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Abstract: Singular systems, which can be applied to gauge field theory, condensed matter theory,
quantum field theory of anyons, and so on, are important dynamic systems to study. The fractional
order model can describe the mechanical and physical behavior of a complex system more accurately
than the integer order model. Fractional singular systems within mixed integer and combined
fractional derivatives are established in this paper. The fractional Lagrange equations, fractional
primary constraints, fractional constrained Hamilton equations, and consistency conditions are
analyzed. Then Noether and Lie symmetry methods are studied for finding the integrals of the
fractional constrained Hamiltonian systems. Finally, an example is given to illustrate the methods
and results.
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1. Introduction

Fractional calculus is a hot topic lately, the advantage of which lies in its accuracy.
Generally, the results obtained through the fractional order model are more precisely than
those obtained by the integer order model. Fractional calculus has various applications in
almost every field of science and engineering [1–10].

Since Riewe [11,12] found that fractional derivatives can be used to express dissipative
forces, fractional calculus of variations with different fractional derivatives, such as the
Riemann–Liouville fractional derivative [13–15], the Caputo fractional derivative [16,17],
the symmetric fractional derivative [18], the Riesz fractional derivative [19–21], Agrawal’s
new operators [22–24], the combined fractional derivative [25–27], the mixed integer and
fractional derivatives [28,29], and so on [30–36], have been investigated. It is noted that
the combined fractional derivative is more general than most other fractional derivatives.
For example, both the Riemann–Liouville and Caputo fractional derivatives are its special
cases, as well as the Riesz fractional derivative.

In this paper, we plan to investigate the variational problems within mixed integer
and combined fractional derivatives. After the fractional system is established, we consider
the singular case. Singular systems, especially constrained Hamiltonian systems, play an
important part in many aspects, such as the quantum field theory, the condensed matter
theory, and the gauge field theory [37–39].

After the fractional constrained Hamilton equations are established, the symmetry
method is considered. The symmetry method mainly contains the Noether symmetry
method, the Lie symmetry method, and the Mei symmetry method [40–42]. This article
pays attention to the first two symmetry methods. Under the infinitesimal transformations
of time and coordinates, Noether symmetry means the invariance of the Hamilton action,
while Lie symmetry means the invariance of the differential equations of motion. Noether
symmetry can lead to a conserved quantity according to the Noether theory. A Lie sym-
metry can also lead to a conserved quantity under certain conditions. There are two kinds
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of conserved quantities obtained from the Lie symmetry. One is called the Hojman type
conserved quantity, which is deduced directly from the Lie symmetry, and the other is
called the Noether type conserved quantity, which is achieved with the help of the Noether
symmetry. In this article, we discuss the latter one.

For the fractional conserved quantity, there are two definitions. One was given by Fred-
erico and Torres [43], and the other was introduced by Atanacković et al. [44]. Fractional
Noether theorems have been investigated on the basis of both definitions. For instance, the
works [45,46] were achieved based on the former definition, and the results [30,31,47–52]
were obtained on the basis of the latter one. However, Ferreira and Malinowska [53]
proved that the fractional Noether theorem given in Ref. [43] was wrong through a coun-
terexample. Later, Cresson and Szafrańska [54] made a detailed analysis to explain why
and where the result given in Ref. [43] does not work. Furthermore, they also presented
a fractional Noether theorem following their strategy, corrected the initial statement of
Ref. [43], and achieved an alternative proof of the main result of Atanacković et al. [44].
There are also several results obtained for the fractional Lie symmetry. For example, Fu
et.al [55,56] studied the Lie symmetry theorem of the fractional nonholonomic system
on the basis of the combined Riemann–Liouville fractional derivative as well as the Lie
symmetry and their inverse problem of the nonholonomic Hamiltonian system in terms of
the Riemann–Liouville fractional derivative. Prakash and Sahadevan [57] gave a system-
atic investigation of finding Lie point symmetry of certain fractional linear and nonlinear
ordinary differential equations. Nass [58] made use of Lie symmetry to solve fractional
neutral ordinary differential equations. Jia and Zhang [21] studied Lie symmetry for the
Birkhoffian system, etc.

In this paper, we investigate the fractional Noether theorem on the basis of Atanack-
ović’s definition for the fractional constrained Hamiltonian system within mixed integer
and combined fractional derivatives, including mixed integer and combined Riemann–
Liouville fractional derivatives (ICRL) and mixed integer and combined Caputo fractional
derivatives (ICC). Lie symmetry with the corresponding Noether type conserved quantity
is another topic in this paper.

This paper is organized as follows. Section 2 provides the preliminaries on the frac-
tional derivatives. Based on the mixed integer and combined fractional derivatives, the
fractional Lagrange equations, the fractional primary constraints, and the fractional con-
strained Hamilton equations are established in Sections 3–5, respectively. Then the frac-
tional Noether symmetry and conserved quantity are studied in Section 6. Lie symmetry
and the Noether type conserved quantity are investigated in Section 7. Section 8 gives an
example to illustrate the methods and results.

2. Preliminaries on Fractional Derivatives

Combined fractional derivatives, which contain the combined Riemann–Liouville frac-
tional derivative and the combined Caputo fractional derivative, are listed below [5,7,19,25,59].

Let f (t) be a function, t ∈ [t1, t2]; then, the combined Riemann–Liouville fractional
derivative and the combined Caputo fractional derivative are [25]

RLDα,β
γ f (t) = γRL

t1
Dα

t f (t) + (−1)n(1− γ)RL
t Dβ

t2
f (t) (1)

CDα,β
γ f (t) = γ C

t1
Dα

t f (t) + (−1)n(1− γ) C
tD

β
t2

f (t) (2)

where n − 1 ≤ α, β < n, and α and β denote the orders of the fractional derivatives;
γ ∈ [0, 1], and γ determines the different amount of information from the past and the
future; and RL

t1
Dα

t f (t), RL
t Dβ

t2
f (t), C

t1
Dα

t f (t), and C
tD

β
t2

f (t) are the left and right Riemann–
Liouville and Caputo fractional derivatives of f (t), respectively. Their mathematical
definitions are

RL
t1

Dα
t f (t) =

1
Γ(n− α)

(
d
dt

)n∫ t

t1

(t− ξ)n−α−1 f (ξ)dξ (3)
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RL
t Dβ

t2
f (t) =

1
Γ(n− β)

(
− d

dt

)n∫ t2

t
(ξ − t)n−β−1 f (ξ)dξ (4)

C
t1

Dα
t f (t) =

1
Γ(n− α)

∫ t

t1

(t− ξ)n−α−1
(

d
dξ

)n
f (ξ)dξ (5)

C
tD

β
t2

f (t) =
1

Γ(n− β)

∫ t2

t
(ξ − t)n−β−1

(
− d

dξ

)n
f (ξ)dξ (6)

Under the condition 0 < α, β < 1, there are two relationships between Equations (3)
and (5), as well as Equations (4) and (6),

RL
t1

Dα
t f (t) = C

t1
Dα

t f (t)− 1
Γ(1− α)

f (t1)

(t− t1)
α (7)

RL
t Dβ

t2
f (t) = C

tD
β
t2

f (t) +
1

Γ(1− β)

f (t2)

(t2 − t)β
(8)

When γ = 0 or γ = 1, we can find that the left and right Riemann–Liouville fractional
derivatives and the left and right Caputo fractional derivatives are all special cases of the
combined fractional derivatives. When α = β, γ = 1

2 , we obtain

RLDα,β
1/2 f (t) =

1
2Γ(n− α)

(
d
dt

)n∫ t2

t1

|t− ξ|n−α−1 f (ξ)dξ = R
t1

Dα
t2

f (t) (9)

CDα,β
1/2 f (t) =

1
2Γ(n− α)

∫ t2

t1

|t− ξ|n−α−1
(

d
dξ

)n
f (ξ)dξ = RC

t1
Dα

t2
f (t) (10)

Equations (9) and (10) are the Riesz–Riemann–Liouville fractional derivative and the
Riesz–Caputo fractional derivative of f (t), which are also special cases of the combined frac-
tional derivatives. Of course, different fractional derivatives can be obtained by selecting
different values of γ. When α, β→ 1 , we have [7]

RL
t1

D1
t f (t) = C

t1
D1

t f (t) = d
dt f (t), RL

t D1
t2

f (t) = C
t D1

t2
f (t) = − d

dt f (t)
RLDα,β

γ f (t) = CDα,β
γ f (t) = d

dt f (t)
(11)

where d
dt f (t) means the integer order derivative of f (t).

In addition, the formulae of fractional integration by parts are [19]

∫ t2

t1

[∗]RL
t1

Dα
t ηdt =

∫ t2

t1

ηC
t Dα

t2
[∗]dt−

n−1

∑
j=0

(−1)n+jRL
t1

Dα+j−n
t η(t)Dn−1−j[∗]

∣∣∣t2
t1

, (12)

∫ t2

t1

[∗]RL
t Dβ

t2
ηdt =

∫ t2

t1

ηC
t1

Dβ
t [∗]dt−

n−1

∑
j=0

RL
t Dβ+j−n

t2
η(t)Dn−1−j[∗]

∣∣∣t2
t1

, (13)

∫ t2

t1

[∗]Ct1
Dα

t ηdt =
∫ t2

t1

ηRL
t Dα

t2
[∗]dt +

n−1

∑
j=0

RL
t Dα+j−n

t2
[∗]Dn−1−jη(t)

∣∣∣t2
t1

, (14)

∫ t2

t1

[∗]Ct Dβ
t2

ηdt =
∫ t2

t1

ηRL
t1

Dβ
t [∗]dt +

n−1

∑
j=0

(−1)n+jRL
t1

Dβ+j−n
t [∗]Dn−1−jη(t)

∣∣∣t2
t1

, (15)

∫ t2

t1

[∗]Rt1
Dα

t2
ηdt = (−1)n

∫ t2

t1

ηRC
t1

Dα
t2
[∗]dt−

n−1

∑
j=0

(−1)n+jR
t1

Dα+j−n
t2

η(t)Dn−1−j[∗]
∣∣∣t2
t1

, (16)

∫ t2

t1

[∗]RC
t1

Dα
t2

ηdt = (−1)n
∫ t2

t1

ηR
t1

Dα
t2
[∗]dt +

n−1

∑
j=0

(−1)jR
t1

Dα+j−n
t2

[∗]Dn−1−jη(t)
∣∣∣t2
t1

(17)
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where D = d
dt means the integer order derivative.

In this paper, we assume that 0 < α, β < 1.

3. Fractional Lagrange Equation

Fractional variational problems within mixed integer and combined fractional deriva-
tives are studied in this section.

Based on ICRL, the fractional problem of the calculus of variations becomes finding
the stationary function of the functional:

IRL[qRL(·)] =
∫ t2

t1

LRL

(
t, qRL,

.
qRL, RLDα,β

γ qRL

)
dt (18)

subject to given 2n boundary conditions qRL(t1) = qRL1, qRL(t2) = qRL2, where
[t1, t2] ⊂ R, 0 < α, β < 1, qRL = (qRL1, qRL2, · · · , qRLn),

.
qRL =

( .
qRL1,

.
qRL2, · · · ,

.
qRLn

)
,

.
qRLi = dqRLi/dt, i = 1, 2, · · · , n, RLDα,β

γ qRL =
(

RLDα,β
γ qRL1, RLDα,β

γ qRL2, · · · , RLDα,β
γ qRLn

)
,

qRL1 = (qRL11, qRL12, · · · , qRL1n), qRL2 = (qRL21, qRL22, · · · , qRL2n), the Lagrangian
LRL : [t1, t2]×Rn ×Rn ×Rn → R and qRLi : [t1, t2]→ R , i = 1, 2, · · · , n, are assumed
to be C2 functions.

If qRL(·) is an extremal of Equation (18), then we have

d
dεRL

IRL[qRL + εRLhRL]
∣∣
εRL=0 = 0 (19)

where hRL = (hRL1, hRL2, · · · , hRLn), hRL(·) ∈ C2([t1, t2];Rn), hRL(t1) = hRL(t2) = 0, and
εRL is a small parameter.

From Equation (19), for k = 1, 2, · · · , n, we obtain

∫ t2

t1

(
∂LRL
∂qRLk

· hRLk +
∂LRL

∂
.
qRLk

·
.
hRLk +

∂LRL

∂RLDα,β
γ qRLk

· RLDα,β
γ hRLk

)
dt = 0. (20)

On the one hand, using the integer integration by parts formula and the fractional
integration by parts formulae (Equations (12) and (13)) in the second and third terms of
Equation (20), we have∫ t2

t1

(
∂LRL
∂

.
qRLk
·

.
hRLk

)
dt =

∫ t2
t1

[
d
dt

(
∂LRL
∂

.
qRLk
· hRLk

)
− hRLk · d

dt
∂LRL
∂

.
qRLk

]
dt

= ∂LRL
∂

.
qRLk
· hRLk

∣∣∣t=t2

t=t1
−
∫ t2

t1

(
d
dt

∂LRL
∂

.
qRLk
· hRLk

)
dt = −

∫ t2
t1

(
hRLk · d

dt
∂LRL
∂

.
qRLk

)
dt

(21)

and

∫ t2
t1

(
∂LRL

∂RLDα,β
γ qRLk

· RLDα,β
γ hRLk

)
dt

=
∫ t2

t1

∂LRL

∂RLDα,β
γ qRLk

·
[
γRL

t1
Dα

t hRLk − (1− γ)RL
t Dβ

t2
hRLk

]
dt

= γ
∫ t2

t1

(
∂LRL

∂RLDα,β
γ qRLk

· RL
t1

Dα
t hRLk

)
dt− (1− γ)

∫ t2
t1

(
∂LRL

∂RLDα,β
γ qRLk

· RL
t Dβ

t2
hRLk

)
dt

= γ

{∫ t2
t1

(
hRLk · C

t Dα
t2

∂LRL

∂RLDα,β
γ qRLk

)
dt +

[
RL

t1
D−(1−α)

t hRLk(t) · ∂LRL

∂RLDα,β
γ qRLk

]∣∣∣∣t=t2

t=t1

}

−(1− γ)

{∫ t2
t1

(
hRLk · C

t1
Dβ

t
∂LRL

∂RLDα,β
γ qRLk

)
dt−

[
RL

t D−(1−β)
t2

hRLk(t) · ∂LRL

∂RLDα,β
γ qRLk

]∣∣∣∣t=t2

t=t1

}
= −

∫ t2
t1

(
hRLk · CDβ,α

1−γ
∂LRL

∂RLDα,β
γ qRLk

)
dt + γ

Γ(1−α)

∫ t2
t1

(t2 − t)−αhRLkdt · ∂LRL(t2)

∂RLDα,β
γ qRLk

− 1−γ
Γ(1−β)

∫ t2
t1

(t− t1)
−βhRLkdt · ∂LRL(t1)

∂RLDα,β
γ qRLk

,

(22)
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where ∂LRL(t1)

∂RLDα,β
γ qRLk

= ∂LRL

∂RLDα,β
γ qRLk

(
t1, qRL(t1),

.
qRL(t1), RLDα,β

γ qRL(t1)
)

,

∂LRL(t2)

∂RLDα,β
γ qRLk

= ∂LRL

∂RLDα,β
γ qRLk

(
t2, qRL(t2),

.
qRL(t2), RLDα,β

γ qRL(t2)
)

.

Substituting Equations (21) and (22) into Equation (20), we obtain

∫ t2
t1

[
∂LRL
∂qRLk

− d
dt

∂LRL
∂

.
qRLk
− CDβ,α

1−γ
∂LRL

∂RLDα,β
γ qRLk

+ γ(t2−t)−α

Γ(1−α)
∂LRL(t2)

∂RLDα,β
γ qRLk

− (1−γ)(t−t1)
−β

Γ(1−β)
∂LRL(t1)

∂RLDα,β
γ qRLk

]
· hRLkdt = 0.

(23)

It follows from the fundamental lemma of the calculus of variations [60] that

∂LRL
∂qRLk

− d
dt

∂LRL
∂

.
qRLk
− CDβ,α

1−γ
∂LRL

∂RLDα,β
γ qRLk

+ γ(t2−t)−α

Γ(1−α)
∂LRL(t2)

∂RLDα,β
γ qRLk

− (1−γ)(t−t1)
−β

Γ(1−β)
∂LRL(t1)

∂RLDα,β
γ qRLk

= 0, k = 1, 2, · · · , n.
(24)

Equation (24) is called the fractional Lagrange equation within ICRL.
On the other hand, using the integer integration by parts formula, the fractional

integration by parts formulae (Equations (14) and (15)), and the relationships (Equations (7)
and (8)) in the second and third terms of Equation (20), as well as the fundamental lemma
of the calculus of variations [60], we obtain

∂LRL
∂qRLk

− d
dt

∂LRL

∂
.
qRLk

− RLDβ,α
1−γ

∂LRL

∂RLDα,β
γ qRLk

= 0, k = 1, 2, · · · , n. (25)

Equation (25) is also called the fractional Lagrange equation within ICRL. Equations (24)
and (25) are two different forms.

Remark 1. Whenγ = 1, Equation (25) reduces to the fractional Lagrange equation within the
mixed integer and the left Riemann–Liouville fractional derivative, which is consistent with the
result in Ref. [29].

Similarly, based on ICC, the fractional problem of the calculus of variations becomes
finding the stationary function of the functional:

IC[qC(·)] =
∫ t2

t1

LC

(
t, qC,

.
qC, CDα,β

γ qC

)
dt (26)

subject to given 2n boundary conditions qC(t1) = qC1, qC(t2) = qC2, where [t1, t2] ⊂ R,
0 < α, β < 1, qC = (qC1, qC2, · · · , qCn),

.
qC =

( .
qC1,

.
qC2, · · · ,

.
qCn
)
,

.
qCi = dqCi/dt, i =

1, 2, · · · , n, CDα,β
γ qC =

(
CDα,β

γ qC1, CDα,β
γ qC2, · · · , CDα,β

γ qCn

)
, qC1 = (qC11, qC12, · · · , qC1n),

qC2 = (qC21, qC22, · · · , qC2n), the Lagrangian LC : [t1, t2]×Rn ×Rn ×Rn → R and
qCi : [t1, t2]→ R , i = 1, 2, · · · , n, are assumed to be C2 functions.

If qC(·) is an extremal for Equation (26), then we obtain

∂LC
∂qCk

− d
dt

∂LC

∂
.
qCk
− RLDβ,α

1−γ

∂LC

∂CDα,β
γ qCk

= 0, k = 1, 2, · · · , n. (27)

Equation (27) is called the fractional Lagrange equation within ICC.
Of course, we can also give another form of the fractional Lagrange equation within

ICC, which we only refer to briefly here.

Remark 2. Whenγ = 1, Equation (27) reduces to the fractional Lagrange equation within the
mixed integer and left Caputo fractional derivative, which coincides with the result in Ref. [28].
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Remark 3. Equations (24) and (27) are the two main fractional Lagrange equations obtained in this
article. The combined Riemann–Liouville fractional derivative and the combined Caputo fractional
derivative are general and universal because of γ, so we can obtain different results by selecting
different values of γ.

4. Fractional Primary Constraint

If a Lagrangian system is singular, then some inherent constraints exist when the
Lagrangian system is represented by a Hamiltonian system. Fractional primary constraints
within ICRL and ICC are presented in this section.

For Equation (24), the integer generalized momentum, the fractional generalized
momentum, and the Hamiltonian can be defined as

pRLk =
∂LRL

(
t, qRL,

.
qRL, RLDα,β

γ qRL

)
∂

.
qRLk

, p(α,β)
RLk =

∂LRL

(
t, qRL,

.
qRL, RLDα,β

γ qRL

)
∂RLDα,β

γ qRLk

, (28)

HRL = pRLk
.
qRLk + p(α,β)

RLk ·
RLDα,β

γ qRLk − LRL

(
t, qRL,

.
qRL, RLDα,β

γ qRL

)
(29)

In this paper, we assume that RLDα,β
γ qRL = uRL

(
t, qRL,

.
qRL, p(α,β)

RL

)
, which means

RLDα,β
γ qRL can always be described by the function uRL depending on the elements of t, qRL,

.
qRL and p(α,β)

RL , where p(α,β)
RL =

(
p(α,β)

RL1 , p(α,β)
RL2 , · · · , p(α,β)

RLn

)
, uRL = (uRL1, uRL2, · · · , uRLn).

The element HRLij of the Hessian matrix
[
HRLij

]
is defined as

HRLij =
∂2LRL

∂
.
qRLi∂

.
qRLj

, i, j = 1, 2, · · · , n. (30)

If det
[
HRLij

]
6= 0, then the Hessian matrix

[
HRLij

]
is called a nondegenerate matrix,

and the corresponding Lagrangian LRL is called a regular Lagrangian. In this case,
.
qRLk,

k = 1, 2, · · · , n, can be expressed by a function that depends on the elements of t, qRL,
.
qRL,

and p(α,β)
RL from Equation (28). If det

[
HRLij

]
= 0, then the Hessian matrix

[
HRLij

]
is called a

degenerate matrix, and the corresponding Lagrangian LRL is called a singular Lagrangian.
In this case, we assume that rank

[
HRLij

]
= R, and we know that 0 ≤ R < n. Then we

divide R into two cases to discuss, one case is 1 ≤ R < n, and the other is R = 0.
When 1 ≤ R < n, i.e., only

.
qRLσ, σ = 1, 2, · · · , R can be determined, while

.
qRLρ,

ρ = R + 1, R + 2, · · · , n are random. From Equation (28),
.
qRLσ, σ = 1, 2, · · · , R can be

expressed as
.
qRLσ = f σ

RL

(
t, qRL, p(α,β)

RL , pRLA,
.
qRLB

)
, σ = 1, 2, · · · , R, (31)

or
.
qRLA = fA

RL

(
t, qRL, p(α,β)

RL , pRLA,
.
qRLB

)
, (32)

where pRLA = (pRL1, pRL2, · · · , pRLR), pRLB = (pRLR+1, pRLR+2, · · · , pRLn),.
qRLA =

( .
qRL1,

.
qRL2, · · · ,

.
qRLR

)
,

.
qRLB =

( .
qRLR+1,

.
qRLR+2, · · · ,

.
qRLn

)
, and

fA
RL =

(
f 1
RL, f 2

RL, · · · , f R
RL
)
. Substituting Equation (32) into Equation (28), we have

pRLk = gRLk

(
t, qRL,

.
qRL, RLDα,β

γ qRL

)
= gRLk

(
t, qRL,

.
qRLA,

.
qRLB, p(α,β)

RL

)
= gRLk

(
t, qRL, fA

RL

(
t, qRL, p(α,β)

RL , pRLA,
.
qRLB

)
,

.
qRLB, p(α,β)

RL

)
= gRLk

(
t, qRL, pRLA,

.
qRLB, p(α,β)

RL

) (33)
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When k = 1, 2, · · · , R, Equation (33) obviously holds, while when k = R + 1, R + 2, · · · , n,
gRLk will not depend on

.
qRLB; otherwise, it contradicts the assumption rank

[
HRLij

]
= R.

In this case, we have

pRLρ = gRLρ

(
t, qRL, pRLA, p(α,β)

RL

)
, ρ = R + 1, R + 2, · · · , n. (34)

For simplicity, let a = 1, 2, · · · , n− R; Equation (34) can be written as

φRLa

(
t, qRL, pRL, p(α,β)

RL

)
= pRLa − gRLa

(
t, qRL, pRLA, p(α,β)

RL

)
= 0. (35)

When R = 0, we can obtain

φRLa

(
t, qRL, pRL, p(α,β)

RL

)
= 0, a = 1, 2, · · · , n. (36)

Therefore, from Equations (35) and (36), we have

φRLa

(
t, qRL, pRL, p(α,β)

RL

)
= 0, a = 1, 2, · · · , n− R, 0 ≤ R < n. (37)

Equation (37) is called the fractional primary constraint within ICRL.
Similarly, for Equation (27), the integer generalized momentum, the fractional general-

ized momentum, and the Hamiltonian can be defined as

pCk =
∂LC

(
t, qC,

.
qC, CDα,β

γ qC

)
∂

.
qCk

, p(α,β)
Ck =

∂LC

(
t, qC,

.
qC, CDα,β

γ qC

)
∂CDα,β

γ qCk

(38)

HC = pCk
.
qCk + p(α,β)

Ck · CDα,β
γ qCk − LC

(
t, qC,

.
qC, CDα,β

γ qC

)
, k = 1, 2, · · · , n, (39)

and we can also obtain the fractional primary constraint within ICC

φCa

(
t, qC, pC, p(α,β)

C

)
= 0, a = 1, 2, · · · , n− R, 0 ≤ R < n, (40)

where p(α,β)
C =

(
p(α,β)

C1 , p(α,β)
C2 , · · · , p(α,β)

Cn

)
, pC = (pC1, pC2, · · · , pCn).

Remark 4. The fractional primary constraints (Equations (37) and (40)) come from the definitions of
the integer generalized momenta (Equations (28) and (38)) rather than the fractional Euler–Lagrange
equations (Equations (24) and (27)).

Remark 5. From Equations (37) and (40), the fractional primary constraints within different
fractional derivatives can be obtained due to the various values of γ.

After the fractional primary constraints (Equations (37) and (40)) have been investi-
gated, we begin to express the singular systems (Equations (24) and (27)) in the form of the
Hamiltonian description.

5. Fractional Constrained Hamilton Equation

We begin with the fractional constrained Hamilton equation within ICRL.
On the one hand, taking isochronous variation of the Hamiltonian (Equation (29)) and

using Equation (28), we have

δHRL =
.
qRLk · δpRLk + δp(α,β)

RLk ·
RLDα,β

γ qRLk −
∂LRL
∂qRLk

δqRLk, k = 1, 2, · · · , n. (41)
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On the other hand, it follows from Equations (28) and (29) that the Hamiltonian
HRL = HRL

(
t, qRL, pRL, p(α,β)

RL

)
; therefore,

δHRL =
∂HRL
∂qRLk

· δqRLk +
∂HRL
∂pRLk

· δpRLk +
∂HRL

∂p(α,β)
RLk

· δp(α,β)
RLk , k = 1, 2, · · · , n. (42)

It follows from Equations (41) and (42) that

(
.
qRLk −

∂HRL
∂pRLk

)
δpRLk +

RLDα,β
γ qRLk −

∂HRL

∂p(α,β)
RLk

δp(α,β)
RLk −

(
∂LRL
∂qRLk

+
∂HRL
∂qRLk

)
δqRLk = 0. (43)

Making use of Equations (24) and (28), the term ∂LRL/∂qRLk in Equation (43) can be

replaced by
.
pRLk +

CDβ,α
1−γ p(α,β)

RLk −
γ(t2−t)−α

Γ(1−α)
p(α,β)

RLk (t2) +
(1−γ)(t−t1)

−β

Γ(1−β)
p(α,β)

RLk (t1); therefore, for
k = 1, 2, · · · , n, we have

( .
qRLk −

∂HRL
∂pRLk

)
· δpRLk +

(
RLDα,β

γ qRLk − ∂HRL

∂p(α,β)
RLk

)
· δp(α,β)

RLk −
[ .

pRLk +
CDβ,α

1−γ p(α,β)
RLk

− γ(t2−t)−α

Γ(1−α)
p(α,β)

RLk (t2) +
(1−γ)(t−t1)

−β

Γ(1−β)
p(α,β)

RLk (t1) +
∂HRL
∂qRLk

]
δqRLk = 0.

(44)

When the system (Equation (24)) is singular, because of the existence of the fractional
primary constraint within ICRL (Equation (37)), we cannot let the coefficients of δpRLk,
δp(α,β)

RLk , and δqRLk in Equation (44) be equal to 0. The fractional primary constraint within
ICRL (Equation (37)) should be considered. Taking the isochronous variation of Equation
(37) and introducing the Lagrangian multiplier λRLa(t), a = 1, 2, · · · , n− R, 0 ≤ R < n, we
have

λRLa
∂φRLa
∂qRLk

· δqRLk + λRLa
∂φRLa
∂pRLk

· δpRLk + λRLa
∂φRLa

∂p(α,β)
RLk

· δp(α,β)
RLk = 0. (45)

It follows from Equations (44) and (45) that

.
pRLk = −

∂HRL
∂qRLk

− λRLa
∂φRLa
∂qRLk

− CDβ,α
1−γ p(α,β)

RLk + γ(t2−t)−α

Γ(1−α)
p(α,β)

RLk (t2)

− (1−γ)(t−t1)
−β

Γ(1−β)
p(α,β)

RLk (t1), RLDα,β
γ qRLk =

∂HRL

∂p(α,β)
RLk

+ λRLa
∂φRLa

∂p(α,β),
RLk.

qRLk =
∂HRL
∂pRLk

+ λRLa
∂φRLa
∂pRLk

, a = 1, 2, · · · , n− R, 0 ≤ R < n, k = 1, 2, · · · , n.

(46)

Equation (46) is called the fractional constrained Hamilton equation within ICRL.
Similarly, we can also obtain the fractional constrained Hamilton equation within ICC:

.
pCk = −

∂HC
∂qCk
− λCa

∂φCa
∂qCk
− RLDβ,α

1−γ p(α,β)
Ck ,

.
qCk =

∂HC
∂pCk

+ λCa
∂φCa
∂pCk

,
CDα,β

γ qCk =
∂HC

∂p(α,β)
Ck

+ λCa
∂φCa

∂p(α,β)
Ck

, a = 1, 2, · · · , n− R, 0 ≤ R < n, k = 1, 2, · · · , n.
(47)

Remark 6. From Equations (46) and (47), different fractional constrained Hamilton equations in
terms of fractional derivatives can be obtained due to the various values of γ.

It follows from the methods introduced above for establishing fractional constrained
Hamilton equations that the Lagrangian multipliers are the key points. In other words,
Lagrangian multipliers must be calculated before establishing the fractional constrained
Hamilton equations. Lagrangian multipliers can be calculated through the fractional
Poisson bracket, which is presented as follows:
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Let F = F
(

t, q, p, p(α,β)
)

, G = G
(

t, q, p, p(α,β)
)

; we define the fractional Poisson
bracket as

{F, G} = ∂F
∂qk

∂G
∂pk
− ∂F

∂pk

∂G
∂qk

, k = 1, 2, · · · , n, (48)

where q = (q1, q2, · · · , qn), p = (p1, p2, · · · , pn), p(α,β) =
(

p(α,β)
1 , p(α,β)

2 , · · · , p(α,β)
n

)
. Then,

from the fractional primary constraint within ICRL (Equation (37)) and the fractional
Poisson bracket, we have

λRLb{φRLa, φRLb}+ {φRLa, HRL} − ∂φRLa
∂pRLk

·
[

CDβ,α
1−γ p(α,β)

RLk −
γ(t2−t)−α

Γ(1−α)
p(α,β)

RLk (t2)

+ (1−γ)(t−t1)
−β

Γ(1−β)
p(α,β)

RLk (t1)

]
+ ∂φRLa

∂t + ∂φRLa

∂p(α,β)
RLk

.
p(α,β)

RLk = 0,
(49)

where a, b = 1, 2, · · · , n − R, 0 ≤ R < n, k = 1, 2, · · · , n. Equation (49) is called the
consistency condition of the fractional primary constraint within ICRL.

Similarly, from the fractional primary constraint within ICC (Equation (40)) and the
fractional Poisson bracket, we have

λCb{φCa, φCb}+ {φCa, HC} − ∂φCa
∂pCk
· RLDβ,α

1−γ p(α,β)
Ck + ∂φCa

∂t + ∂φCa

∂p(α,β)
Ck

.
p(α,β)

Ck = 0,

a, b = 1, 2, · · · , n− R, 0 ≤ R < n, k = 1, 2, · · · , n.
(50)

Equation (50) is called the consistency condition of the fractional primary constraint
within ICC.

If det[{φRLa, φRLb}] 6= 0 (resp. det[{φCa, φCb}] 6= 0), a, b = 1, 2, · · · , n − R, and
0 ≤ R < n; then, all the Lagrangian multipliers can be calculated from Equation (49)
(resp. Equation (50)). If det[{φRLa, φRLb}] = 0 (resp. det[{φCa, φCb}] = 0), we assume
rank[{φRLa, φRLb}] = m (resp. rank[{φCa, φCb}] = m), m < n− R, and 0 ≤ R < n; then,
new constraints will be deduced because n − R − m Lagrangian multipliers cannot be
determined. The new constraints are called fractional secondary constraints, which arise
from the consistency conditions of the fractional primary constraints. Then, the consistency
condition of the fractional secondary constraints may also lead to some new fractional
secondary constraints. However, for a system with finite degrees of freedom, no new
fractional secondary constraints will be produced after a finite number of steps.

If we cannot solve all the Lagrangian multipliers, then the fractional constrained
Hamilton equation within ICRL (Equation (46)) (resp. ICC (Equation (47))) is invalid. In
this case, there is another way to construct a significant fractional constrained Hamilton
equation within ICRL (resp. ICC). We only refer to it briefly here.

6. Noether Symmetry and Conserved Quantity

Noether symmetry means the invariance of the fractional Hamilton action under
infinitesimal transformations. Noether symmetry always leads to a conserved quantity.

Definition 1. A quantity C is called a conserved quantity if and only if dC/dt = 0 holds.

6.1. Noether Symmetry and Conserved Quantity within ICRL

Hamilton action within ICRL is defined as

IRL =
∫ t2

t1

[
pRLk

.
qRLk + p(α,β)

RLk ·
RLDα,β

γ qRLk − HRL

(
t, qRL, pRL, p(α,β)

RL

)]
dt. (51)

The infinitesimal transformations are given as

t = t + ∆t, qRLk
(
t
)
= qRLk(t) + ∆qRLk, pRLk

(
t
)
= pRLk(t) + ∆pRLk,

p(α,β)
RLk

(
t
)
= p(α,β)

RLk (t) + ∆p(α,β)
RLk , k = 1, 2, · · · , n,

(52)
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and the expanded expression of Equation (52) is

t = t + θRLξRL0

(
t, qRL, pRL, p(α,β)

RL

)
+ o(θRL),

qRLk
(
t
)
= qRLk(t) + θRLξRLk

(
t, qRL, pRL, p(α,β)

RL

)
+ o(θRL),

pRLk
(
t
)
= pRLk(t) + θRLηRLk

(
t, qRL, pRL, p(α,β)

RL

)
+ o(θRL),

p(α,β)
RLk

(
t
)
= p(α,β)

RLk (t) + θRLη
(α,β)
RLk

(
t, qRL, pRL, p(α,β)

RL

)
+ o(θRL),

(53)

where θRL is a small parameter, ξRL0, ξRLk, ηRLk, and η
(α,β)
RLk are called infinitesimal genera-

tors within ICRL, and o(θRL) means the higher order of θRL.
The Hamilton action within ICRL (Equation (51)) changes from IRL to IRL under the

infinitesimal transformations; denoting as ∆IRL = IRL − IRL, without considering the
higher order of θRL, we have

∆IRL = θRL
∫ t2

t1

[
p(α,β)

RLk ·
RLDα,β

γ

(
ξRLk −

.
qRLkξRL0

)
+
(

p(α,β)
RLk ·

RLDα,β
γ qRLk − HRL

) .
ξRL0

+pRLk
.
ξRLk +

(
p(α,β)

RLk
d
dt

RLDα,β
γ qRLk − ∂HRL

∂t

)
ξRL0 − ∂HRL

∂qRLk
ξRLk + λRLa

∂φRLa
∂pRLk

ηRLk

+λRLa
∂φRLa

∂p(α,β)
RLk

· η(α,β)
RLk + qRLk(t2)ξRL0(t2) ·

(1−γ)p(α,β)
RLk

Γ(1−β)
d
dt (t2 − t)−β

−qRLk(t1)ξRL0(t1)
γp(α,β)

RLk
Γ(1−α)

d
dt (t− t1)

−α
]

dt,

(54)
where ξRL0(t1) = ξRL0

(
t1, qRL(t1), pRL(t1), p(α,β)

RL (t1)
)

and

ξRL0(t2) = ξRL0

(
t2, qRL(t2), pRL(t2), p(α,β)

RL (t2)
)

.
Let ∆IRL = 0; Equation (54) gives

p(α,β)
RLk ·

RLDα,β
γ

(
ξRLk −

.
qRLkξRL0

)
+
(

p(α,β)
RLk ·

RLDα,β
γ qRLk − HRL

)
·

.
ξRL0

+pRLk
.
ξRLk −

∂HRL
∂qRLk

ξRLk +
(

p(α,β)
RLk

d
dt

RLDα,β
γ qRLk − ∂HRL

∂t

)
ξRL0

−qRLk(t1) · ξRL0(t1) ·
γp(α,β)

RLk
Γ(1−α)

d
dt (t− t1)

−α + λRLaη
(α,β)
RLk

∂φRLa

∂p(α,β)
RLk

+λRLa
∂φRLa
∂pRLk

ηRLk + qRLk(t2)ξRL0(t2) ·
(1−γ)p(α,β)

RLk
Γ(1−β)

d
dt (t2 − t)−β = 0.

(55)

Equation (55) is called the fractional Noether identity within ICRL.
If the infinitesimal generators ξRL0, ξRLk, ηRLk, and η

(α,β)
RLk satisfy Equation (55), then

the corresponding infinitesimal transformations are called Noether symmetric transfor-
mations in terms of ICRL, which determine the Noether symmetry. Therefore, we have
the following:

Theorem 1. For the fractional constrained Hamiltonian system within ICRL (Equation (46)), if
the infinitesimal generators ξRL0, ξRLk, ηRLk, and η

(α,β)
RLk satisfy Equation (55), then there exists a

conserved quantity:

CRL =
(

p(α,β)
RLk ·

RLDα,β
γ qRLk − HRL

)
ξRL0 +

∫ t
t1

{
p(α,β)

RLk ·
RLDα,β

γ

(
ξRLk −

.
qRLkξRL0

)
+
(
ξRLk −

.
qRLkξRL0

)[CDβ,α
1−γ p(α,β)

RLk −
γ(t2−τ)−α

Γ(1−α)
p(α,β)

RLk (t2) +
(1−γ)(τ−t1)

−β

Γ(1−β)

×p(α,β)
RLk (t1)

]}
dτ − qRLk(t1)

γξRL0(t1)
Γ(1−α)

∫ t
t1

p(α,β)
RLk

d
dτ (τ − t1)

−αdτ + pRLkξRLk

+qRLk(t2)ξRL0(t2)
1−γ

Γ(1−β)

∫ t
t1

p(α,β)
RLk

d
dτ (t2 − τ)−βdτ

(56)
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Proof. Using Equations (37), (46), and (55), we have

dCRL
dt =

(
p(α,β)

RLk ·
RLDα,β

γ qRLk − HRL

) .
ξRL0 + ξRL0

( .
p(α,β)

RLk · RLDα,β
γ qRLk + p(α,β)

RLk

× d
dt

RLDα,β
γ qRLk − ∂HRL

∂t −
∂HRL
∂qRLk

.
qRLk −

∂HRL
∂pRLk

.
pRLk −

∂HRL

∂p(α,β)
RLk

.
p(α,β)

RLk

)
+ p(α,β)

RLk

×RLDα,β
γ

(
ξRLk −

.
qRLkξRL0

)
− qRLk(t1)

γξRL0(t1)
Γ(1−α)

p(α,β)
RLk

d
dτ (t− t1)

−α + (ξRLk

− .
qRLkξRL0

)[CDβ,α
1−γ p(α,β)

RLk −
γ(t2−t)−α

Γ(1−α)
p(α,β)

RLk (t2) +
(1−γ)(t−t1)

−β

Γ(1−β)
p(α,β)

RLk (t1)

]
+

.
pRLkξRLk + pRLk

.
ξRLk + qRLk(t2)ξRL0(t2)

1−γ
Γ(1−β)

p(α,β)
RLk

d
dτ (t2 − t)−β

= −λRLaη
(α,β)
RLk

∂φRLa

∂p(α,β)
RLk

− λRLaηRLk
∂φRLa
∂pRLk

+ ξRL0

(
− .

qRLk
.
pRLk + λRLa

.
pRLk

∂φRLa
∂pRLk

)
+ξRL0λRLa

.
p(α,β)

RLk
∂φRLa

∂p(α,β)
RLk

+
(
ξRLk −

.
qRLkξRL0

)(
− .

pRLk − λRLa
∂φRLa
∂qRLk

)
+

.
pRLkξRLk

= −λRLa
∂φRLa

∂p(α,β)
RLk

· δp(α,β)
RLk − λRLa

∂φRLa
∂qRLk

· δqRLk − λRLa
∂φRLa
∂pRLk

· δpRLk

= −λRLa · δφRLa = 0

�

6.2. Noether Symmetry and Conserved Quantity within ICC

Hamilton action with ICC is defined as

IC =
∫ t2

t1

[
pCk

.
qCk + p(α,β)

Ck · CDα,β
γ qCk − HC

(
t, qC, pC, p(α,β)

C

)]
dt (57)

The infinitesimal transformations are given as

t = t + ∆t, qCk
(
t
)
= qCk(t) + ∆qCk, pCk

(
t
)
= pCk(t) + ∆pCk,

p(α,β)
Ck

(
t
)
= p(α,β)

Ck (t) + ∆p(α,β)
Ck , k = 1, 2, · · · , n,

(58)

and the expanded expression of Equation (58) is

t = t + θCξC0

(
t, qC, pC, p(α,β)

C

)
+ o(θC)

qCk
(
t
)
= qCk(t) + θCξCk

(
t, qC, pC, p(α,β)

C

)
+ o(θC)

pCk
(
t
)
= pCk(t) + θCηCk

(
t, qC, pC, p(α,β)

C

)
+ o(θC)

p(α,β)
Ck

(
t
)
= p(α,β)

Ck (t) + θCη
(α,β)
Ck

(
t, qC, pC, p(α,β)

C

)
+ o(θC)

(59)

where θC is a small parameter, ξC0, ξCk, ηCk, and η
(α,β)
Ck are called infinitesimal generators

within ICC, and o(θC) means the higher order of θC.
The Hamilton action within ICC (Equation (57)) changes from IC to IC under the

infinitesimal transformations; denoting as ∆IC = IC − IC, without considering the higher
order of θC, we have

∆IC = θC
∫ t2

t1

[
p(α,β)

Ck · CDα,β
γ

(
ξCk −

.
qCkξC0

)
+
(

p(α,β)
Ck · CDα,β

γ qCk − HC

) .
ξC0

+pCk
.
ξCk +

(
p(α,β)

Ck
d
dt

CDα,β
γ qCk − ∂HC

∂t

)
ξC0 − ∂HC

∂qCk
ξCk + λCa

∂φCa
∂pCk

ηCk

− .
qCk(t1)ξC0(t1)

γp(α,β)
Ck

Γ(1−α) (t− t1)
−α + λCa

∂φCa

∂p(α,β)
Ck

· η(α,β)
Ck

+
.
qCk(t2)ξC0(t2) ·

(1−γ)p(α,β)
Ck

Γ(1−β) (t2 − t)−β
]

dt

(60)
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where ξC0(t1) = ξC0

(
t1, qC(t1), pC(t1), p(α,β)

C (t1)
)

,

ξC0(t2) = ξC0

(
t2, qC(t2), pC(t2), p(α,β)

C (t2)
)

. Let ∆IC = 0; Equation (60) gives

pCk
.
ξCk + p(α,β)

Ck · CDα,β
γ

(
ξCk −

.
qCkξC0

)
+
(

p(α,β)
Ck · CDα,β

γ qCk − HC

) .
ξC0

− ∂HC
∂qCk

ξCk + λCa
∂φCa
∂pCk

ηCk +
(

p(α,β)
Ck

d
dt

CDα,β
γ qCk − ∂HC

∂t

)
ξC0

− .
qCk(t1) · ξC0(t1) ·

γp(α,β)
Ck

Γ(1−α) (t− t1)
−α + λCa

∂φCa

∂p(α,β)
Ck

· η(α,β)
Ck

+
.
qCk(t2)ξC0(t2) ·

(1−γ)p(α,β)
Ck

Γ(1−β) (t2 − t)−β = 0.

(61)

Equation (61) is called the fractional Noether identity within ICC.
If the infinitesimal generators ξC0, ξCk, ηCk, and η

(α,β)
Ck satisfy Equation (61), then the

corresponding infinitesimal transformations are called Noether symmetric transformations
in terms of ICC, which determine the Noether symmetry. Then we have the following:

Theorem 2. For the fractional constrained Hamiltonian system within ICC (Equation (47)), if
the infinitesimal generators ξC0, ξCk, ηCk, and η

(α,β)
Ck satisfy Equation (61), then there exists a

conserved quantity:

CC = pCkξCk +
(

p(α,β)
Ck · CDα,β

γ qCk − HC

)
ξC0 +

∫ t
t1

[
p(α,β)

Ck · CDα,β
γ

(
ξCk −

.
qCkξC0

)
+
(
ξCk −

.
qCkξC0

)
· RLDβ,α

1−γ p(α,β)
Ck

]
dτ − .

qCk(t1)
γξC0(t1)
Γ(1−α)

∫ t
t1

p(α,β)
Ck (τ − t1)

−αdτ

+
.
qCk(t2)ξC0(t2)

1−γ
Γ(1−β)

∫ t
t1

p(α,β)
Ck (t2 − τ)−βdτ

(62)

Proof. Using Equations (40), (47), and (61), it is easy to obtain

dCC
dt =

.
pCkξCk + pCk

.
ξCk +

(
p(α,β)

Ck · CDα,β
γ qCk − HC

) .
ξC0 + ξC0

(
− ∂HC

∂t −
∂HC
∂qCk

.
qCk

+
.
p(α,β)

Ck · CDα,β
γ qCk + p(α,β)

Ck · d
dt

CDα,β
γ qCk − ∂HC

∂pCk

.
pCk −

∂HC

∂p(α,β)
Ck

.
p(α,β)

Ck

)
+ p(α,β)

Ck

×CDα,β
γ

(
ξCk −

.
qCkξC0

)
− .

qCk(t1)
γξC0(t1)
Γ(1−α)

p(α,β)
Ck (t− t1)

−α +
(
ξCk −

.
qCkξC0

)
×RLDβ,α

1−γ p(α,β)
Ck +

.
qCk(t2)ξC0(t2)

1−γ
Γ(1−β)

p(α,β)
Ck (t2 − t)−β

=
.
pCkξCk + ξC0

.
p(α,β)

Ck · λCa
∂φCa

∂p(α,β)
Ck

+ ξC0
.
pCk

(
− .

qCk + λCa
∂φCa
∂pCk

)
+
(
ξCk −

.
qCkξC0

)(
− .

pCk − λCa
∂φCa
∂qCk

)
− λCa

∂φCa
∂pCk

ηCk − λCa
∂φCa

∂p(α,β)
Ck

η
(α,β)
Ck

= −λCa
∂φCa

∂p(α,β)
Ck

· δp(α,β)
Ck − λCa

∂φCa
∂pCk
· δpCk − λCa

∂φCa
∂qCk
· δqCk = −λCa · δφCa = 0

�

7. Lie Symmetry and Conserved Quantity
7.1. Lie Symmetry and Conserved Quantity within ICRL

Lie symmetry means the invariance of the differential equations of motion under
the infinitesimal transformations of time and coordinates. We begin with the fractional
constrained Hamilton equation within ICRL.

We write the fractional constrained Hamilton equation within ICRL (Equation (46)) in
another form:

.
qRLk = sRLk

(
t, qRL, pRL, p(α,β)

RL

)
, k = 1, 2, · · · , n, (63)

RLDα,β
γ qRLk = hRLk

(
t, qRL, pRL, p(α,β)

RL

)
, k = 1, 2, · · · , n, (64)
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.
pRLk = −

CDβ,α
1−γ p(α,β)

RLk + fRLk

(
t, qRL, pRL, p(α,β)

RL

)
, k = 1, 2, · · · , n. (65)

Then we study Equations (63)–(65) under the infinitesimal transformations (Equation (53)).
For Equation (63), we have

.
qRLk − sRLk

(
t, qRL, pRL, p(α,β)

RL

)
=

.
qRLk − sRLk

(
t, qRL, pRL, p(α,β)

RL

)
+θRL

[ .
ξRLk −

.
qRLk

.
ξRL0 − X(0)

RL (sRLk)
] (66)

where X(0)
RL = ξRL0

∂
∂t + ξRLi

∂
∂qRLi

+ ηRLi
∂

∂pRLi
+ η

(α,β)
RLi

∂

∂p(α,β)
RLi

, i = 1, 2, · · · , n. For Equation

(64), we have

RLDα,β
γ qRLk − hRLk

(
t, qRL, pRL, p(α,β)

RL

)
= RLDα,β

γ qRLk − hRLk

(
t, qRL, pRL, p(α,β)

RL

)
+θRL

[
RLDα,β

γ

(
ξRLk −

.
qRLkξRL0

)
+ ξRL0

d
dt

RLDα,β
γ qRLk − X(0)

RL (hRLk)

−qRLk(t1)
γξRL0(t1)
Γ(1−α)

d
dt (t− t1)

−α + qRLk(t2)ξRL0(t2)
1−γ

Γ(1−β)
d
dt (t2 − t)−β

] (67)

For Equation (65), we have

.
pRLk +

CDβ,α
1−γ p(α,β)

RLk − fRLk

(
t, qRL, pRL, p(α,β)

RL

)
=

.
pRLk +

CDβ,α
1−γ p(α,β)

RLk

− fRLk

(
t, qRL, pRL, p(α,β)

RL

)
+ θRL

[ .
ηRLk −

.
pRLk

.
ξRL0 +

CDβ,α
1−γ

(
η
(α,β)
RLk −

.
p(α,β)

RLk ξRL0

)
− 1−γ

Γ(1−β) (t− t1)
−β .

p(α,β)
RLk (t1)ξRL0(t1) + ξRL0

d
dt

CDβ,α
1−γ p(α,β)

RLk

+ γ
Γ(1−α) (t2 − t)−α .

p(α,β)
RLk (t2)ξRL0(t2)− X(0)

RL ( fRLk)
] (68)

For the fractional primary constraint (Equation (37)), we have

φRLa

(
t, qRL, pRL, p(α,β)

RL

)
= φRLa

(
t, qRL, pRL, p(α,β)

RL

)
+ θRLX(0)

RL (φRLa). (69)

From the definition of Lie symmetry, we obtain

.
ξRLk −

.
qRLk

.
ξRL0 − X(0)

RL (sRLk) = 0, (70)

RLDα,β
γ

(
ξRLk −

.
qRLkξRL0

)
+ ξRL0

d
dt

RLDα,β
γ qRLk − X(0)

RL (hRLk)

−qRLk(t1)
γξRL0(t1)
Γ(1−α)

d
dt (t− t1)

−α + qRLk(t2)ξRL0(t2)
1−γ

Γ(1−β)
d
dt (t2 − t)−β = 0,

(71)

CDβ,α
1−γ

(
η
(α,β)
RLk −

.
p(α,β)

RLk ξRL0

)
+ ξRL0

d
dt

CDβ,α
1−γ p(α,β)

RLk − X(0)
RL ( fRLk)

+
.
ηRLk −

.
pRLk

.
ξRL0 −

1−γ
Γ(1−β) (t− t1)

−β .
p(α,β)

RLk (t1)ξRL0(t1)

+ γ
Γ(1−α) (t2 − t)−α .

p(α,β)
RLk (t2)ξRL0(t2) = 0,

(72)

and
X(0)

RL (φRLa) = 0. (73)

Equations (70)–(72) are called determined equations within ICRL, and Equation (73) is
called the limited equation within ICRL.

However, if we consider the deduction process of the fractional constrained Hamilton
equation (Equation (46)), an extra additional limited equation,

∂φRLa
∂qRLi

(
ξRLi −

.
qRLiξRL0

)
+

∂φRLa
∂pRLi

(
ηRLi −

.
pRLiξRL0

)
+

∂φRLa

∂p(α,β)
RLi

(
η
(α,β)
RLi −

.
p(α,β)

RLi ξRL0

)
= 0, (74)

needs to be exposed on the infinitesimal generators.
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Definition 2. For the fractional constrained Hamiltonian system, if the infinitesimal generators
satisfy the determined equations, then the corresponding symmetry is called Lie symmetry.

Definition 3. For the fractional constrained Hamiltonian system, if the infinitesimal generators
satisfy both the determined equations and the limited equation, then the corresponding symmetry is
called weak Lie symmetry.

Definition 4. For the fractional constrained Hamiltonian system, if the infinitesimal generators
satisfy the determined equations, the limited equation, and the additional limited equation, then the
corresponding symmetry is called strong Lie symmetry.

Lie symmetry can lead to a conserved quantity under some conditions.

Theorem 3. For the fractional constrained Hamiltonian system within ICRL (Equation (46)), if the
infinitesimal generators ξRL0, ξRLk, ηRLk, and η

(α,β)
RLk satisfy the determined equations (Equations

(70)–(72)) and the structure equation (Equation (55)), then there exists a Lie symmetry conserved
quantity (Equation (56)).

Theorem 4. For the fractional constrained Hamiltonian system within ICRL (Equation (46)), if the
infinitesimal generators ξRL0, ξRLk, ηRLk, and η

(α,β)
RLk satisfy the determined equations (Equations

(70)–(72)), the limited equation (Equation (73)) and the structure equation (Equation (55)), then
there exists a weak Lie symmetry conserved quantity (Equation (56)).

Theorem 5. For the fractional constrained Hamiltonian system within ICRL (Equation (46)), if the
infinitesimal generators ξRL0, ξRLk, ηRLk, and η

(α,β)
RLk satisfy the determined equations (Equations

(70)–(72)), the limited equation (Equation (73)), the additional limited equation (Equation (74)), and
the structure equation (Equation (55)), then there exists a strong Lie symmetry conserved quantity
(Equation (56)).

7.2. Lie Symmetry and Conserved Quantity within ICC

We write the fractional constrained Hamilton equation within ICC (Equation (47)) in
another form

.
qCk = sCk

(
t, qC, pC, p(α,β)

C

)
, k = 1, 2, · · · , n, (75)

CDα,β
γ qCk = hCk

(
t, qC, pC, p(α,β)

C

)
, k = 1, 2, · · · , n, (76)

.
pCk = −

RLDβ,α
1−γ p(α,β)

Ck + fCk

(
t, qC, pC, p(α,β)

C

)
, k = 1, 2, · · · , n. (77)

Then, similarly, we can obtain the determined equations within ICC

.
ξCk −

.
qCk

.
ξC0 − X(0)

C (sCk) = 0, (78)

CDα,β
γ

(
ξCk −

.
qCkξC0

)
+ ξC0

d
dt

CDα,β
γ qCk − X(0)

C (hCk)

− .
qCk(t1)

γξC0(t1)
Γ(1−α) (t− t1)

−α +
.
qCk(t2)ξC0(t2)

1−γ
Γ(1−β) (t2 − t)−β = 0,

(79)

.
ηCk −

.
pCk

.
ξC0 +

RLDβ,α
1−γ

(
η
(α,β)
Ck − .

p(α,β)
Ck ξC0

)
− X(0)

C ( fCk)

+ξC0
d
dt

RLDβ,α
1−γ p(α,β)

Ck − 1−γ
Γ(1−β)

p(α,β)
Ck (t1)ξC0(t1)

d
dt (t− t1)

−β

+ γ
Γ(1−α)

p(α,β)
Ck (t2)ξC0(t2)

d
dt (t2 − t)−α = 0,

(80)

the limited equation within ICC
X(0)

C (φCa) = 0, (81)
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and the additional limited equation within ICC

∂φCa
∂qCi

(
ξCi −

.
qCiξC0

)
+

∂φCa
∂pCi

(
ηCi −

.
pCiξC0

)
+

∂φCa

∂p(α,β)
Ci

(
η
(α,β)
Ci − .

p(α,β)
Ci ξC0

)
= 0, (82)

where X(0)
C = ξC0

∂
∂t + ξCi

∂
∂qCi

+ ηCi
∂

∂pCi
+ η

(α,β)
Ci

∂

∂p(α,β)
Ci

, i = 1, 2, · · · , n. Therefore, we have

the following:

Theorem 6. For the fractional constrained Hamiltonian system within ICC (Equation (47)), if the in-
finitesimal generators ξC0, ξCk, ηCk, and η

(α,β)
Ck satisfy the determined equations (Equations (78)–(80))

and the structure equation (Equation (61)), then there exists a Lie symmetry conserved quantity
(Equation (62)).

Theorem 7. For the fractional constrained Hamiltonian system within ICC (Equation (47)), if the in-
finitesimal generators ξC0, ξCk, ηCk, and η

(α,β)
Ck satisfy the determined equations (Equations (78)–(80)),

the limited equation (Equation (81)), and the structure equation (Equation (61)), then there exists a
weak Lie symmetry conserved quantity (Equation (62)).

Theorem 8. For the fractional constrained Hamiltonian system within ICC (Equation (47)), if the in-
finitesimal generators ξC0, ξCk, ηCk, and η

(α,β)
Ck satisfy the determined equations (Equations (78)–(80)),

the limited equation (Equation (81)), the additional limited equation (Equation (82)), and the structure
equation (Equation (61)), then there exists a strong Lie symmetry conserved quantity (Equation (62)).

8. An Example

The fractional singular system is

LRL =
.
qRL1qRL2 − qRL1

.
qRL2 + q2

RL1 + q2
RL2 +

1
2

[(
RLDα,β

γ qRL1

)2
+
(

RLDα,β
γ qRL2

)2
]

, (83)

and we try to study its Noether symmetry and Lie symmetry.
From Equations (28) and (29), we have

pRL1 = ∂LRL
∂

.
qRL1

= qRL2, pRL2 = ∂LRL
∂

.
qRL2

= −qRL1, p(α,β)
RL1 = ∂LRL

∂RLDα,β
γ qRL1

= RLDα,β
γ qRL1,

p(α,β)
RL2 = ∂L

∂RLDα,β
γ qRL2

= RLDα,β
γ qRL2, HRL = 1

2

[(
p(α,β)

RL1

)2
+
(

p(α,β)
RL2

)2
]
− q2

RL1 − q2
RL2.

(84)

Then Equation (30) gives

HRL11 = ∂2LRL
∂

.
qRL1∂

.
qRL1

= 0, HRL12 = ∂2LRL
∂

.
qRL1∂

.
qRL2

= 0,

HRL21 = ∂2LRL
∂

.
qRL2∂

.
qRL1

= 0, HRL22 = ∂2LRL
∂

.
qRL2∂

.
qRL2

= 0.
(85)

Namely, R= rank
[
HRLij

]
= 0; then Equation (37) gives two fractional primary con-

straints:
φRL1 = pRL1 − qRL2 = 0, φRL2 = pRL2 + qRL1 = 0 (86)

From Equation (49), we obtain

λRL1 = −qRL2 +
1
2

[
CDβ,α

1−γ p(α,β)
RL2 −

γ(t2−t)−α

Γ(1−α)
p(α,β)

RL2 (t2) +
(1−γ)(t−t1)

−β

Γ(1−β)
p(α,β)

RL2 (t1)

]
,

λRL2 = qRL1 − 1
2

[
CDβ,α

1−γ p(α,β)
RL1 −

γ(t2−t)−α

Γ(1−α)
p(α,β)

RL1 (t2) +
(1−γ)(t−t1)

−β

Γ(1−β)
p(α,β)

RL1 (t1)

]
.

(87)
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Then, making use of Equation (46), the fractional constrained Hamilton equation
within ICRL can be obtained as

.
pRL1 = qRL1 − 1

2

[
CDβ,α

1−γ p(α,β)
RL1 −

γ(t2−t)−α

Γ(1−α)
p(α,β)

RL1 (t2) +
(1−γ)(t−t1)

−β

Γ(1−β)
p(α,β)

RL1 (t1)

]
,

.
pRL2 = qRL2 − 1

2

[
CDβ,α

1−γ p(α,β)
RL2 −

γ(t2−t)−α

Γ(1−α)
p(α,β)

RL2 (t2) +
(1−γ)(t−t1)

−β

Γ(1−β)
p(α,β)

RL2 (t1)

]
,

.
qRL1 = −qRL2 +

1
2

[
CDβ,α

1−γ p(α,β)
RL2 −

γ(t2−t)−α

Γ(1−α)
p(α,β)

RL2 (t2) +
(1−γ)(t−t1)

−β

Γ(1−β)
p(α,β)

RL2 (t1)

]
,

.
qRL2 = qRL1 − 1

2

[
CDβ,α

1−γ p(α,β)
RL1 −

γ(t2−t)−α

Γ(1−α)
p(α,β)

RL1 (t2) +
(1−γ)(t−t1)

−β

Γ(1−β)
p(α,β)

RL1 (t1)

]
,

RLDα,β
γ qRL1 = p(α,β)

RL1 , RLDα,β
γ qRL2 = p(α,β)

RL2

(88)

The Noether identity (Equation (55)) gives

p(α,β)
RL1 · RLDα,β

γ

(
ξRL1 −

.
qRL1ξRL0

)
+ p(α,β)

RL2 · RLDα,β
γ

(
ξRL2 −

.
qRL2ξRL0

)
+

{
1
2

[(
p(α,β)

RL1

)2
+
(

p(α,β)
RL2

)2
]
+ q2

RL1 + q2
RL2

}
·

.
ξRL0 + pRL1

.
ξRL1 + pRL2

.
ξRL2

+qRL1ξRL1 + qRL2ξRL2 +
(

p(α,β)
RL1

d
dt

RLDα,β
γ qRL1 + p(α,β)

RL2
d
dt

RLDα,β
γ qRL2

)
ξRL0

−qRL1(t1) · ξRL0(t1) ·
γp(α,β)

RL1
Γ(1−α)

d
dt (t− t1)

−α − qRL2(t1) · ξRL0(t1) ·
γp(α,β)

RL2
Γ(1−α)

× d
dt (t− t1)

−α + λRL1ηRL1 − λRL1ηRL2 + qRL1(t2)ξRL0(t2) ·
(1−γ)p(α,β)

RL1
Γ(1−β)

× d
dt (t2 − t)−β + qRL2(t2)ξRL0(t2) ·

(1−γ)p(α,β)
RL2

Γ(1−β)
d
dt (t2 − t)−β = 0

(89)

Then we can verify that

ξRL0 = −1, ξRL1 = ξRL2 = 0, ηRL1 = ηRL2 = 0, and η
(α,β)
RL1 = η

(α,β)
RL2 = 0 (90)

satisfy Equation (89). Therefore, from Theorem 1, we obtain a conserved quantity:

CRL = − 1
2

[(
p(α,β)

RL1

)2
+
(

p(α,β)
RL2

)2
]
− q2

RL1 − q2
RL2 +

∫ t
t1

{
p(α,β)

RL1
d

dτ
RLDα,β

γ
.
qRL1

+ d
dτ

RLDα,β
γ

.
qRL2 · p

(α,β)
RL2 +

.
qRL1 ·

[
CDβ,α

1−γ p(α,β)
RL1 −

γ(t2−τ)−α

Γ(1−α)
p(α,β)

RL1 (t2)

+ (1−γ)(τ−t1)
−β

Γ(1−β)
p(α,β)

RL1 (t1)

]
+

.
qRL2 ·

[
− γ(t2−τ)−α

Γ(1−α)
p(α,β)

RL2 (t2)

+CDβ,α
1−γ p(α,β)

RL2 + (1−γ)(τ−t1)
−β

Γ(1−β)
p(α,β)

RL2 (t1)

]}
dτ

(91)

Equations (70)–(72) give the determined equations

.
ξRL1 −

.
qRL1

.
ξRL0 = −ξRL0

∂
∂t

[
1
2 pα

RL2(t2)
(t2−t)−α

Γ(1−α)

]
− ξRL2,

.
ξRL2 −

.
qRL2

.
ξRL0 = ξRL0

∂
∂t

[
1
2 pα

RL1(t2)
(t2−t)−α

Γ(1−α)

]
+ ξRL1,

t1
Dα

t
(
ξRL1 −

.
qRL1ξRL0

)
+ ξRL0

d
dt t1

Dα
t qRL1 − 1

Γ(1−α)
qRL1(t1)ξRL0(t1)

d
dt (t− t1)

−α = η
(α,β)
RL1 ,

t1
Dα

t
(
ξRL2 −

.
qRL2ξRL0

)
+ ξRL0

d
dt t1

Dα
t qRL2 − 1

Γ(1−α)
qRL2(t1)ξRL0(t1)

d
dt (t− t1)

−α = η
(α,β)
RL2 ,

.
ηRL1 −

.
pRL1

.
ξRL0 − ξRL0

d
dt

C
t Dα

t2
p(α,β)

RL1 − C
t Dα

t2

(
η
(α,β)
RL1 −

.
p(α,β)

RL1 ξRL0

)
+ 1

Γ(1−α) (t2 − t)−α .
p(α,β)

RL1 (t2)ξRL0(t2) = ξRL0
∂
∂t

[
1
2 p(α,β)

RL1 (t2)
(t2−t)−α

Γ(1−α)

]
+ ξRL1,

.
ηRL2 −

.
pRL2

.
ξRL0 − ξRL0

d
dt

C
t Dα

t2
p(α,β)

RL2 − C
t Dα

t2

(
η
(α,β)
RL2 −

.
p(α,β)

RL2 ξRL0

)
+ 1

Γ(1−α) (t2 − t)−α .
p(α,β)

RL2 (t2)ξRL0(t2) = ξRL0
∂
∂t

[
1
2 p(α,β)

RL2 (t2)
(t2−t)−α

Γ(1−α)

]
+ ξRL2.

(92)
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Equation (73) gives the limited equation

−ξRL2 + ηRL1 = 0, ξRL1 + ηRL2 = 0 (93)

Equation (74) gives the additional limited equation

ξRL2 −
.
qRL2ξRL0 + ηRL1 −

.
pRL1ξRL0 = 0, ξRL1 −

.
qRL1ξRL0 + ηRL2 −

.
pRL2ξRL0 = 0 (94)

Taking the calculation, we find that Equation (90) also meets the determined equa-
tion (Equation (92)) as well as the limited equation (Equation (93)) under the condition
p(α,β)

RL1 (t1) = p(α,β)
RL2 (t1) = p(α,β)

RL1 (t2) = p(α,β)
RL2 (t2) = 0. It is noted that Equation (90) is not the

solution to the additional limited equation (Equation (94)). Therefore, Equation (91) is also
a Lie symmetry conserved quantity as well as a weak Lie symmetry conserved quantity,
but not a strong Lie symmetry conserved quantity.

9. Results and Discussion

Based on ICRL and ICC, the fractional Lagrange equations (Equations (24) and (27)),
the fractional primary constraints (Equations (37) and (40)), the fractional constrained
Hamilton equations (Equations (46) and (47)), and the consistency conditions (Equations
(49) and (50)) are presented. Noether symmetry and Lie symmetry are investigated, and the
corresponding conserved quantities are achieved. Here only the Noether type conserved
quantity is deduced from the Lie symmetry. It is significant if the Hojman type conserved
quantity can be deduced from Lie symmetry in the future. Moreover, the Mei symmetry
method is another important tool to find solutions to the differential equations of motion.
Therefore, Lie symmetry and the corresponding Hojman type conserved quantity, Mei
symmetry and the corresponding Mei type conserved quantity, as well as the perturbation
to symmetry are the future research directions. As for the example, it is helpful and straight-
forward if a numerical calculation could be given to show that the obtained conservation
law is a constant. Therefore, the use of simulation to illustrate obtained results is also an
important research direction in the near future.
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