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Abstract: Singular systems, which can be applied to gauge field theory, condensed matter theory,
quantum field theory of anyons, and so on, are important dynamic systems to study. The fractional
order model can describe the mechanical and physical behavior of a complex system more accurately
than the integer order model. Fractional singular systems within mixed integer and combined
fractional derivatives are established in this paper. The fractional Lagrange equations, fractional
primary constraints, fractional constrained Hamilton equations, and consistency conditions are
analyzed. Then Noether and Lie symmetry methods are studied for finding the integrals of the
fractional constrained Hamiltonian systems. Finally, an example is given to illustrate the methods
and results.

Keywords: fractional calculus; variational problem; constrained Hamiltonian system; Noether
symmetry; Lie symmetry; conserved quantity

1. Introduction

Fractional calculus is a hot topic lately, the advantage of which lies in its accuracy.
Generally, the results obtained through the fractional order model are more precisely than
those obtained by the integer order model. Fractional calculus has various applications in
almost every field of science and engineering [1-10].

Since Riewe [11,12] found that fractional derivatives can be used to express dissipative
forces, fractional calculus of variations with different fractional derivatives, such as the
Riemann-Liouville fractional derivative [13-15], the Caputo fractional derivative [16,17],
the symmetric fractional derivative [18], the Riesz fractional derivative [19-21], Agrawal’s
new operators [22-24], the combined fractional derivative [25-27], the mixed integer and
fractional derivatives [28,29], and so on [30-36], have been investigated. It is noted that
the combined fractional derivative is more general than most other fractional derivatives.
For example, both the Riemann-Liouville and Caputo fractional derivatives are its special
cases, as well as the Riesz fractional derivative.

In this paper, we plan to investigate the variational problems within mixed integer
and combined fractional derivatives. After the fractional system is established, we consider
the singular case. Singular systems, especially constrained Hamiltonian systems, play an
important part in many aspects, such as the quantum field theory, the condensed matter
theory, and the gauge field theory [37-39].

After the fractional constrained Hamilton equations are established, the symmetry
method is considered. The symmetry method mainly contains the Noether symmetry
method, the Lie symmetry method, and the Mei symmetry method [40-42]. This article
pays attention to the first two symmetry methods. Under the infinitesimal transformations
of time and coordinates, Noether symmetry means the invariance of the Hamilton action,
while Lie symmetry means the invariance of the differential equations of motion. Noether
symmetry can lead to a conserved quantity according to the Noether theory. A Lie sym-
metry can also lead to a conserved quantity under certain conditions. There are two kinds

Fractal Fract. 2022, 6, 683. https:/ /doi.org/10.3390/ fractalfract6110683 https:/ /www.mdpi.com/journal/fractalfract


https://doi.org/10.3390/fractalfract6110683
https://doi.org/10.3390/fractalfract6110683
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://doi.org/10.3390/fractalfract6110683
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6110683?type=check_update&version=2

Fractal Fract. 2022, 6, 683

20f19

of conserved quantities obtained from the Lie symmetry. One is called the Hojman type
conserved quantity, which is deduced directly from the Lie symmetry, and the other is
called the Noether type conserved quantity, which is achieved with the help of the Noether
symmetry. In this article, we discuss the latter one.

For the fractional conserved quantity, there are two definitions. One was given by Fred-
erico and Torres [43], and the other was introduced by Atanackovi¢ et al. [44]. Fractional
Noether theorems have been investigated on the basis of both definitions. For instance, the
works [45,46] were achieved based on the former definition, and the results [30,31,47-52]
were obtained on the basis of the latter one. However, Ferreira and Malinowska [53]
proved that the fractional Noether theorem given in Ref. [43] was wrong through a coun-
terexample. Later, Cresson and Szafraniska [54] made a detailed analysis to explain why
and where the result given in Ref. [43] does not work. Furthermore, they also presented
a fractional Noether theorem following their strategy, corrected the initial statement of
Ref. [43], and achieved an alternative proof of the main result of Atanackovi¢ et al. [44].
There are also several results obtained for the fractional Lie symmetry. For example, Fu
et.al [55,56] studied the Lie symmetry theorem of the fractional nonholonomic system
on the basis of the combined Riemann-Liouville fractional derivative as well as the Lie
symmetry and their inverse problem of the nonholonomic Hamiltonian system in terms of
the Riemann-Liouville fractional derivative. Prakash and Sahadevan [57] gave a system-
atic investigation of finding Lie point symmetry of certain fractional linear and nonlinear
ordinary differential equations. Nass [58] made use of Lie symmetry to solve fractional
neutral ordinary differential equations. Jia and Zhang [21] studied Lie symmetry for the
Birkhoffian system, etc.

In this paper, we investigate the fractional Noether theorem on the basis of Atanack-
ovi¢’s definition for the fractional constrained Hamiltonian system within mixed integer
and combined fractional derivatives, including mixed integer and combined Riemann—
Liouville fractional derivatives (ICRL) and mixed integer and combined Caputo fractional
derivatives (ICC). Lie symmetry with the corresponding Noether type conserved quantity
is another topic in this paper.

This paper is organized as follows. Section 2 provides the preliminaries on the frac-
tional derivatives. Based on the mixed integer and combined fractional derivatives, the
fractional Lagrange equations, the fractional primary constraints, and the fractional con-
strained Hamilton equations are established in Sections 3-5, respectively. Then the frac-
tional Noether symmetry and conserved quantity are studied in Section 6. Lie symmetry
and the Noether type conserved quantity are investigated in Section 7. Section 8 gives an
example to illustrate the methods and results.

2. Preliminaries on Fractional Derivatives

Combined fractional derivatives, which contain the combined Riemann-Liouville frac-
tional derivative and the combined Caputo fractional derivative, are listed below [5,7,19,25,59].

Let f(t) be a function, t € [t1, t,]; then, the combined Riemann-Liouville fractional
derivative and the combined Caputo fractional derivative are [25]

RLDSPf (1) = oREDEF(1) + (~1)"(1 — 7)REDY £(t) (1)
CDYPF(t) = 4 EDEF() + (~1)" (1 — ) SDE (1) @)

where n —1 < &, < n, and « and B denote the orders of the fractional derivatives;
v € [0,1], and < determines the different amount of information from the past and the
future; and RtLl D{f(1), R}Dif(t), (';D‘;‘f(t), and (';szf(t) are the left and right Riemann—
Liouville and Caputo fractional derivatives of f(t), respectively. Their mathematical
definitions are

D0 =ty (&) L -0 0 )
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L0 = gy () [0 e @
SDEF) = o [ (=07 (5 ) A0 ®
LI = gy | €0 () S ©

Under the condition 0 < &, 8 < 1, there are two relationships between Equations (3)
and (5), as well as Equations (4) and (6),

& f(p) — C 1 f)
RtLlth(t)_g:lth(t)_r(l_a) (t_tll)tx (7)

RLHB _Cph 1 f(t2)
D =4D; f(t
t tzf(t) £ tzf( ) + 1—~<1 — ﬁ) (tz _ i’)ﬁ 8
When v = 0 or ¥ = 1, we can find that the left and right Riemann-Liouville fractional
derivatives and the left and right Caputo fractional derivatives are all special cases of the
combined fractional derivatives. Whena = 8, v = 2, we obtain

“Di‘fzfa)—zn;—a)(i) /:v—a"“f( £)de = KD £(1) ©)
DA = gy . - (55) F@aE =080 o)

Equations (9) and (10) are the Riesz-Riemann-Liouville fractional derivative and the
Riesz—Caputo fractional derivative of f(t), which are also special cases of the combined frac-
tional derivatives. Of course, different fractional derivatives can be obtained by selecting
different values of v. When «, § — 1, we have [7]

D} f(t) = —&f(t)

REDHF(H) =5 Dif(t) = §f (1), "FDLf(t) =
RLp®P _ Cpwp _d (11
7 f(8) =Dy f(t) = OTf(f)
where { f(t) means the integer order derivative of f(t).
In addition, the formulae of fractional integration by parts are [19]
-1 ) .
[ Dt = [ fDlslde — X (-1 DY yop i, a2)
j=0

[ ]RLDﬁ dt = D/3 ZRLDﬁJF] n (H)D"~ 1- ][ ] (13)

tl ’7 171‘1 tl

t t .
/G Dt = /t RATASLIE: 2 DRI D ) a4
1 1
j=
. n—1 . X )
[ DL = [ aktDflslde + X (1 EDP D i as)
1 j=0

t n—1 . . .

[ 18Dt = (1) D el = T (-1 IRDET oD i, e
B t] ]:0

[ Dt = -1y [ Dy dt+2 DD i) a7)
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where D = % means the integer order derivative.
In this paper, we assume that 0 < «, 8 < 1.

3. Fractional Lagrange Equation

Fractional variational problems within mixed integer and combined fractional deriva-
tives are studied in this section.

Based on ICRL, the fractional problem of the calculus of variations becomes finding
the stationary function of the functional:

ty .
IrL[ggre ()] Z/t Lre (t/qRL/ qRL/RLDzlﬂqRL)dt (18)
1

subject to given 2n boundary conditions qg; (t1) = qrr1, 9rr(t2) = qgrp, Where

[ti,t2] C R, 0 < B <1, qg = (qri1,qri2. - qrRin), Gre = (i1 9ri2: GRLR)-
Grri = dqrri/dt,i=1,2,--- ,n, RLDi;'ﬁ‘IRL = (RLDg'ﬁQRu,RLDf;'ﬁQRLz,' . /RLny’ﬁQRLn)/
driz = (qrL11,9RI12,* /9RLIn), Grro> = (qRi21,9RL22,°°* ,qRI2x), the Lagrangian

LRy : [tl,tz] XR"xR" x R" - R and qRLi : [tl,tz] —-R,i=12---
to be C? functions.
If gy (+) is an extremal of Equation (18), then we have

,n, are assumed

IRL[qRL + erphri] ’sRL:() =0 (19)

4
degp

where hgy = (hrr1, hri2, -+ hrin), Bre(?) € C2([t, t2]; R"), hre(t1) = hgre(t2) = 0, and

eRr, is a small parameter.

From Equation (19), for k = 1,2, -- - ,n, we obtain

ta [ 9L oL oL
/2 EL - hige KL - hri aI;L 'RLD?;//ShRLk de =0. (20)
i\ 99RLK IRk ORLDL P qrik

On the one hand, using the integer integration by parts formula and the fractional
integration by parts formulae (Equations (12) and (13)) in the second and third terms of
Equation (20), we have

t2 d aL d aL
(amk hR”‘)dt h [ t(aq;LLk 'hRLk) — hrrk - dtaqRL:| o1
= du ]HZ— 2§ 2 pgy )t = — [2 (o 2L )dt
gy RLK =t h \dEoggy, RLk ftl RLE " dF 35, ¢
and
b(_oly _ RLp¥Py )dt
f (aRLDgﬂqRLk v "RLk /5
L
- ftl aRLD"‘%LqR ’ |:’)/R1.‘L1D?hRLk_ (1 _'Y)RtLthhRLk} dt
_ oL RL t 9L RL B
et r)/ftl (BRLDIX{%I;]]( t]DltthLk>dt_ (1_’)/) tl ({‘M% tDchRLk)dt
t=t,
= O RL - (1-0) ol
”{f“ (s Pt gt Jare (%00 s s } )
=h
t=t,
! p__oL RLpy~(1-) oL
—(1 — 2 h .CD D(RL>dt—|: D h tARL:|
( ’Y){ t, \ "RLk " £ EORLD P gy tPt Rk (t) LD e .
= — [2( hgpg - CDP _OLr ) qy B (b ) gy dt - 2LELl2)
tRLk 17;aRLDﬁ/ﬁ’1RLkaL (tr(l “)f (f2 = 1) “hrek ARLD P
)T . _OLre(t)
wipy Jn (E—t) "hredt PO
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ALgy () o oL . RLPy~B
where _O%RLEn) = %(tl, t1), dry (t1),RLD t )
RLDMP g RED g qre(t1), gge (t1) v qre(t1)
dLpr(f2) dLgy (t . RL*B
n = - 2, tr), ty), =D ).
3RLD7"SQRU< BRLDW/ﬁqRLk qre (t2), ggy (t2) ¥ qre(f2)

Substituting Equations (21) and (22) into Equation (20), we obtain

ty | OLRL d OLgL _ CpHPa dLRp Y(bh—t)"" 3Lrp(tp)
J { D +

1| 9ree  dE 9y, 7ﬁ177 aRLDgy”ﬁqRLk I(1-«) aRLDz/ﬁqRLk (23)
- (17321“:/;;) aRaLLI%L"(;;l;Lk ~hgpedt = 0.
It follows from the fundamental lemma of the calculus of variations [60] that
gLRL _ ddLlp, _ Cpbm gy (=) _OLgy(t2)
T LY 1=yoRLp&Pay " T(=a) gRLpMFg, (24)

A==t P ALp(t) I
I'(1-p) aRLD?‘BqRLk - O’ k= 1/ 2/ , 1.

Equation (24) is called the fractional Lagrange equation within ICRL.

On the other hand, using the integer integration by parts formula, the fractional
integration by parts formulae (Equations (14) and (15)), and the relationships (Equations (7)
and (8)) in the second and third terms of Equation (20), as well as the fundamental lemma
of the calculus of variations [60], we obtain

aLRL d aLRL —RLDﬁ'a aLRL

- ————=0,k=12,--- ,n. (25)
IRk dEdqgpy VARLDY gk

Equation (25) is also called the fractional Lagrange equation within ICRL. Equations (24)
and (25) are two different forms.

Remark 1. Wheny = 1, Equation (25) reduces to the fractional Lagrange equation within the
mixed integer and the left Riemann—Liouville fractional derivative, which is consistent with the
result in Ref. [29].

Similarly, based on ICC, the fractional problem of the calculus of variations becomes
finding the stationary function of the functional:

ty '
lelacO) = [ Le(tac ae, DyPac)dt 26)
1

subject to given 2n boundary conditions q.(t1) = gy, 4c(t2) = ¢y, Where [t1, 1] C R,
0 <wap<1qc= (qc1.9c2 " ,qcn), dc = (der-9c dcn) Gci = dqei/dt, i =
1,2,---,n, CDI;’ﬁqc = (CDE;'ﬁQCl/CDfC/ﬁQCZr' x rCD?;/ﬁan)/ dc1 = (qcitqc12, -+ qcn),
deo = (qco1,9c22, -+ ,qcan), the Lagrangian Lc: [t;, ] x R" x R" x R" - R and
gci : [, t2] = R,i=1,2,---,n, are assumed to be C? functions.

If g (-) is an extremal for Equation (26), then we obtain

Olc _dOdLlc rippa _Olc o1, 27)

oqcr  dt 9y I-y aCDf;/ﬁqck

Equation (27) is called the fractional Lagrange equation within ICC.
Of course, we can also give another form of the fractional Lagrange equation within
ICC, which we only refer to briefly here.

Remark 2. Wheny = 1, Equation (27) reduces to the fractional Lagrange equation within the
mixed integer and left Caputo fractional derivative, which coincides with the result in Ref. [28].
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Remark 3. Equations (24) and (27) are the two main fractional Lagrange equations obtained in this
article. The combined Riemann—Liouville fractional derivative and the combined Caputo fractional
derivative are general and universal because of vy, so we can obtain different results by selecting
different values of 7.

4. Fractional Primary Constraint

If a Lagrangian system is singular, then some inherent constraints exist when the
Lagrangian system is represented by a Hamiltonian system. Fractional primary constraints
within ICRL and ICC are presented in this section.

For Equation (24), the integer generalized momentum, the fractional generalized
momentum, and the Hamiltonian can be defined as

dLgr (t/ qRrr 9RL RLD:IBqRL) dLRL (t, dRrL 9RL/ RLD‘;'I;‘?RL)
p(a,ﬁ) _

, PRIX = , (28)
aRLDf;"BQRLk

PRLKk = -
IRk

HRrr = prixdrix + Pg‘i? : RLDi’ﬁqRLk — Lgr (t/ qRrLs ’:IRL'RLD?’;”]RL) (29)

In this paper, we assume that RLDi”quL = URL (t, qRL,qRL,pgiﬁ)), which means

RLDﬁ’ﬁ qg;, can always be described by the function ur;, depending on the elements of ¢, g,

qgr and ngiﬁ)f where Pgiﬁ) = ( l(zaL'li)r szaig)f' T P%g))' uRrr = (URL1, URL2, "+, URLR)-

The element Hgy;; of the Hessian matrix [Hgy;] is defined as

9Ly ,
HRLij = 3 L l/] = 1/2/ R (S (30)
aqRLiaqRLj
If det[Hgy;j| # 0, then the Hessian matrix [Hgy;j] is called a nondegenerate matrix,
and the corresponding Lagrangian Lg; is called a regular Lagrangian. In this case, gz,
k=1,2,---,n, can be expressed by a function that depends on the elements of ¢, qg;, qg;,

and pg"ﬁ ) from Equation (28). If det[Hgj] = 0, then the Hessian matrix [Hgp;;] is called a
degenerate matrix, and the corresponding Lagrangian Ly, is called a singular Lagrangian.
In this case, we assume that rank[H RU]'] = R, and we know that 0 < R < n. Then we
divide R into two cases to discuss, one case is 1 < R < n, and the otheris R = 0.

When 1 < R < n,ie, only qz;,, ¢ = 1,2,---,R can be determined, while é]RLp,
p=R+1,R+2,---,nare random. From Equation (28), qz;,, & = 1,2,---,R can be
expressed as

Arre = fRL (t/ qRLrPgL'ﬂ)IPRLArQRLB)/ c=12---,R, (31)
o (8)
. «, .
qrLA :fAﬁL (t, qrL PRL /PRLA- qRLB)' (32)
Whel‘e PRrrA = .(pRLllpR.LL' o IPRLR)r PRrLB = (PRLR+1,PRLR+;, s rpRLn)/
qdRrLA = (9re1,GRI2 " quLR)f qRLB = (qRLR+1/qRLR+2/ T /qRLn)’ and

fﬁL = (fi;, f3., -, f& ). Substituting Equation (32) into Equation (28), we have

Prik = &rikl|t qRL,i]RL,RLD';'ﬁqRL) = §RLk (t, drr 9RLA/ QRLB/P%B‘L@)
= grik (B are fRL (t, qRL/PgI:ﬁ)/pRLA/ qRLB)/ qRLprl(:I:ﬂ)) (33)

. x,B)
= 8RLk\ t dRL PRLA IRLB PRL )
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Whenk =1,2,-- -, R, Equation (33) obviously holds, while whenk = R+1,R+2,--- ,n,
grrk will not depend on g p; otherwise, it contradicts the assumption rank|[Hgp;;] = R.
In this case, we have

PRLp = &RLp (t/ qRL/pRLA/PI({‘XI:ﬁ))/ 0= R+1,R+2,.--,n. (34)
For simplicity, leta = 1,2, - - ,n — R; Equation (34) can be written as
PRLa (t/ qRL’pRL/pI(:L,ﬁ)) = PRLa — &RLa (t, qRL/pRLAfpl(:I:ﬂ)) =0. (35)
When R = 0, we can obtain
4)RLu (t/ qRL/ pRL/ pl(:iﬂ)) - 0/ a= ]-/ 2/ (2 (36)
Therefore, from Equations (35) and (36), we have
¢RLa(t,qRL,pRL,p§§‘L'ﬂ)) =0,a=12-,n—R 0<R<n. (37)
Equation (37) is called the fractional primary constraint within ICRL.

Similarly, for Equation (27), the integer generalized momentum, the fractional general-
ized momentum, and the Hamiltonian can be defined as

dLc (t, dc qc CDDA;'ﬂqc> (5B _ dLc (t, ac9c CD?//S‘?C)

: , (38)
Mk * aCD5 ey

Pck =

HC = kaqck + Pg;éﬁ) : CDilﬁqu - LC (t, Ul qC' CDzlﬁqC)/ k= 1,2,---,n, (39)

and we can also obtain the fractional primary constraint within ICC
pca(tacpere®)=0a=12- ,n-RO0<R<n, (40)

where pP) = (Pév‘l’ﬁ),pé“z’ﬁ)w . ,Pé“f)),ﬁc = (pc1,pca -+, Pcn)-

Remark 4. The fractional primary constraints (Equations (37) and (40)) come from the definitions of
the integer generalized momenta (Equations (28) and (38)) rather than the fractional Euler-Lagrange
equations (Equations (24) and (27)).

Remark 5. From Equations (37) and (40), the fractional primary constraints within different
fractional derivatives can be obtained due to the various values of .

After the fractional primary constraints (Equations (37) and (40)) have been investi-
gated, we begin to express the singular systems (Equations (24) and (27)) in the form of the
Hamiltonian description.

5. Fractional Constrained Hamilton Equation

We begin with the fractional constrained Hamilton equation within ICRL.
On the one hand, taking isochronous variation of the Hamiltonian (Equation (29)) and
using Equation (28), we have

. oL
SHRL = qpux - Oprik + 0p\rt) RLDYP g — ﬁéqm, k=1,2,---,n.  (41)
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On the other hand, it follows from Equations (28) and (29) that the Hamiltonian
Hgp = Hgp (t, qRL,pRL,pgiﬁ)» therefore,

oHgp OHgp JOHgp (w,8)
0Hpp = -0 4+ —4 + ,k=1,2,- n. 42
RL= 5 qRIK PRLr PRLK %Q) OPrik (42)

It follows from Equations (41) and (42) that

. OHpr RLyaB. OHRL wp) _ (9LrL , 0HRL _
(1 m)‘s*’w( Dy k=0 oy | PRI g+ gy )01 O )

Making use of Equations (24) and (28), the term dLg; /9qgr1x in Equation (43) can be

replaced by Prik T CDl ,ypg‘Li) W(Ft(zl ti) pgﬁ)( ty) + %pgﬁ)( 1); therefore, for

k=1,2,---,n,wehave

(qRLk apm) Opr Lk+< DY g — a;ﬁ) opit) — [pRLk—i_CDf“ypg‘Li)

th—t)"% (a, 1 B (a
7(T(z )) P%Lf)( )+(73§ﬁ))f’§u§)(tl)+aq$]5%u0

When the system (Equation (24)) is singular, because of the existence of the fractional

primary constraint within ICRL (Equation (37)), we cannot let the coefficients of dpgyx,

1) pg‘ii), and dqpryy in Equation (44) be equal to 0. The fractional primary constraint within

ICRL (Equation (37)) should be considered. Taking the isochronous variation of Equation
(37) and introducing the Lagrangian multiplier Ag,(t),a =1,2,--- ,n—R,0 < R < n, we

have

OPr oPr

AR GEELE S+ Aria SR - s+ Avia i o) =0. (49
qRL PRL aplh

RLk
It follows from Equations (44) and (45) that
. _ _0H PR La (a,B) ty—t (a,B)
Pros = Gk~ Aesagints ~ DI, i Mf S PRik (1)

1— - OPRLa
— o) ? e park (t), REDYP qpp = ; S+ ARLa e g, PR (46)
RLk PRLK

: _ 9H IPRL _ _
QRLk_a;aﬁ"')‘RLaapRLZ/ a=1,2,---,n—R,0<R<n k=1,2,---,n

Equation (46) is called the fractional constrained Hamilton equation within ICRL.
Similarly, we can also obtain the fractional constrained Hamilton equation within ICC:

) . — _9Hc _ 9ca _ RL ﬁw (a,8) 9Hc Apca
Pek = ~dac )\Ca” 9qck WPCk rdck = dper +A a9pck” 47)
Dy qer = 20 + Acoz sy a =1, % o ROSR<m ko 12 n
Ipcy apey

Remark 6. From Equations (46) and (47), different fractional constrained Hamilton equations in
terms of fractional derivatives can be obtained due to the various values of .

It follows from the methods introduced above for establishing fractional constrained
Hamilton equations that the Lagrangian multipliers are the key points. In other words,
Lagrangian multipliers must be calculated before establishing the fractional constrained
Hamilton equations. Lagrangian multipliers can be calculated through the fractional
Poisson bracket, which is presented as follows:
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Let F = F (t, q, p,p(”‘/ﬁ)), G = G(t, q, p,p(“'ﬁ)); we define the fractional Poisson

bracket as SOF 3G oF 3G
F,G} = — k=1,2,- 48
tFG} 99 Opx  Opk 9qx” (48)

where q= (511/ q2,- - /‘7n)/ P = (Plz P2, /Pn)/ P(a”B) = (Pga'ﬁ)/ Pga'ﬁ), ce ,p;(qa,ﬁ)). Then,
from the fractional primary constraint within ICRL (Equation (37)) and the fractional
Poisson bracket, we have

dprL & (a, - (g,
ARLbAPRLas PRLD} + {PRLa HRL} — aﬁiék : {CD{B “W%“Li) - 7(rt(zl—ti) F’%i)(m

1—7)(t—t w, PrLa | O a~(,)
+( in—ﬁ)l) PI(QLi)( H)| + <PRL + <PRL wp —0,

(49)

RLk

where a,b = 1,2,--- ,n—R, 0 < R < n, k =1,2,---,n. Equation (49) is called the
consistency condition of the fractional primary constraint within ICRL.

Similarly, from the fractional primary constraint within ICC (Equation (40)) and the
fractional Poisson bracket, we have

9Pc, 4 9Pca 9Pca
Aco{¢cas Pcb} + {Pca, He} — ﬁgk RLDfNYP(CDZﬁ)vL Mo p¢c P(coﬁcﬁ) =0, 50)
Ck
a,b=1,2,---,n—R, 0<R<n k=1,2,--

Equation (50) is called the consistency condition of the fractional primary constraint
within ICC.

If det[{¢rre Pris}] # O (resp. det[{¢co ¢cp}] # 0), a,b = 1,2,--- ,n —R, and
0 < R < n; then, all the Lagrangian multipliers can be calculated from Equation (49)
(resp. Equation (50)). If det[{¢rrs, Pris}] = O (resp. det[{¢pc,, pcp}] = 0), we assume
rank[{$rrq, Prp }] = m (vesp. rank[{¢pc,, dcp}] = m), m < n—R,and 0 < R < n; then,
new constraints will be deduced because n — R — m Lagrangian multipliers cannot be
determined. The new constraints are called fractional secondary constraints, which arise
from the consistency conditions of the fractional primary constraints. Then, the consistency
condition of the fractional secondary constraints may also lead to some new fractional
secondary constraints. However, for a system with finite degrees of freedom, no new
fractional secondary constraints will be produced after a finite number of steps.

If we cannot solve all the Lagrangian multipliers, then the fractional constrained
Hamilton equation within ICRL (Equation (46)) (resp. ICC (Equation (47))) is invalid. In
this case, there is another way to construct a significant fractional constrained Hamilton
equation within ICRL (resp. ICC). We only refer to it briefly here.

6. Noether Symmetry and Conserved Quantity

Noether symmetry means the invariance of the fractional Hamilton action under
infinitesimal transformations. Noether symmetry always leads to a conserved quantity.

Definition 1. A quantity C is called a conserved quantity if and only if dC/dt = 0 holds.

6.1. Noether Symmetry and Conserved Quantity within ICRL

Hamilton action within ICRL is defined as

f
Irp = /t {pRquRLk + piit) - DY Pqrex — Hre (i, qRL,pRL,ng"”)} dt. (51)
1
The infinitesimal transformations are given as

t=t+ At Grp(f) = qrie(t) + Aqrks Prix(t) = proxc(t) + Aprik

' (52)
P%Li) (f) = P%Li)( )+ Apg‘uﬁ(), k=12 ,n,
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and the expanded expression of Equation (52) is

t=t+ 9RL§RL0 (t qRL'pRL/p%Lﬁ ) +0(6re),
Trox(t) = ) +ORLER LK (f qRL/PRprl(zLﬁ)) +0(OrL),
PRLk( ) = Pruc(t) + ORLYRLK (f qRprRL'pl(zL'B)) +0(0rL),
PRLk ( ) ﬁ

(53)

rik (£ + GRLWI(?L/? (t, qRL/pRprgzL‘B)> +0(6re),
where 0| is a small parameter, Crro, Srrk, HrLE and 4 1(;2’:’ ) are called infinitesimal genera-
tors within ICRL, and o(fgy ) means the higher order of ;.

The Hamilton action within ICRL (Equation (51)) changes from Ig; to Ig; under the
infinitesimal transformations; denoting as Alg; = Igp — Igy, without considering the
higher order of 0y, we have

Algy = QRLftl [Pl - *ED5P (Eres iiRLkCRLO) + (P%“L'i) REDSPgrui = Hre ) Erio
+PriCRLE + (p%Li) dRLDY PRk RL)CRLO aqRLk LCRrik + ARLa aiﬁii NRLk

(p)
+ARLaa¢'iLﬁ” ’71(sz) + qrek(t2)Creo(f2) - (r(l%%(tz —t)7P
pRL

(0‘//5)
~gras{t)Eraotn) P 4 1)t

(54)
where Grro(t1) = ¢RLO <f1,qRL(fl),PRL(f1),P1(:iﬁ)(ﬁ)) and
$reo(t2) = Grro (tz,‘IRL(tz),PRL(tz),m(:iﬁ)(tz))~

Let Alg; = 0; Equation (54) gives
P%’i) -RLDi’ﬁ (CRLk — qrxCrL0) + (Pz(z“ii) RLDa/ﬁqRLk - HRL) - Erio
+PRLKSRLE — aqRLk LeRrik + (P%Lk) $RDy ﬁq RLk — RL)CRLO

(55)

) 5
—qrik(t1) - Creo(t1) - (pr") dt—t)+ /\RLﬂﬂz(zaLf) ajzf)
(- )P%Lk) d _ P—o
nrek + qrek(f2)Crio(f2) - —a—py =g (2 — 1) 7 = 0.

OPRLa
OpRLK

+ARLa

Equation (55) is called the fractional Noether identity within ICRL.

If the infinitesimal generators {rro, Crik, /RLK, and 4 1(;25 ) satisfy Equation (55), then

the corresponding infinitesimal transformations are called Noether symmetric transfor-
mations in terms of ICRL, which determine the Noether symmetry. Therefore, we have
the following:

Theorem 1. For the fractional constrained Hamiltonian system within ICRL (Equation (46)), if

the infinitesimal generators ¢rro, CrLk, RLK, and ;71(&’5) satisfy Equation (55), then there exists a

conserved quantity:

CrL = (Pgﬁ;{? -RLDY ﬁﬂRLk - HRL) CrLO + ftl{pRLk) RLDi'ﬁ (Erik — drixCRLO)

| : o
+(Erue = dpuiruo) | DY vr’%ﬁ)—%lﬂ%@(tzw% (56)

ngXLi)( )} }dT_qRLk tr) ngfoil ftl PRLk & (r—t)""dT + prislrix
+qrek(t2)Creo(t2) F(l 0 ftl PB4 (1, — 1) Pdr
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Proof. Using Equations (37), (46), and (55), we have
drt = (szaii) : RLDz'ﬁQRLk - HRL) Erio + ERLO (P%’i) : RLD?;//SqRLk + P;?L'i)
oH oH OHgy ; oHg; . (%p)
x SREDPapyy — 20 — dgr IRLE ™ dpmes PRLK — apzﬁ SPRik ) + Ptk
XREDS (14 — Gpiadiio) — Grue(t) RO p i) (= 1) ™ + (Gru
: bt 1—q) (¢t
—qrxCRL0) [CDf W%Li) 7(r(2 )) PI(?Li)( f2) + Wﬁzf“l)]
+Prix€rik + PRuERLE + ARLE(F2)ER10 (F2) 7 (=) PR Sty — 1) F
o . PRI
= _)\RLaWI({Lllj) a;ﬁﬁa — ARLa"lRLK aiﬁék + CRLO (_qRLkPRLk + ARLaPRIK aiﬁik)
OPRLa ~
+ERLOARLAPRE a:ﬁ; (CrLk = driiRe0) <*PRU< — ARLa aqm) + ProxGRLK
= —ARLa §¢RL“ 5P§3L€) ARLa aﬁgfz OqrRrk — ARLa ai;; - OPRLK
RLk
= —ARLa - OPrLa =0
O
6.2. Noether Symmetry and Conserved Quantity within ICC
Hamilton action with ICC is defined as
ty .
Ie = /t [pckqu +p&P - DY qck - Hc(t,qc,pc,p(c“ * ))} dt (57)
1
The infinitesimal transformations are given as
E=t+AL q)Ck( ) = fe I)c () +A‘1%kr )fczc (£) = pek(t) + Apck, (58)
p(c‘;’g () = p“k (1) —I—Apc"‘k’ﬁ L k=1,2,---,n,
and the expanded expression of Equation (58) is
t=1t+460clco (f qC,PC,Pg"'BU +o(6c)
G (F) = qci(t) + 6cGer (140 pe PP ) +olec) 59
Pex(F) = per(t) + fcrck (t G Pope ﬁ)) +o(6c)
el (B) = p&P 0 + 0P (tacpe pEP) +ol6c)

where 0¢ is a small parameter, ¢, ¢ck, Hck, and 178(’5 ) are called infinitesimal generators

within ICC, and 0(6¢) means the higher order of 6c.

The Hamilton action within ICC (Equation (57)) changes from I¢ to I¢ under the
infinitesimal transformations; denoting as Alc = I — I¢, without considering the higher
order of ¢, we have

Al = 9cf:2 [PCk P)CDSP (Eck — Gerleo) + (P(cozﬁ) 'CDa"SQCk - Hc)éco
+pelor + (p(ck’g) I yﬁq k— tC)Cc ankt_fczHr CaakaUCk

()
_qu(tl)‘;’CO(tl)W(plea)(t_tl) + Aca aq)f% W(Ck)
aka

(60)

: 1—)p&P) _
+qcx(t2)¢co(t2) - %(tz —t) ﬁ} dt
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where Sco(t1) = ¢co (h#c(ﬁ)ﬁc(ﬁ%l’g"ﬁ) (t1)>r
Coo(tr) = Eco (tz, qc(tz),pc(tz),pg"ﬂ)(tz)). Let Alc = 0; Equation (60) gives

peréer + Pgéﬁ) : CDM (Cex — qckico) (Pékﬁ) Dy ﬁﬂCk - Hc)éco
- 355 Gk +Aca a?gz ek + (P(Ckﬁ) £€Dy /5 >§c0

, (@p) B
~iex(h) - Geolt) - s (= ) “+—ACa;ﬁfz nékﬁ>
Ck

. 1—7)plP) _
Fice()Zeolta) - Crisi= (= )P =0,

(61)

Equation (61) is called the fractional Noether identity within ICC.

If the infinitesimal generators Gco, Cck, Hck, and 17((:0;("S ) satisfy Equation (61), then the

corresponding infinitesimal transformations are called Noether symmetric transformations
in terms of ICC, which determine the Noether symmetry. Then we have the following;:

Theorem 2. For the fractional constrained Hamiltonian system within ICC (Equation (47)), if

the infinitesimal generators Cco, Cck, ek, and ﬂ((:p,i'ﬁ ) satisfy Equation (61), then there exists a

conserved quantity:

Cc = pckbek + (P(cozﬁ) : CDa'ﬁ%k - HC) Gco + ftt [P(cpzﬁ) ‘D a'ﬁ (§Ck — qexbeo)

+(Eck — dexeo) - REDP yp(coﬁcﬁ)}df Ger(t 75%”‘23% Pg;(ﬁ ) dt (62)
+‘1Ck(t2)§co(f2)r(11 (Vﬁ ftl ka (2 —7)" ﬁdT

Proof. Using Equations (40), (47), and (61), it is easy to obtain

— pckgck + Pckgck + (p(ckﬁ) : CD?/'chk - HC)éCO + gCO (_ ?t a{%i‘ick

+p(Ck/5) -CDYPger+ p(Ck‘B) - $DYP gk - e Pek — ap ofe. P(cakﬁ)) + P(cp;cﬁ)

Cck
Yco(tr)  ( /5)( tl)i

D5 (Eex — dexbicn) — de() FRET P + (Sex = dexbeo)

X

RLDl 'ypék Py QCk(tZ)’?CO(tz)r(ll_,ﬁ) P(ciﬁ)(fz —t)7F

Y ) 9 a , 9 a
= perber +Ecop - Aca affﬁ + CcoPek (_qu +Aca ai;)

+ (§Ck —dcxbeo) (_PCk Aca a?;g,f) —Aca aigz nck — ACa o u,s ’782!3)

(D‘ ﬁ) (PCa
Pck

ACa o ,X, (SP )\Cua “Opck — ACa ank “0qck = —Aca - Opca =0

Ck

O

7. Lie Symmetry and Conserved Quantity
7.1. Lie Symmetry and Conserved Quantity within ICRL

Lie symmetry means the invariance of the differential equations of motion under
the infinitesimal transformations of time and coordinates. We begin with the fractional
constrained Hamilton equation within ICRL.

We wrrite the fractional constrained Hamilton equation within ICRL (Equation (46)) in
another form:

qRLk - SRLk (t/ qRL/ pRLrp;{ai‘B))/ k == 1/ 2/ e, n, (63)
RLD?;/ﬂqRLk = hRLk (t/ qRL/ pRLrp;{lXi‘ﬁ))/ k = 1/ 2/ e, n, (64)
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Pruk = — Dy~ ypz(z“Li) + frik (f, qRL'pRL'pEQNILﬁ))I k=12, ,n. (65)

Then we study Equations (63)-(65) under the infinitesimal transformations (Equation (53)).
For Equation (63), we have

TRk — SRLK (f qRL/pRL/pI(ILﬁ)> = (RLk — SRLK (t, qRL/pRL/pI(éXL/ﬁ)>

0) (66)
+6RL |ERik — TriRL0 — XRL(SRLk)}
whereX(O)zé,r 9 4 FRLia— + NRLi 5o @) _0 i _1,2,... 1 ForEquation
RL RLO ot RLi aqRLi 17RLZ apRL URLI 9 %D‘Lﬁ) i s q
(64), we have
zﬁ‘YRLk hRpk (tlﬁRL/ﬁRprl(:iﬁ)) = RLDg'ﬁQRLk — hrrk (f/ qRL/pRLIPI(;I:ﬁ))
+0rL [RLD[X"S (8rek — GrexGrr0) + CRLO%RLDa'ﬁL]RLk - 1@2 (hrrk) (67)

—QRLk(fl)%?LO(t;)d (t—t1)" +‘1RLk(f2)CRL0(t2) (1 ,5) dt(tz t)_ﬂ}
For Equation (65), we have

Prx + Df 7p§€Lk fRLk(f qRL'pRL/pI(QLﬁ)> = Prox + Df fyPEQLi)

—fRrk (t/ qRL/pRL'pI(QLﬂ)) +6rr [77RLk — PruCrI0 DM (’71(20216) - f’RLk R LO)

—7r(11_j,g) (t— fl)_ﬁpgii)(fl)ﬁmo(fl) + Erio F DY ,ypgﬁ)

iy (B2 — £ pirk (02)Erio(t2) — X (fRLk)}

(68)

For the fractional primary constraint (Equation (37)), we have

PRLa (tﬁRL,T?RL,T?gL'ﬁ)) PRLa (t ‘IRL,PRL,P%L[;)) + 9RLX1(QOL)(<PRLa)- (69)

From the definition of Lie symmetry, we obtain
ik — TrikérLo — XK1 (SRik) = 0 (70)
Crik — GrrxSrro — Xgp (Srik) = 0,

RLpy (‘:tRLk - qRLkCRLo) + Ero S REDy ﬁﬂRLk - 1({OL) (hRrrk)
_QRLk(tl)’%ﬁm(a;) St — 1) ™" + qrux(f2)Ereo () (1_7;3) d—nF=0o,

D (’71(&5) ~ PRk gRLO) + Erro SCDA w%ﬁ) X0 (frex)

iRk — PricCRLO — (1 ,g)(t —t)" ‘BP%Li (t1)Cr1o(t1) (72)

e (=) P%Lk( t2)Crio(t2) =0,

(71)

and .
X\ (prra) = 0. (73)

Equations (70)—(72) are called determined equations within ICRL, and Equation (73) is
called the limited equation within ICRL.

However, if we consider the deduction process of the fractional constrained Hamilton
equation (Equation (46)), an extra additional limited equation,

OPRLa ~ OPRLa : OPRLa , - (a,8)
kL (gRLz JrriCRI0) RL (nrLi — PreiGRI0) + ap(”"’” (771(&?) - PR“L? §RLO) =0, (74)

RLi

needs to be exposed on the infinitesimal generators.
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Definition 2. For the fractional constrained Hamiltonian system, if the infinitesimal generators
satisfy the determined equations, then the corresponding symmetry is called Lie symmetry.

Definition 3. For the fractional constrained Hamiltonian system, if the infinitesimal generators
satisfy both the determined equations and the limited equation, then the corresponding symmetry is
called weak Lie symmetry.

Definition 4. For the fractional constrained Hamiltonian system, if the infinitesimal generators
satisfy the determined equations, the limited equation, and the additional limited equation, then the
corresponding symmetry is called strong Lie symmetry.

Lie symmetry can lead to a conserved quantity under some conditions.

Theorem 3. For the fractional constrained Hamiltonian system within ICRL (Equation (46)), if the

infinitesimal generators Crro, Crik, RLK, ANA 171(;2’5) satisfy the determined equations (Equations

(70)—~(72)) and the structure equation (Equation (55)), then there exists a Lie symmetry conserved
quantity (Equation (56)).

Theorem 4. For the fractional constrained Hamiltonian system within ICRL (Equation (46)), if the

infinitesimal generators Grro, CrLk, YRLK ANd 771(20(1:5) satisfy the determined equations (Equations

(70)—~(72)), the limited equation (Equation (73)) and the structure equation (Equation (55)), then
there exists a weak Lie symmetry conserved quantity (Equation (56)).

Theorem 5. For the fractional constrained Hamiltonian system within ICRL (Equation (46)), if the

infinitesimal generators Crro, Crik, YRLK, ANA 171(&’5) satisfy the determined equations (Equations

(70)~(72)), the limited equation (Equation (73)), the additional limited equation (Equation (74)), and
the structure equation (Equation (55)), then there exists a strong Lie symmetry conserved quantity
(Equation (56)).

7.2. Lie Symmetry and Conserved Quantity within ICC

We write the fractional constrained Hamilton equation within ICC (Equation (47)) in
another form

ok = Sck (f/ ‘Iol’opg'ﬁ))/ k=12---,n, (75)
CD?ﬁ%k = hcy (t/ qc/Pc/Pg’ﬁ)>/ k=1,2,---,n, (76)
por = DU PGP + e (g pepEP) k=12, n. 77)

Then, similarly, we can obtain the determined equations within ICC
x _ai o xO -0 78
Sck —qekbeo — X¢ ' (sc) = 0, (78)

cpy’ (tﬁoc ‘JCkffco) +8co$ DY ﬁ‘kk — X (he)
—ce(h) FE (= 1) + i (B)Eco () iy (= 1) P =0,
ek — Peeo + KD s (Wc(:o;cﬁ) - e ) X9 (fr)
+co s RLDf “WP(C”;’” - 1"(11_/5) P(Ck (h)Eco(t) S (t—t)F (80)
+ el ()G () § (1 — )™ =0,

the limited equation within ICC

(79)

X (gey) =0, (81)
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and the additional limited equation within ICC
9Pc, : 9¢ca . 9¢ca ap) - (xp) _
s (Gci = dcibeo) + %(’70 — Peifeo) + apg‘ ) (’7 —pei G ) =0, (82
where X = el T Zcig 39 Tci apa + 77( )apiﬁ) =1,2,---,n. Therefore, we have
Ci

PRrL1

szaLg)

the following:

Theorem 6. For the fractional constrained Hamiltonian system within ICC (Equation (47)), if the in-

finitesimal generators ¢co, Cck, Yk, and n(coli’ﬁ ) satisfy the determined equations (Equations (78)—(80))
and the structure equation (Equation (61)), then there exists a Lie symmetry conserved quantity
(Equation (62)).

Theorem 7. For the fractional constrained Hamiltonian system within ICC (Equation (47)), if the in-

finitesimal generators Cco, Cck, Yk, and 178‘(’/S )satisfy the determined equations (Equations (78)—(80)),
the limited equation (Equation (81)), and the structure equation (Equation (61)), then there exists a
weak Lie symmetry conserved quantity (Equation (62)).

Theorem 8. For the fractional constrained Hamiltonian system within ICC (Equation (47)), if the in-

finitesimal generators Cco, Cck, Yk, and 778{”5 ) satisfy the determined equations (Equations (78)—(80)),
the limited equation (Equation (81)), the additional limited equation (Equation (82)), and the structure
equation (Equation (61)), then there exists a strong Lie symmetry conserved quantity (Equation (62)).

8. An Example

The fractional singular system is

. . 1 2
LRL = Grp19R12 — GRL1GRL2 + GR11 + TRi2 + 5 {(RLD?;/ﬂQRLl) (RLD ﬁEIRL2> } (83)

and we try to study its Noether symmetry and Lie symmetry.
From Equations (28) and (29), we have

_ Olpp _ _ Ol _ (ap) _ _ dlgg RLD B
i IRL2 PRL2 = 55 qrRL1, PRi1 ARD P g, n qRrL1, &
_ oL :RLDﬁ Hpr — (( )) ((aﬁ)) 2 2
LD s qrL2, HARL = 2 Pri1 Prr2 qrr1 — 9RL2:
Then Equation (30) gives
H _ PLg, 0. H _ PLg, 0
RL11 = 57—, = U HARL12 = 573,57 =
‘1R51 qRrL1 ‘iRal qRr12 (85)
Hppp = =258 = 0, Hpppp = 52 LR =
99Rr299RL1 99R1299RL2

Namely, R= rank [Hgy;;] = 0; then Equation (37) gives two fractional primary con-
straints:

¢rr1 = pre1 — qr2 = 0, ¢r12 = PrI2 +qRE1 =0 (86)
From Equation (49), we obtain
o (a, )" (a, -N(t-t)P _(a,
ARL1 = _QRLZ“‘%[CDlﬁ 7P§<L§) 7(;(2 )) P%Lg)(fz) + 4 %t_ t)l) P%Lg)(ﬁ)], &)
_ ) B
ARL2 = qRL1 ~ 3 |:CD1 " PREY L t)) pri (t2) + g e pgﬁ)(h)}
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Then, making use of Equation (46), the fractional constrained Hamilton equation
within ICRL can be obtained as

PrL1 = qRL1 — % fayp%/? W(rt(z t)) PE%L?(U) + %P%ﬁ)(tl) ’

Pri2 = qRL2 ~ 3 CDﬁ aypguz) W(Z t))al’z(ng)(h) + %P%L’g)(h) ’

Gre1 = —qRi2+ 3 favp%g) (F(lfi) ngLg)( k) + %Pgﬁ)( )], (88)

draa = e — 3| CDP ) — T e ) + O o),
RLDvﬁQRLl = Pg‘i?)/ RLDY gy = P%Lz) _

The Noether identity (Equation (55)) gives

Pt - REDYP (Ere1 — dgp18re0) + Piis. - RoDYP (Eri2 — drpo€Reo)

+{ {(Pgﬁ)) (ngLg)) } +ak + ‘ﬁaLz} - Ereo + PRuCRL1 + PRI2CRL2

+qre1¢re1 + qri28R12 + (szu)cclitRLD ﬁqRL + PE{LZ) dtRLD ’

(@) ()
—qrra(t1) - Srro(t1) - ?{’1“;) St =) = qria(t1) - Sreo(f1) - 3{?2;

q u (a=ph
X (b= )" + Ariiyrir — ARLUIRE2 + qRE1(£2)R10(F2) - = p

(a,p
x $(t2 = )P + qria(t2)Erro(t2) - %g‘t(t - F=0

L]RLz) ¢RLO
(89)

Then we can verify that

¢rro = —1, Crr1 = Gri2 = 0, rr1 = r12 = 0, and Ul(gai'f) 771(525) =0 (90)

satisfy Equation (89). Therefore, from Theorem 1, we obtain a conserved quantity:

CrL = — {(Pgﬁ)) (P%’?) } Tre1— qRL2+ft1{pRL1)C?TRLD’Y IR

t '3
"’%RLDM‘iRLz P%Lg)‘ﬂhzu [ fkypgﬁ) W(ré T)) P%“Lq)(tz)

(=t P (a, « 1)
i~ ,p(giﬁt)]) pgng)( l)] + qRra - [_ ry(rtf T)) P%Lg)(tz)
+CD}" 'ypl(éng) (_ﬂp(%))ﬁgug)( 1)} }dT
Equations (70)—(72) give the determined equations
Err — ri1brio = —€RLOS [szLz(fZ)%] — CRL2,
Err2 — dralRrio = CRLOG {2PRL1(t2)(tz(7t)} +CRrr1,
Df (&re1 — drr18reo) + GrLo s, DiqrL1 — m‘]RLl(tl)gRLO(tl)dt(t —t) "= URLl),

,, D¥(8re2 — Gri2€RrL0) + ERL0Sr, D qRI2 — (11 ) qri2(f1)Erio(b) S (t— 1) ™" = ’7RL2 , ©2)

ki1 — Prialrio — ERLOSED p%u) D (171(&?) - PRL1)§ LO)
+rimay (2 — D i (t2)ERro(t2) = gRLOat[zpl(le)(fz)(?( J “} + Cr11s

MRz = PriaCRi0 — ‘:RLO%EDQP%LZ) D¢ (771(2025) - PR“L[;)@RLO)
+ray (2 — B by (12)Erio(t2) = ERLO S [ﬂ]}&?(tz) (tz( I 'X} + Ere2-
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Equation (73) gives the limited equation

—Cri2 +1r11 = 0, Crr1 +7rr2 =0 (93)

Equation (74) gives the additional limited equation

CRI2 — Grr2GRL0 + 1RLT — PRI1GRL0 = 0, $RI1 — Grr1GRL0 + RI2 — PRri2CRI0 =0 (94)

Taking the calculation, we find that Equation (90) also meets the determined equa-
tion (Equation (92)) as well as the limited equation (Equation (93)) under the condition
p%"‘if)(tl) = pg‘i’;) (1) = p%’f) (tr) = ngL’g) (t2) = 0. It is noted that Equation (90) is not the
solution to the additional limited equation (Equation (94)). Therefore, Equation (91) is also
a Lie symmetry conserved quantity as well as a weak Lie symmetry conserved quantity,
but not a strong Lie symmetry conserved quantity.

9. Results and Discussion

Based on ICRL and ICC, the fractional Lagrange equations (Equations (24) and (27)),
the fractional primary constraints (Equations (37) and (40)), the fractional constrained
Hamilton equations (Equations (46) and (47)), and the consistency conditions (Equations
(49) and (50)) are presented. Noether symmetry and Lie symmetry are investigated, and the
corresponding conserved quantities are achieved. Here only the Noether type conserved
quantity is deduced from the Lie symmetry. It is significant if the Hojman type conserved
quantity can be deduced from Lie symmetry in the future. Moreover, the Mei symmetry
method is another important tool to find solutions to the differential equations of motion.
Therefore, Lie symmetry and the corresponding Hojman type conserved quantity, Mei
symmetry and the corresponding Mei type conserved quantity, as well as the perturbation
to symmetry are the future research directions. As for the example, it is helpful and straight-
forward if a numerical calculation could be given to show that the obtained conservation
law is a constant. Therefore, the use of simulation to illustrate obtained results is also an
important research direction in the near future.
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