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Abstract: Under the influence of internal and external factors, a fracture network is easily generated
in concrete and rock, which seriously endangers project safety. Fractal theory can be used to describe
the formation and development of the fracture network and characterize its structure. Based on
the flow balance in the node balance field, Forchheimer’s law is introduced to derive the control
equation of high-velocity non-Darcy flow in the fracture network. The fracture network is established
according to the geological parameters of Sellafield, Cumbria, England. A total of 120 internal fracture
networks are intercepted according to 10 dimensions (1 m, 2 m, . . . , 10 m) and 12 directions (0◦, 30◦,
. . . , 330◦). The fractal dimension, equivalent hydraulic conductivity (K), and equivalent non-Darcy
coefficient (β) of the fracture network are calculated, and the influence of the fractal dimension on K
and β is studied. The results indicate that the fractal dimension of the fracture network has a size
effect; with the increase in the size, the fractal dimension of the fracture network undergoes three
stages: rapid increase, slow increase, and stabilization. In the rapid increase stage, K and β do not
exist. In the slow increase stage, K exists and is stable, and β does not exist. In the stabilization stage,
K and β both exist and are stable. The principal axes of the fitted seepage ellipses of K and β are
orthogonal, and the main influencing factors are the direction and continuity of the fracture.

Keywords: fractal dimension; fracture network; equivalent hydraulic conductivity; equivalent
non-Darcy coefficient

1. Introduction

The development of fractal theory provides an effective theory for the study of civil
engineering materials such as concrete and rock mass. Concrete and rock are common
fracture materials and are widely used in dams, tunnels, and mining projects. The devel-
opment of an internal fracture in materials reduces the strength of the structure, which
poses greater risks to the construction project and causes changes in internal water pressure,
leading to various seepage problems and affecting the safety of the project. As a new theo-
retical method of describing the structural characteristics of a fracture network in fracture
media, fractal theory has achieved considerable development in the field of engineering
materials [1–3], providing a scientific theoretical basis for the study of complex fracture
media such as concrete and rock mass [4–6]. Many engineering practices and experimental
studies have shown that the trace length follows the power law distribution of the fractal
dimension, which can be expressed by the fractal dimension [7]. The internal fractures
crisscross to form a connected fracture network. The location, trace length, and direction
of the fracture reflect the structure of the fracture network, giving it typical characteris-
tics [7,8]. Fractal geometry provides a suitable mathematical framework for characterizing
and simulating the geometric characteristics of many complex non-Eulerian shapes in na-
ture and has proved to be suitable for fracture media such as concrete and rock mass [9,10].
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In the current research, most scholars have focused on the fractal study of the fracture
structure and strength characteristics of engineering materials such as concrete [11,12]. For
the statistics on internal fractures, fracture network reconstruction, and seepage-fractal
characteristics, there are few studies.

Fracture propagation not only reduces the strength of materials and causes fractures,
breakage, overturning, and other engineering disasters, but also increases the seepage channel
of water, changes the permeability of materials, and seriously affects the safety of dam projects.
Many dam accidents worldwide are caused by the seepage of fractures [13,14], resulting
in many casualties and property losses. In addition, traditional projects such as tunnels
and mines involve seepage problems of the fracture media. The fracture network in rock
mass provides seepage channels for high-pressure groundwater, which will cause serious
water inrush accidents [15,16]. Injecting an active expansion agent into concrete, rock, and
other fracture materials can play an effective role in plugging leakage, significantly reducing
permeability, and improving project safety [17,18]. With the development of science and
technology, people have attached importance to energy and environmental issues, and many
new underground engineering technologies have emerged, such as geological storage of
radioactive waste and pollutants [19], underground storage of CO2 [20], and the development
and utilization of geothermal and oil resources, which involve seepage of fractured rock
masses. Therefore, it is important to study the seepage characteristics of fractured media to
effectively ensure the long-term safe and stable operation of construction projects.

The fracture medium consists of a low permeability block and a high water conductiv-
ity fracture network. Compared with the high water conductivity of the fracture network,
the permeability of the block in the entire medium can be ignored. It can be simply con-
sidered that in a fractured rock mass, seepage does not occur in the rock but flows along
the fractures. The water inflow and outflow at the fracture nodes are the same, and the
flow through the fracture network has reached a balance. Many scholars have carried
out in-depth research on the seepage characteristics of fracture media to determine the
relationship between the hydraulic conductivity of the fracture network and the fracture
structure and obtain the seepage field of fracture media [21–23].

With the deepening of research, numerous tests have determined that, with the increase
in the hydraulic gradient, the seepage characteristics of fractures no longer obey the linear
Darcy’s law, and there is a nonlinear relationship between velocity and hydraulic gradient.
The larger the hydraulic gradient, the more obvious the phenomenon of deviation from
Darcy’s law, that is, non-Darcy flow [24,25]. Visualization technology can intuitively
display the behavior of fluid flow in the fracture intersection [26]. For the cross-fracture
model, when the Reynolds number is large, the flow rate changes nonlinearly, the fluid
begins to flow nonlinearly, and the pressure and flow rate no longer maintain a linear
relationship [24,27]. Other experiments have shown that even if the flow velocity is very
small, the fluid in the fracture network will also have obvious nonlinear flow [28]. The
cubic law is generally used to calculate the seepage characteristics of each fracture in the
discrete fracture network, and the constant hydraulic gradient is assumed. However, the
cubic law often overestimates the seepage capacity of fluid through the fracture, which is
different from the actual fluid flow [29–31]. Therefore, when calculating the seepage flow
of each fracture, the applicable conditions of the cubic law should be fully considered, and
an appropriate method should be selected to calculate the nonlinear flow of fluid in the
fracture network.

The statistical parameters of a fracture affect the fractal characteristics and permeability
of the fracture network at the same time. Fracture propagation in nature has a certain
randomness, leading to the fractal dimension of the fracture network usually being non-
integer [9]. Meanwhile, the permeability of the fracture network is affected by the fracture
trace, aperture, direction, and density. With the increase in the trace length, aperture, and
density, more fractures intersect with each other, changing the connectivity and leading to
the change in the hydraulic conductivity of the fracture medium [32]. Some scholars have
introduced correlation to calculate the permeability tensor and obtained the relationship
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between the fractal characteristics of the fracture network and the permeability of the
equivalent fracture network according to the actual parameters [33]. The fractal expression
of the fracture trace length can also be established through the correlation between the
fracture aperture and trace length, and the variation law of equivalent permeability can
be analyzed based on the numerical method; then, the tensor of hydraulic conductivity
coefficient of the fracture network can be obtained [34]. Therefore, there is a certain
relationship between the fractal characteristics and permeability of a fracture network.
Exploring the seepage-fractal relationship of fracture media will further promote the
application of fractal theory in engineering.

At present, the research in this field has mainly been focused on linear Darcy flow
in the fault network and rarely involves high-velocity non-Darcy flow. The research on
the equivalent hydraulic conductivity coefficient, equivalent non-Darcy coefficient, and
their influencing factors is insufficient. Meanwhile, the relationship between the fractal
dimension and K and B must also be further studied. In this study, a fracture network
is established according to actual geological data. Then, a series of fracture networks
with different sizes and angles are intercepted, and their fractal dimensions K and β are
calculated. The influence of the fractal dimensions on K and β is explored, and the seepage-
fractal characteristics of the fracture network are revealed.

2. Methodology
2.1. Fractal Dimension of Fractured Media

Fracture media such as concrete, rock mass, etc., exist widely in nature. When subjected
to impact load or earthquake, fractures are generated in materials. With the increase in
fractures, they connect with each other and form a fracture network. The fracture network
of rock mass has typical self-similarity, which makes it possible to characterize the fracture
network with the fractal dimension.

The fractal dimension of the fracture network can be calculated with Equation (1):

D(ψ) = lim
δ→0+

log N(δ)

log(1/δ)
(1)

where ψ is a bounded fracture network in two-dimensional Euclidean space, N(δ) is the
number of elements forming a finite cover of the fracture, and δ is a bound on the length of
the sets involved. Informally, δ is the size of each element used to cover the set, which is taken
to approach 0. By changing the size of the element several times and calculating the number
of elements covering the fracture, a series of data about δ − N(δ) were obtained; then, the
scatterplot of δ and N(δ) was made, the slope of the point set was calculated based on the
least squares method, and the slope was the fractal dimension of the fracture network.

In this study, the box-counting method was used to calculate the fractal dimension of
the fracture network. The image needed to be grayed to obtain a digital representation of the
fracture network. In order to eliminate the background and all kinds of noise information,
it was necessary to binarize the digital image and strengthen the image features of the
fracture network. According to the image characteristics, the gray value of the pixel
points on the fracture network image was set to 0 and 255, and the entire image showed a
significant black-and-white effect. This allowed intuitive identification of fractures, and the
fractal dimension of the fracture network was obtained, as shown in Figure 1. The fractal
dimensions of the fracture network in Figure 1c,d were 1.646 and 1.651, respectively.
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Figure 1. Graying and binarization of the fracture network. (a,b) The fracture network in Songshan
Mountain, Dengfeng, Zhengzhou City; (c,d) grayscale and binary fracture network.

2.2. Discrete Fracture Network Generation

In this study, a new fracture network was generated based on the Monte Carlo method.
The fracture network was affected by the statistical parameters of the fractures, in which
the trace length and tendency were randomly generated, and the density and aperture
were fixed.

The fracture network was composed of multiple fractures. When the fractures are
generated, parameters such as the location, trace length, and direction of the fractures must
be obtained. It was assumed that the fracture location followed a Poisson process, which
can be realized by generating random numbers based on a recursive algorithm [7,34]. This
algorithm ignores the integer part of the result and retains only the decimal part, as shown
in Equation (2):

Gi+1 = 27.0× Gi − INT(27.0× Gi) (2)

where Gi is a random number of uniform distribution in the open interval (0,1), INT() is
the integer function, which returns the integer part of the real number inside ( ), and the
initial value of G0 can be obtained based on the multiplication congruential method. Taking
a rectangular space in a Cartesian coordinate system to generate the fracture network, if
the space coordinate satisfies x ∈ [xs1, xs2], y ∈ [ys1, ys2], the coordinates of the midpoint
of each fracture can be obtained from the following equation [34]:

xi = Gi(xs2 − xs1) + xs1
yi = Gi(ys2 − ys1) + ys1

(3)
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In a fracture network, the trace length of a single fracture follows the power law
distribution of the fractal dimension [34], as shown in Equation (4):

l =
1(

l−D
min + u(l−D

max − l−D
min)

)1/D (4)

where l is the trace length, D is the fractal dimension, lmax and lmin are the maximum and
minimum trace lengths in the fracture network, respectively, u is a random number subject
to a uniform distribution in the closed interval [0,1].

The deviation degree between the direction of a single fracture and the main direction
of fracture propagation usually follows the Fisher distribution [7]. If α is the angle of the
fracture deviating from the average direction, it can be expressed as Equation (5):

α = cos−1
{

ln[eF − u(eF − e−F)]

F

}
(5)

where F is the Fisher constant, which is mainly used to describe the deviation degree
between the direction of a single fracture and the main direction of fracture propagation;
the larger the F, the stronger the consistency of the overall propagation direction of the
fracture. With Equations (4) and (5), we can obtain the trace length and propagation
direction of fractures based on the Monte Carlo method. With Equations (2)–(5) and
statistical data, all the data needed to generate the fracture network are obtained. In order
to completely avoid the boundary effect, the gap width should be larger than half the
maximum trace lengths [7]. Figure 2 shows the discrete fracture network generated under
different fracture parameters, Table 1 shows the fracture parameters of Figure 2a, and
Table 2 shows the fracture parameters of Figure 2b.
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Figure 2. Discrete fracture network generated by different parameters. (a) Fracture parameters shown
in Table 1; (b) fracture parameters shown in Table 2.

Table 1. Fracture network parameters of Figure 2a.

Fracture
Group

Direction (◦) Trace Length (m)
Density

(m−2)Mean Standard
Deviation Mean Standard

Deviation

1 148.7 2.6 12.8 2.1 1.1
2 142.5 2.9 10.6 1.6 1.8
3 71.6 2.1 14.5 2.2 4.3
4 28.1 2.6 13.8 2.4 4
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Table 2. Fracture network parameters of Figure 2b.

Fracture
Group

Direction (◦) Trace Length (m)
Density

(m−2)Mean Standard
Deviation Mean Standard

Deviation

1 165.5 3.2 13.2 2 1.6
2 94.5 2.5 15.3 1.8 3.1
3 71.6 2.8 11.6 2.1 6.4
4 35.3 4.1 9.7 3.1 8.2

2.3. High-Velocity Non-Darcy Flow in a Fracture Network

It is generally considered that water is an incompressible fluid, and the amount of
water flowing into and out of the fracture nodes is the same in a fracture network. When
there are multiple fracture inflow or outflow nodes, the flow rate and direction of each
fracture must be calculated separately. Based on the cubic law, the seepage model of
fractured rock mass is constructed, the flow control equation is established, the boundary
conditions and initial conditions are introduced, and the seepage law of water in the
fracture network is solved.

In this study, in order to solve the high-velocity non-Darcy seepage field of a fractured
rock mass and obtain the water head, flow rate, and velocity in the fracture, a seepage
model of the fracture network was established, as shown in Figure 3. Each independent
line in the area represents a fracture, reflecting the continuity condition of water flow at
each fracture node, and the arithmetic sum of water inflow and outflow in each balance
field was 0.
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Suppose a fracture network is composed of N fracture nodes and M fractures, and
fracture j corresponds to a segment with a fracture aperture bj and line length lj. Select
a node i randomly in the fracture network, and there are N′ fractures intersecting the ith
node. According to the principle of flow conservation, the flow equation of the ith node
can be expressed as Equation (6):

(
N′

∑
j=1

qj)i + vi = 0; (j = 1, 2, · · · , N′) (6)

where qj is the flow rate of fracture j into or out of node i, and vi is the flow rate into or
out of the fracture network at node i. When node i is located inside the fracture network,
vi = 0. Since there are N nodes in the fracture network, Equation (6) can be expressed in
matrix form as follows:

AQ + V = 0 (7)

where V = (v1, v2, · · · , vN)
T , Q = (q1, q2, · · · , qM)T , and A =

{
aij
}

N×M are the N ×M
order connection matrix of the fracture network, which describes the connection relation-
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ship between fractures and nodes in the fracture network. When fracture j does not connect
with node i, aij = 0. When fracture j connects with node i and points to node i, aij = +1.
When fracture j connects with node i and points away from node i, aij = −1. Then the head
difference vector in the fault can be expressed as Equation (8):

∆H = AT H (8)

where ∆H = (∆H1, ∆H2, · · · , ∆HM)T is the vector of order M× 1, AT is the transposition
matrix of the connection matrix, and H is the node head vector of order N × 1. The nodes
in the fracture network belong to three categories. Category a: internal nodes where the
total number is Na. Category b: nodes with flux boundary conditions with a total number
of Nb. Category c: nodes with head boundary conditions with a total number of Nc. The
total number of nodes satisfy N = Na + Nb + Nc. Considering the flow balance of nodes,
Equation (7) can be further expressed as

∆H = Aa
T Ha + Ab

T Hb + Ac
T Hc (9)

where AT
a , AT

b , AT
c are the transposed matrices of the connecting matrix of order M× Na,

M× Nb, and M× Nc respectively; Ha, Hb, Hc are the water head vectors of order Na × 1,
Nb × 1, and Nc × 1 respectively. Equation (7) can be rewritten as:

AaQ + Va = 0
AbQ + Vb = 0
AcQ + Vc = 0

(10)

where Va, Vb, Vc are the boundary flow rate vectors of order Na × 1, Nb × 1, and Nb × 1,
respectively. Assuming that the fracture is simplified as a smooth parallel plate, according
to the cubic law, the flow in the jth fracture can be expressed as the equation below owing
to Darcy flow:

qj = k f · bjdj · (∆Hj)/lj = Tlj · (∆Hj)

Tlj =
ρgb3

j dj

12µlj

(11)

where k f is the intrinsic permeability defined as b2/12, ρ is the density of water, g is the
acceleration of gravity, µ is the coefficient of viscosity, and bj and dj are the aperture and
depth of the jth fracture element, respectively. In a two-dimensional seepage problem,
dj = 1. The matrix form of Equation (11) can be expressed as

Q = Tl · (∆H) (12)

where Tl = diag(Tl1, Tl2, · · · , TlM) take Equations (9) and (12) into Equation (10) to
obtain the following equation:(

Aa · Tl · AT
a
)

Ha +
(

Aa · Tl · AT
b
)

Hb +
(

Aa · Tl · AT
c
)

Hc + Va = 0(
Ab · Tl · AT

a
)

Ha +
(

Ab · Tl · AT
b
)

Hb +
(

Ab · Tl · AT
c
)

Hc + Vb = 0(
Ac · Tl · AT

a
)

Ha +
(

Ac · Tl · AT
b
)

Hb +
(

Ac · Tl · AT
c
)

Hc + Vc = 0
(13)

As shown in Figure 3, a constant head boundary is applied on the left and right sides
of the fracture network, and a constant flow boundary is applied on the top and bottom.
According to the boundary conditions, Va, Vb, and Hc are known quantities, and Ha, Hb,
and Vc are unknown quantities. The boundary flow rate Vc can be obtained by solving the
following equation:

Vc = −
(

Ac · Tl · AT
a

)
Ha −

(
Ac · Tl · AT

b

)
Hb −

(
Ac · Tl · AT

c

)
Hc. (14)
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However, in engineering, a high-velocity non-Darcy flow is more common in frac-
tures. At this time, it is generally believed that it obeys Forchheimer’s law [25,35,36]. The
hydraulic gradient in the jth fracture can be expressed as

Jj =
12µ

ρgb2
j

qj

bjdj
+

β j

g

(
qj

bjdj

)2

= Bjqj + Cjq2
j (15)

where β j is the non-Darcy coefficient, related to the aperture and roughness of the fracture.
Bj and Cj are the coefficients that describe the energy losses of the flow caused by viscosity
and inertia, respectively, and can be written as follows:

Bj =
12µ

ρgb3
j dj

Cj =
β j

gb2
j d2

j

(16)

We can calculate qj and Tlj by solving Equation (15).

qj =
−Bj +

√
Bj

2 + 4Cj Jj

2Cj · ∆Hj
· ∆Hj = Tlj · (∆Hj), (17)

Tlj =
−Bj +

√
B2

j + 4Cj Jj

2Cj Jj
lj. (18)

A nonlinear equation group of the fracture network is formed by bringing Equation (18)
into Equation (13); then, Vc can be solved by iterative method, as shown in Figure 4.
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Figure 4. Flow chart for solving the non-Darcy flow of a fracture network.
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2.4. K and β of a Fracture Network

As shown in Figure 3, assuming that the side length of the plane fracture network is L,
and the flow rate on the upper and lower boundaries is 0, the hydraulic gradient acting on
the fracture network owing to the Darcy flow can be expressed as:

J =
1
K
· Vc

L
(19)

where K is the equivalent hydraulic conductivity reflecting the overall permeability of the
fracture network. According to Forchheimer’s law, the hydraulic gradient acting on the
fracture network owing to the non-Darcy flow satisfies the following equation [35–37]:

J =
1
K

Vc

L
+

β

g

(
Vc

L

)2
(20)

where β is the equivalent non-Darcy coefficient that describes the energy losses of the flow
caused by inertia. By changing the hydraulic gradient and calculating the boundary flow
rate, K and β can be obtained by fitting.

3. Case Study
3.1. Fracture Network for High-Velocity Non-Darcy Flow Calculation

British Nirex Co., Ltd. once conducted an engineering geological survey at a site in
Sellafield, Cumbria, England, and obtained the occurrence and distribution characteristics
of fractures in the region. The survey results have been used by many scholars to evaluate
the equivalent hydraulic conductivity and the stress seepage coupling characteristics of the
fractured rock mass.

In this study, the fracture network was generated by referring to the fracture parame-
ters in the Sellafield area. The fracture parameter information is shown in Table 3. There
were four groups of fractures, and the direction of the fractures followed the Fisher distri-
bution. According to Equation (5), the angle deviating from the average direction can be
calculated, and then the actual direction of each fracture can be obtained. According to the
literature [7,34], the trace length of the fractures in the Sellafield area followed a power law
distribution. The trace length was distributed between closed intervals [0.5, 250], and the
fractal dimension of the trace length was 2.2. According to the fractal, more than 90% of the
fracture traces were less than 2 m long. Based on the above conditions, the average trace
length calculated by Equation (4) was 0.93 m.

Table 3. Fracture network parameters of Sellafield, Cumbria, England.

Fracture
Group

Direction
(◦)

Fisher
Coefficient

Fracture
Width (µm)

Density
(m−2)

1 21 10 65 4.6
2 87 10 65 4.6
3 145 5.9 65 4.6
4 148 9 65 4.6

In order to reduce the influence of the boundary effect, a fracture network was gener-
ated within a range of 300 m × 300 m. In this condition, x ∈ [−150, 150],
y ∈ [−150, 150], and the midpoint coordinates of the fracture were calculated accord-
ing to Equations (1) and (2). Since the average trace length of the fracture was 0.93 m, in the
seepage-fractal study of the fracture network, a very small area met the requirements of the
representative elementary volume and hydraulic conductivity tensor. In the 300 m × 300 m
fracture network, the 15 m × 15 m range was selected as the research object, and it had the
same center point. In the selected 15 m × 15 m fracture network, taking the midpoint of the
analysis area as the benchmark, the square calculation areas with side lengths of 1 m, 2 m,
. . . , 10 m were respectively intercepted for research. In order to further analyze whether
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the equivalent k and β formed a permeability ellipse under different fractal dimensions
and side lengths, the analysis area was rotated counterclockwise from 0◦ to 330◦, and the
fracture network was intercepted at intervals of 30. A total of 12 fracture networks with
the same size and different angles were obtained. Considering the influence of fractal,
direction, and side length, a total of 120 different fracture networks were analyzed, as
shown in Figure 5.
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3.2. Boundary Condition

Figure 6 shows the boundary conditions for high-velocity non-Darcy flow analysis.
The upper and lower boundaries of the model were set as impermeable boundaries; the
right boundary was set as the constant with a head equal to 0 m, the left boundary was also
set as the constant head boundary, and the head value was the hydraulic gradient times the
area side length. In order to obtain the equivalent k and β of the fracture network by fitting,
the seepage conditions under five different hydraulic gradients were respectively set up for
calculation and simulation; the hydraulic gradients were 10, 50, 100, 150, and 200, in turn.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 6. Boundary conditions for high-velocity non-Darcy flow analysis. 

4. Results 
4.1. The Existence of K with Different Fractal Dimensions 

The fitting seepage ellipse of K with different fractal dimensions is shown in Figure 
7. With the increase in fracture network size, the fractal dimension increases gradually. 
When 4L <  m, the fractal dimension increases rapidly, when 4 8L≤ ≤  m, the 
growth rate slows down, and when 8L > , it tends to be stable. 

In Figure 7a, K has a minimum value in the direction of 180° and a maximum value 
in the 120° direction. The ratio of the maximum and minimum values is 7.79. In Figure 
7b,c, the ratios of maximum and minimum values are 4.80 and 2.68, respectively. Obvi-
ously, with the rapid increase in the fractal dimension from 1.238 to 1.559, the calculated 
K is in an unstable state, significantly deviates from the seepage ellipse, and presents a 
certain randomness. At this time, K does not exist. In Figure 7d–h, as the fractal dimension 
gradually increases from 1.595 to 1.723 and tends to be stable at 1.723, the ratio of the 
maximum and minimum values of K does not change much, and they are all distributed 
in the closed interval [2.45, 2.96]. In this condition, K is in a stable state, approximately 
converges to the seepage ellipse, and K exists in the fracture network. 

Figure 6. Boundary conditions for high-velocity non-Darcy flow analysis.



Fractal Fract. 2022, 6, 685 11 of 17

4. Results
4.1. The Existence of K with Different Fractal Dimensions

The fitting seepage ellipse of K with different fractal dimensions is shown in Figure 7.
With the increase in fracture network size, the fractal dimension increases gradually. When
L < 4 m, the fractal dimension increases rapidly, when 4 ≤ L ≤ 8 m, the growth rate slows
down, and when L > 8, it tends to be stable.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 7. Fitting ellipse of K with different fractal dimensions towing to the high-velocity non-Darcy 
flow. (a) Fitting ellipse with D = 1.238, (b) fitting ellipse with D = 1.441, (c) fitting ellipse with D = 
1.559, (d) fitting ellipse with D = 1.595, (e) fitting ellipse with D = 1.637, (f) fitting ellipse with D = 
1.658, (g) fitting ellipse with D = 1.674, (h) fitting ellipse with D = 1.701, 1.718 and 1.723. 

4.2. Variation in K with Different Fractal Dimensions of a Fracture Network 
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In Figure 7a, K has a minimum value in the direction of 180◦ and a maximum value in
the 120◦ direction. The ratio of the maximum and minimum values is 7.79. In Figure 7b,c,
the ratios of maximum and minimum values are 4.80 and 2.68, respectively. Obviously,
with the rapid increase in the fractal dimension from 1.238 to 1.559, the calculated K is in
an unstable state, significantly deviates from the seepage ellipse, and presents a certain
randomness. At this time, K does not exist. In Figure 7d–h, as the fractal dimension
gradually increases from 1.595 to 1.723 and tends to be stable at 1.723, the ratio of the
maximum and minimum values of K does not change much, and they are all distributed
in the closed interval [2.45, 2.96]. In this condition, K is in a stable state, approximately
converges to the seepage ellipse, and K exists in the fracture network.

4.2. Variation in K with Different Fractal Dimensions of a Fracture Network

In Figure 7a, K obviously deviated from the fitted seepage ellipse in all directions, and
its value is close to the ellipse in the 0◦, 30◦, 300◦, and 330◦ directions. In other directions, it
is far from the ellipse, especially in the 120◦ and 270◦ directions. The same phenomenon
can be found in Figure 7b. In the 60◦, 90◦, 120◦, and 270◦ directions, K almost coincides
with the ellipse, while in the 150◦ and 240◦ directions, it is far from the ellipse. Compared
with Figure 7a, with the propagation of the fracture network, K increases in some directions
and decreases in others, showing a certain randomness.

In Figure 7c, K is distributed near the seepage ellipse, without obvious deviation, and
the dispersion is significantly reduced. In the direction of the principal axis of the ellipse, K
reaches the maximum. In Figure 7d–g, with the increase in fractal dimension, K does not
change much in different directions, and the fitted seepage ellipse tends to be consistent.
In Figure 7h, the fractal dimension and seepage ellipse change little. As the growth rate
of the fractal dimension decreases, it is difficult to effectively improve the complexity of
the fracture network. The non-Darcy flow in all directions tends to be stable, and K in
all directions hardly changes. Obviously, with the increase in the fractal dimension, the
dispersion of K gradually decreases, and finally converges to the seepage ellipse.

4.3. The Existence of β with Different Fractal Dimensions

Figure 8 shows the fitting seepage ellipse of β with different fractal dimensions. In
Figure 8a,b, the calculated β seriously deviates from the seepage ellipse, which has no
practical significance. In Figure 8c,d, a good seepage ellipse is formed, while β changes
obviously in most directions. In Figure 8e–g, the length of the principal axis of the seepage
ellipse of β has changed significantly. Obviously, with the increase in the fractal dimension
from 1.238 to 1.674, the calculated β is in an unstable state, deviates from the seepage ellipse,
and cannot represent the equivalent non-Darcy coefficient of the fractured rock mass. In
Figure 8h, as the fractal dimension tends to be stable and approximately converges to 1.723,
the calculated β tends to be stable and approximately converges to the seepage ellipse,
which represents the equivalent non-Darcy coefficient of the fractured rock mass.

With the increase in the fractal dimension, the direction of the principal axis of the
seepage ellipse does not change significantly. Compared with Figure 7, the principal axis of
ellipse β is orthogonal to the principal axis of ellipse K. In the principal axis direction of
ellipse β, β gets the maximum value, K is the minimum value, while in the principal axis
direction of ellipse K, β gets the minimum value, and K is the maximum value.
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D = 1.559, (d) fitting ellipse with D = 1.595, (e) fitting ellipse with D = 1.637, (f) fitting ellipse with
D = 1.658, (g) fitting ellipse with D = 1.674, (h) fitting ellipse with D = 1.701, 1.718 and 1.723.

4.4. Variation in β with Different Fractal Dimensions of a Fracture Network

In Figure 8a, β has a maximum value in the 270◦ direction and a minimum value in
the 120◦ direction. The ratio of maximum and minimum value of β is 99.79. In Figure 8b,c,
the ratios of maximum and minimum values are 20.22 and 5.13, respectively. Obviously, as
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the fractal dimension increases rapidly from 1.238 to 1.559, the calculated β shows strong
anisotropy and decreases rapidly.

In Figure 8d–h, with the decrease in the growth rate of the fractal dimension, the
ratio changes little and is distributed in the closed interval [4.22, 6.12], indicating that the
anisotropy of β tends to be stable.

4.5. Effect of Reynolds Number on K and β

When fluid flows in a single fracture, the Reynolds number (Re) can be expressed as

R e =
ρvb
µ

=
ρq
µd

(21)

where, v and q are the average flow velocity and flow rate of the fluid in the fracture,
respectively.

In Figure 9, when Re < 1, the hydraulic conductivity of a single fracture is almost
unchanged, consistent with the theoretical results. When Re > 1, the hydraulic conductivity
decreases rapidly with the increase in Re, which means that the flow rate and hydraulic
gradient are no longer linear and are in non-Darcy flow. In this study, the fracture aperture
was fixed, which means that the fracture network and fracture had the same seepage state. In
Darcy flow, K does not change with the Reynolds number; in non-Darcy flow, the increase in
Re will lead to a decrease in K, which is reflected by the β of the fracture network.
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In Equations (19) and (20), assuming that the seepage flow is a fixed value, the total
hydraulic gradient acting on the fractured rock mass is larger in the non-Darcy flow,
which means that the assessment of seepage stability in the Darcy flow will lead to greater
potential risks for the fractured rock mass.

5. Discussion

The fractal dimension of the fracture network had a typical size effect. Under the same
parameters, it was difficult to generate multiple fractures of small size, which meant that
the structure of the fracture network was simple, and the fractal dimension was small, as
shown in Figure 10a. With an increase in size, the number of fractures increased rapidly,
and the network became complex, indicating that the fractal dimension increased rapidly,
as shown in Figure 10b. With a further increase in size, the fracture network became much
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more complex, and with the increase in the number of fractures, it was difficult to improve
the complexity of the network effectively. Although the size was continuously expanded,
the growth rate of the fractal dimension continued to decrease and finally reached the
critical value.
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2 m. (c) The seepage channel in the initial fracture network. (d) The seepage channel in the expanded
fracture network.

When the fracture direction was consistent with the main direction, the fractal dimen-
sion of the two-dimensional fracture network tended to be 1, and K and β showed strong
anisotropy. When the fractures were distributed in all directions and the structure was very
complex, the fractal dimension tended to be 2, and K and β tended to be isotropic.

In Figure 10c,d, with the increase in the analysis area, the fractal dimension and the
number of fractures increased rapidly, adding many new seepage channels (purple arrows).
In the fracture network with a side length of 2 m, some fractures became unconnected,
forming new seepage channels (yellow arrows). When the original fracture was not
connected with the new fracture, it blocked the flow of fluid, causing K to decrease and β to
increase. When the original fracture was connected with the new fracture, the permeability
was maintained, and the fluid flowed through the fracture with little change in K and β.
In the main direction of fracture propagation, there were many connected fractures, water
flowed more easily, and inertial resistance was relatively small. In other directions, there
were few connected fractures, and the inertia resistance of the fluid flow was large, leading
to the orthogonality of the seepage ellipse.

Obviously, the new fracture changed the connectivity of the fracture network, causing
the permeability to change constantly in all directions, indicating that K and β did not exist.
As the growth rate of the fractal dimension slowed, the impact of a new random fracture on
the fracture network structure gradually decreased, and K and β gradually became stable
in all directions. With the process, K satisfied the existence condition first, and then β began
to exist when the fractal dimension tended to be stable. When further increasing the size of
the fracture network, K and β will exist and converge with the seepage ellipse.
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6. Conclusions

This study proposed a method for simulating high-velocity non-Darcy flow in a frac-
ture network. The fracture network was established according to the geological parameters
of Sellafield, Cumbria, England, and 120 internal fracture networks were intercepted ac-
cording to 10 dimensions and 12 directions. The fractal dimension, equivalent hydraulic
conductivity, and equivalent non-Darcy coefficient of the fracture network were calcu-
lated. Then, the seepage and fractal characteristics of the fracture network arising from the
high-velocity non-Darcy flow were explored. The main conclusions are as follows:

1. The size effect of the fractal dimension of the fracture network was studied, and the
change rule of the fractal dimension with size was found. With increases in size,
the fractal dimension experienced three processes: rapid increase (D < 1.559), slow
increase (1.559 ≤ D ≤ 1.701), and tendency to be stable (D ≥ 1.701).

2. This study proposed a method for simulating non-Darcy flow in a fracture network
and explored the influence of the fractal dimension of the fracture network on K and
β. In the process of rapid increase, both Darcy and non-Darcy flows in the fracture
network were unstable, and K and β did not exist. In the process of slow increase,
the Darcy flow in the fracture network reached stability first, and K existed. In the
tendency to be stable, the non-Darcy flow finally reached a stable state, and β existed.
The effects of random fracture aperture, bias, and roughness were not considered in
this study and will be considered gradually in further research.

3. The seepage ellipses of K and β were orthogonal to each other. The main influencing
factor was the directivity and connectivity of fracture propagation, which increased
the permeability of the fracture network in this direction and reduced the inertial
resistance acting on the fluid, indicating that the principal axes of the ellipse were
orthogonal to each other.
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