked as ESS, and the
overshoot as OS.

The proposed transfer function consists of two parts. The first part refers to the change
in the generator voltage, which is a consequence of the change in the reference value of the
generator voltage. This transfer function represents a form of the well-known and most
frequently used objective function from the literature proposed by Zwe-Lee Gaing [5]. The
second part of the transfer function refers to the change in excitation voltage. A change in
the excitation voltage causes a change in the generator voltage, so the idea of this part of
the objective function is to eliminate this effect. The second part of the objective function is
taken as the sum of the integral IAE and the effects of the maximum value of the generator
voltage change (OS2) caused by the excitation voltage change and the settling time of
generator voltage (ts2) under the effect of this disturbance.

It should be emphasized that the analogous way of determining the parameters can be
applied when considering the change in the value of the output signal from amplifiers or
regulators. Therefore, this work starts with the formation of complex systems to determine
the parameters of the regulator while canceling the effects of all potential disturbances.

4.2. Novel Optimization Algorithm for AVR Controllers Design

In this work, a novel hybrid meta-heuristic-based algorithm is proposed. It comprises
two dissimilar types of algorithms—Simulated Annealing (SA) [7] and Gorilla Troops
Optimizer (GTO) [49]. Both algorithms belong to different types of metaheuristics: SA
is an algorithm that provides a single solution (it must be applied to each individual of
the initial population), which is further used in iterations in generation and replacement
procedures. In contrast, GTO is based on populations initiated from an initial population
and then iteratively generates other populations.

This paper considers the hybridization of the GTO algorithm [49] and the SA algo-
rithm [7,50], applying the so-called relay-collaboration strategy. In simple words, in this
hybrid process, SA is employed to adjust the GTO algorithm population in its initialization
to offer a high-quality initial solution. The purpose of such hybrid algorithms is to increase
the convergence speed compared to speeds obtained by other algorithms employed to solve
the same problem. The following part will briefly describe both SA and GTO algorithms
and their hybridization.

In GTO algorithm, one can assume that a population comprises N rays, where Xi(t)
(i = 1, 2, . . . , N) represents the position of each individual. SA algorithm defines the initial
population as represented by the pseudo-code given in Algorithm 1 (the objective function
of the optimization problem is denoted by f ).
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Algorithm 1. Pseudo-code of SA (PCSA)

1. For each individual
2. Enter the input data: k = 0, ck = c0, Lk = L0
3. Xi = rand(bH − bL) + bL

4. Repeat
5. For l = 0 to Lk
6. Generate a solution Xj from the neighborhood of Xi

7. If f(Xj) < f(Xi) then Xj becomes the current solution (Xi = Xj)

8. Else Xj will become the current solution with a probability e(
f (i)− f (j)

ck
)

9. k = k + 1
10. Compute Lk and ck
11. Until ck

∼= 0

where Lk and ck represent the number of transitions and temperature generated at the kth
iteration [50], rand signifies a random numbers vector (in the range from 0 to 1), while bH

and bL express the design variables’ upper and lower bounds. It is essential to mention
that each individual is a vector of d variables being optimized. In this work, optimization
variables are the parameters of the controller.

The gorilla troops optimizer algorithm relies on the behavior of a group of gorillas
in representing the exploration (EXPr) and exploitation (EXPt) optimization phases. Each
individual (a gorilla) in a population forms a potential solution to the problem. EXPr comes
first in each iteration and is formulated as follows

GX(t + 1) =


(UB − LB) · r1 + LB, rand < p,

(r2 − C) · Xr(t) + L · H, rand ≥ 0.5,
X(i)− L(L(X(t)− GXr(t)) + r3(X(t)− GXr(t))), rand < 0.5

. (6)

where GX(t+1) and X(t) denote the gorilla positions in t and t+1 iterations, respectively,
and UB and LB represent the upper bound and lower bound values, respectively. Also, in
Equation (6), the parameter p demonstrates the probability of selecting the EXPr strategy to
an unidentified position, and rand, r1, r2, and r3 denote random numbers in the range [0, 1];
Xr(t) and GXr(t) represent random gorillas from X and GX. C, L, and H are determined as
follows:

C = F
(

1 − t
tmax

)
, (7)

F = cos(2r4) + 1, (8)

L = C · l, (9)

and
H = ZX(t), Z = rand[−C, C], (10)

where r4 is a random number in the range [0, 1], and l is a random number in the range [1,
1].

At the end of the EXPr phase, it is necessary to calculate the fitness of all GX solutions.
In case the fitness of GX(t) is lower than that of X(t), GX(t) replaces X(t). Silverback denotes
the best solution, whose fitness function has the lowest value.

After the EXPr phase ends, the EXPt phase occurs. This phase is controlled by W,
which should be predefined. The calculation vector GX(t+1) relies on the value of C, as
follows:

GX(t + 1) =
{

L · M · (X(t)− Xsiverback) + X(t), i f C ≥ W,
Xsilverback − Q(Xsilverback − X(t))A, i f C < W.

}
. (11)
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In the previous equation, the parameter M can be calculated as follows:

M =

∣∣∣∣∣ 1
N

N

∑
i=1

GXi(t)

∣∣∣∣∣
2/L
 L

2

. (12)

As can be seen from the previous equations, the EXPt phase contains another two
parameters, Q, which expresses the impact force, and A, which expresses the degree of
violence, that have the following formulations:

Q = 2r5 − 1, (13)

A = β · E, (14)

where

E =

{
N1, rand ≥ 0.5
N2, rand < 0.5

}
. (15)

To conduct all the previous calculations, it is necessary to explain the following terms:
rand and r5 manifest the random numbers between 0 and 1; β, N1, and N2 are coefficients
that should be specified before the optimization process starts.

Like EXPr, each gorilla’s fitness function from GX must be computed after the end
of EXPt, and potential replacement should be carried out. Precisely, if f (GX(t)) < f (X(t)),
GX(t) replaces X(t). The pseudo-code of the complete SA-GTO algorithm is illustrated in
Algorithm 2.

Algorithm 2 Pseudo-code of SA-GTO algorithm (PCSA-GTO)

1. Set parameters of GTO algorithm: N, N1, N2, p, β, and tmax
2. Apply SA algorithm to initialize the population
3. Assess the fitness of each gorilla
4. for t=1 to tmax
5. Bring up-to-date L and C
6. Conduct EXPr and GX(t)
7. Assess the fitness of each gorilla
8. Update the population X(t)
9. Find Silverback
10. end for
11. Print Xsilverback

The complexity of the metaheuristic algorithms can be expressed in the following
form:

compelexity = O
((

np + Co f · p
)

Ni

)
. (16)

where O denotes the big O notation, n denotes the dimension of the parameter space, p
represents the population size, Ni denotes the number of iterations, and Cof denotes the
complexity of the objective function. The complexity is approximate and highly depends on
the objective function. The hybrid algorithm has a higher complexity s they rely on the two
algorithms. There is a different form of hybrid algorithms—for defining the initial condition,
in any iteration to check both algorithms, half iteration number of operating one and in the
second half to operate the second algorithm, and so on. In our case, complexity is the sum
of the complexity of simulated annealing and gorilla troops optimization algorithms, as
we used the first algorithm to define the initial value for the second algorithm. Compared
with other hybrid algorithms, the proposed algorithm’s complexity is identical.

5. Simulation Results with No Limitation of the Excitation Voltage

The results obtained for optimizing different AVR controllers using SA-GTO are pre-
sented. Namely, we considered three regulators: ideal PID, real PID, and PIDD2. It should
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be noted that the SA–GTO algorithm parameters are kept the same for each regulator in all
optimization algorithms (maximum iterations number = 100, and the population size = 50).
For each regulator, the allowed parameter limits were from 0.1 to 5, except for N in the real
PID regulator, whose limits were taken from 100 to 1000.

Figure 6 shows the generator voltage responses when all types of regulators are used
for optimal parameters determined by applying the proposed procedure and algorithm
(presented in Table 2). The results obtained are summarized and presented in Table 3 in
terms of the rise time, settling time, overshoot, and errors in the steady state during the
step change of generator reference voltage value and step change of excitation voltage.
Index 1 refers to the transient process caused by the change of the generator reference
voltage value, and index 2 refers to the transient process caused by the step change in the
excitation voltage.
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Table 2. Optimal values of the parameters determined using the SA–GTO algorithm proposed.

Regulator Kp Ki Kd Kd2 N

Ideal PID 1.263847093 1.400111255 0.4484544985 – –
Real PID 1.120196097 1.200245817 0.4066544346 – 895.0548956
PIDD2 4.825180395 5.000000000 1.8100162290 0.2140057958 –

Table 3. The transient response metrics.

Metrics
Type of Regulator

Ideal PID Real PID PIDD2

tr1 0.148593626855451 0.161054345783414 0.023681675214101
ts1 1.262884640998164 1.412479339684174 0.247536364709054

Mp1 1.754445571697461 1.482506607949641 0.112633920529492
ts2 1.882946431460990 2.005356494034402 1.716958369066589

Mp2 5.387282031380347 5.706993590644194 1.159788425071007

In all investigations, it was assumed that the step change of the excitation voltage is
0.5 p.u. Based on the given responses, it can be noted that the PIDD2 controller enables the
highest quality response from the point of view of the transient processes. It can also be
seen that PID and real PID provide almost equal responses.
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Figure 7 shows the responses of the generator voltage for different step change values
and step alterations in the excitation voltage. On the basis of these results, it is clear that
PIDD2 enables obtaining responses with better characteristics compared to the responses of
systems with real and ideal PID controllers. These figures confirm the system’s robustness
to the effect of different step change values and generator and excitation voltage reference
values.
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Figure 8 shows the generator voltage responses for different system parameters.
Namely, this figure shows the test results of the system robustness for different time
constants of all components in the AVR system. Each of the used regulators ensures the
system’s stability, regardless of the values of the time constants. Moreover, changes in time
constants, which in practice represent changes in the components of the AVR structure,
cause slight differences in the responses of the generator voltage compared to the case of the
nominal parameters of all system components. A detailed comparison of the characteristic
values under step change in the generator voltage (from 0.95 to 1.05 p.u) and a change in
the excitation voltage of 0.5 p.u for different time components of the system is presented in
Table 4.
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PID regulator, (b) Real PID regulator, and (c) PIDD2 regulator.

Therefore, it is notable that a stable response characterizes the system even when
dealing with different values of time constants and step changes of the generator and
excitation voltages. Therefore, the system’s robustness to the effects of any of the mentioned
disturbances, i.e., changes in the AVR structure, is apparent.

To further examine the procedure proposed for determining the regulator’s parameters
as well as the system itself, a comparison was made regarding the response metrics to the
changes in the reference value of the generator and the excitation voltages in case of using
regulators’ parameters whose values were determined by applying numerous algorithms
(14 different optimizers) presented in the literature. Table 5 shows the list of the used
regulators and the values of their parameters. The generator voltage responses for all
algorithms are presented in Figure 9, and the evaluation metrics are given in Table 6.

It is obvious in Figure 9 that the algorithms enable a good system response to the effect
of a step change in the reference value of the generator voltage. But, when the value of
the excitation voltage changes, which can be understood as a disturbance in the system,
substantial and slow transient processes of the generator voltage occur. Therefore, it is clear
that the selected values of the regulator parameters do not ensure a prompt rejection of
disturbance signals that might exist in the AVR system. Observing these responses, it is
clear that SA-MRFO investigated in [6] provides the shortest rise time and settling time
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compared to the other investigated algorithms. Also, these algorithms provide the smallest
overshoot under excitation voltage change. Besides, it is clear that the PIDD2 regulator
provides the best responses for the system, i.e., it best contributes to canceling the effect of
disturbance signals.

The generator voltage responses are depicted in Figure 10 using the regulator parame-
ters obtained using the proposed method and SA-MRFO presented in [6]. These responses
were obtained for changes in the generator voltage reference value and excitation voltage
disturbance. Thus, from the responses presented, it is clear that the proposed SA-GTO
enables the best system responses.

Table 4. Transient response of the regulators investigated, robustness analysis.

Regulator Time Constant Change (%) tr1 ts1 Mp1 ts1 Mp1

Ideal PID

TA
−30 0.1369 1.4005 1.1208 3.0341 4.8417
+30 0.1602 1.3372 2.2358 1.8253 5.8607

TE
−30 0.1197 0.8295 1.8230 2.1727 4.5865
+30 0.1753 1.5291 1.7515 2.9602 6.0759

TG
−30 0.1153 0.8434 2.2699 1.8901 6.1944
+30 0.1812 1.8210 1.4420 3.2120 4.8892

TS
−30 0.1511 1.2925 1.6169 2.8189 5.3048
+30 0.1463 1.2388 1.8995 1.8759 5.4709

Real PID

TA
−30 0.1497 1.5090 0.8693 3.1855 5.1477
+30 0.1729 1.4280 1.9528 1.9439 6.1944

TE
−30 0.1293 0.6854 1.5349 2.2991 4.8638
+30 0.1904 1.6550 1.5003 3.1108 6.4317

TG
−30 0.1240 0.6947 1.9898 2.0158 6.5460
+30 0.1976 1.9674 1.1880 3.3978 5.1914

TS
−30 0.1637 1.4500 1.3603 2.9610 5.6259
+30 0.1586 1.3656 1.6114 1.9985 5.7893

PIDD2

TA
−30 0.0152 0.2895 0.6256 2.4961 1.1127
+30 0.0333 0.1928 0.1199 1.6599 1.2401

TE
−30 0.0146 0.2891 1.0001 2.0370 0.9654
+30 0.0363 0.2284 0.1765 2.6276 1.3826

TG
−30 0.0145 0.2384 1.0878 1.7325 1.1621
+30 0.0372 0.2581 0.1830 2.5939 1.1568

TS
−30 0.0291 0.2539 0.1124 2.3695 1.1584
+30 0.0215 0.2413 0.6376 1.7132 1.1613

Table 5. Review of the optimal parameters of the controllers.

Algorithm Regulator
Type

Reference
Gains

Number Name Kp Ki Kd Kd2 N

1 IKIA

Ideal PID

[28] 1.0426 1.0093 0.5999 - -
2 WOA [13] 0.7847 0.9961 0.3061 - -
3 SA-MRFO [6] 0.6778 0.3802 0.2663. - -
4 DE [21] 1.6524 0.4083 0.3654 - -
5

BF–GA [10]
0.6823 0.6138 0.2678 - -

6 0.6800 0.5221 0.2440 - -
7 0.6727 0.4786 0.2298 - -
8 SA-MRFO

Real PID

[6] 0.6672 0.5938 0.2599 - 863.2453
9 CS [29] 0.6198 0.4165 0.2126 - 1000.00

10
ACO–NM [30]

0.6392 0.4757 0.2159 - 484.09
11 0.3120 0.2567 0.1503 - 500.00
12 0.5463 0.3409 0.1485 - 500.00
13 CAS

PIDD2
[6] 2.9943 2.9787 1.5882 0.102 -

14 SA–MRFO [34] 2.7784 1.8521 0.9997 0.073 -
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Table 6. Comparison of the transient response provided using the regulator parameters given in
Table 5.

Algorithm
Number Regulator Reference tr1 ts1 Mp1 ts1 Mp1

1

Ideal PID

[28] 0.1274 0.7509 1.4379 4.9617 4.7547
2 [13] 0.2149 2.1440 0.6937 3.5659 6.6722
3 [6] 0.2587 1.7455 0 5.7157 7.2445
4 [21] 0.1572 2.4050 2.3068 8.3521 5.3198
5

[10]
0.2521 0.3778 0.1873 2.7347 7.2116

6 0.2686 0.9106 0.1843 3.5329 7.5249
7 0.2797 0.9651 0.1850 4.0707 7.7319
8

Real PID

[6] 0.2575 0.3880 0.1659 2.7845 7.3442
9 [29] 0.3055 1.1777 0.0106 4.5238 8.0943
10

[30]
0.2926 0.4422 0.1656 3.8047 8.0134

11 1.0319 1.8362 0.1384 5.8342 10.5688
12 0.3809 0.8202 0.2010 5.2956 9.4606
13

PIDD2
[6] 0.0539 0.0804 0.0756 4.2879 1.6245

14 [34] 0.0931 0.1602 0.0032 4.0873 2.2529

6. Simulation Results with Limitation of the Excitation Voltage

The previously conducted optimization of the regulator parameters and the overall
analysis did not consider checking the maximum permissible excitation voltage value that
can be formed when the reference value of the generator voltage is changed. Namely, it is
known from the literature that the maximum allowed value of excitation voltage during
operation ranges from 1.6 to 3 p.u, e.g., it can be from 1.6 to 3 times higher than the nominal
value. However, forcing the excitation voltage to values more than 2 p.u is practically not
desirable because the forcings will stress the magnetic circuit of the machine [2,41]. Due
to the above considerations, an analysis of the excitation voltage values for the regulator
parameters presented in Table 5 was carried out.

Figure 11 shows the excitation voltage responses that correspond to changes in the
generator voltage for parameters determined by the proposed method/procedure (for
the three regulators) and for PIDD2 regulators whose parameters are determined by the
SA-MRFO method shown in [6]. It was seen that when the reference value of the generator
voltage is changed, there is a considerable increase in the excitation voltage when using the
proposed PIDD2 regulator. A similar situation also exists with the PIDD2 regulator from [6].
However, real PID and ideal PID remained within the allowed values. Therefore, if the
limitation of the excitation voltage is also observed, it can be concluded that the parameters
of the PIDD2 regulator are not well chosen because they do not guarantee the safety of the
excitation winding.

For this reason, another procedure to estimate the parameters was executed using the
proposed objective function, modified to monitor the excitation voltage. So, if the excitation
voltage value exceeds a specific limit, the value of the function will provide an infinite
value. Mathematically, the modified objective function (OFn) has the following form:

OFn =


(
1 − e−β

)
· (50OS1 + ESS1) + e−β(ts1 − tr1)+

IAE2 + 10(OS2 + ts2)
if Vexc < Vexc_max for all points

∞ if Vexc ≥ Vexc_max for any points

. (17)

In order to compare with the method presented in [6], the parameters were first esti-
mated for the case that the maximum value of the excitation voltage is 3.505 p.u (maximum
value of the excitation voltage corresponding to SA-MRFO). In addition, parameter esti-
mation was performed for the maximum value of the excitation voltage of 1.6 p.u, i.e., for
the value of the excitation voltage that ensures safe operation when the reference value of
the generator voltage changes. The parameters of the PIDD2 controller obtained using the
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proposed method for two different values of the maximum excitation voltage are presented
in Table 7.
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Figure 11. Excitation voltage response.

Table 7. The optimal values of PIDD2 controller parameters obtained using the proposed method
(SA–GTO).

Maximum Excitation
Voltage Kp Ki Kd Kd2

3.505 4.45574152 5.401661897 1.44405464 0.1020983978
1.600 1.541442548 1.757814635 0.5032448964 0.02383454485

Also, the generator and excitation voltage responses for changes in the generator
reference voltage as well as for step load change (0.5 p.u), are illustrated in Figure 12.
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A few conclusions can be drawn out while observing these results. First, the proposed
method enables better cancellation of the sudden variation of the excitation voltage change,
unlike the method in [6] for the same maximum excitation voltage value. Second, the small
defined value of the excitation voltage causes a slower response of the generator voltage
(increasing excitation voltage cause higher and faster generator voltage rise). Furthermore,
this conclusion is the same as the concluding remarks in [41] about the impact of the
excitation voltage limitation. Third, the small excitation voltage limitation value causes the
generator voltage’s worst response due to the excitation voltage change.

To conclude, the obtained results validate that the proposed parameter estimation
method is potent, efficient, and applicable. Furthermore, the importance of the proposed
procedure, which implies eliminating the excitation voltage, is demonstrated.

7. Algorithm Testing

To show the advantages of the proposed algorithm over other literature-known algo-
rithms, we also proposed algorithms tests in this work. In this regard, we observed two
recent algorithms—the honey badger algorithm (HBA) [51] and GTO [49]. For all algorithm
testing, the numbers of population and iterations are set to 100, and 50 independent runs
are executed. Figure 13 presents the number of runs—iteration number—fitness function
values. Based on this curve, we derived the mean fitness function versus the iteration
number curve shown in Figure 14 for all algorithms.

Additionally, different statistical measures of the algorithm’s results are performed
and presented in Table 8. As can be seen, all tests provide approximately the same measures
(the differences are in some small digits). However, the standard deviation confirms that
the proposed algorithm is the best method for regulator parameter design. The same
conclusion is supported by the results presented for the Wilcoxon test. Based on all the
presented results, it is evident that the algorithm proposed in this study has better statistical
features than others.
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Table 8. Comparison of statistical measures of different algorithms.

Metric SA-GTO GTO HBA

Best 286.792714912089 286.792714912101 286.792714912099
Worst 286.792714912148 286.792714912125 286.792714912130
Mean 286.792714912103 286.792714912110 286.792714912112

Median 286.792714912102 286.792714912107 286.792714912111
Standard deviation 8.76202580780095 × 10−12 9.07623655038029 × 10−12 9.62850632510405 × 10−12

Wilcoxon test results
SA-GTO versus GTO SA-GTO versus HBA

0.0257 0.0091

8. Conclusions and Future Work

This paper deals with determining parameters and the optimal type of regulator in
AVR systems. In this regard, we proposed a new procedure for determining the regulator
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parameters, which considers the step change in the reference value of the generator voltage
and the change in the excitation voltage. Namely, unlike literature approaches, the design
of the regulator aims to cancel the change in generator voltage that may occur in practical
systems. In real systems, the excitation voltage is obtained from thyristor rectifiers, and a
small error in the value of the control angle can lead to major problems in voltage regulation.

The proposed procedure was tested for two cases. First, the parameters of three
regulators were estimated with no limitation on the excitation voltage. The second case also
determines the parameters with these limitations. New objective functions are proposed for
both cases. Besides, a new but efficient algorithm for estimating the parameters of the AVR
contour regulator has also been refined. A unique contribution of the work was formulating
the problem of estimating the regulator parameters as a DISO problem. Accordingly, the
transfer functions of the generator voltage dependence on the generator voltage reference
value and the excitation voltage change were derived.

According to the author’s knowledge, the subject research represents the initial re-
search in determining the parameters of the regulator, which considers variations in the
excitation voltage. Therefore, the potential research constraints are significant. For instance,
future work will be oriented toward developing an AVR system model that considers
possible disturbances on any elements (output from the regulator, sensor, or amplifier).
Therefore, future work will observe the parameter estimation problem as a multi-input-
single-output (MISO) problem. Likewise, it is possible to include non-linear restrictions on
signals according to their realistic appearance.
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agreed to the published version of the manuscript.
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Appendix A

Figure A1 illustrates the hydropower plant (HPP) Piva and the generators in HPP
Piva, Montenegro, where the experiments presented in this work were conducted.
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