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Abstract: Most of the fractal functions studied so far run through numerical values. Usually they are
supported on sets of real numbers or in a complex field. This paper is devoted to the construction
of fractal curves with values in abstract settings such as Banach spaces and algebras, with minimal
conditions and structures, transcending in this way the numerical underlying scenario. This is
performed via fixed point of an operator defined on a b-metric space of Banach-valued functions
with domain on a real interval. The sets of images may provide uniparametric fractal collections
of measures, operators or matrices, for instance. The defining operator is linked to a collection
of maps (or iterated function system, and the conditions on these mappings determine the properties
of the fractal function. In particular, it is possible to define continuous curves and fractal functions
belonging to Bochner spaces of Banach-valued integrable functions. As residual result, we prove
the existence of fractal functions coming from non-contractive operators as well. We provide new
constructions of bases for Banach-valued maps, with a particular mention of spanning systems
of functions valued on C*-algebras.

Keywords: fractals; fractal interpolation function; α-fractal function; iterated function system; Banach-
valued mapping

1. Introduction

Bolzano (1830) was one of the first scientists to propose a self-similar curve and prove
its continuity and non-differentiability in a dense set of points of the interval where it is
defined [1]. Thereafter, a collection of geometric “monsters” in terms of Poincaré began to
appear (see for instance [2]). It is worth emphasizing the Weierstrass map [2,3], followed
by those of Riemann [3] and Darboux [4], as pioneering the field of self-similar (nowadays
called fractal) functions.

Mandelbrot proposed a variant of the Weierstrass map satisfying the self-affine equa-
tion: f (x) = b f (ax), where a and b are real numbers [5]. That is to say f is a fixed point
of the operator T f (x) = b f (ax).

From an analytical point of view, some procedures to define a fractal function (in
approximate chronological order) are:

1. Definition of a functional series satisfying one of the following properties: its sum
differentiated does not converge [3,4], some of its elements are discrete (that is to
say, they range in a discrete set of numbers) [6], or the general term contains some
random element [7].

2. The mapping is the solution of one or several functional equations (see, for instance,
the De Rham’s curve in [2]).

3. The graph of the map is an attractor of an iterated function system [8,9].

Wavelet expansions have now replaced the traditional trigonometric series of the first
item and revealed a fundamental mathematical tool in both the theoretical approxima-
tion [10] and the applications (see, for instance, [11]).

In the third method quoted above, the fractal function is the outcome of an iterative
procedure. However, in the seventies of the last century, the mappings acquired a new

Fractal Fract. 2022, 6, 722. https://doi.org/10.3390/fractalfract6120722 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract6120722
https://doi.org/10.3390/fractalfract6120722
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0003-4847-0493
https://doi.org/10.3390/fractalfract6120722
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6120722?type=check_update&version=2


Fractal Fract. 2022, 6, 722 2 of 17

purpose, as modelers of evolutionary processes given by dynamical systems. Thus, we
find the inverse process of (3), namely, a function providing an iterative system. The work
of Julia and others at the beginning of the twentieth century is a clear referent [12]. Two
remarkable examples are the Hénon [13] and Kaplan–Yorke maps [14].

Nowadays, the latest procedures (2) and (3) have gained an increasing importance with
the definition of the so-called fractal interpolation functions, created in principle to join a
collection of real data. They have been found useful in the enhancement and extension of the
theory of functions, since they provide a much more general framework to define mappings
with characteristics very different to those of the classical maps (continuity, differentiability,
smoothness. . . ). In this way, the field of Approximation Theory has been considerably
enriched with different models. The contributions in the area of fractal interpolation are
recent and numerous, both in theory as well as in applications (see, for instance, [15–33]).

One common feature of classical and modern fractal functions is the fact of underlying
either an Euclidean space of reals or the field of complex numbers. Though the theory
of iterated function systems is established in the framework of metric spaces, most of the
contributions on fractal functions are supported on sets of numbers. However, the advent
of an increasingly complex and changing world, and the advance of the science, entail the
need for the sophistication of the theoretical and applied tools to be employed in order to
undertake the solution of any scientific, social, biological, economic or technical problem.

One of the aims of this article is the definition of fractal curves in abstract scenarios,
namely, Banach spaces and algebras, transcending in this way the numerical underlying
structure. We describe a general method to obtain fractal curves whose values may be
measures, operators or matrices, for instance. That is to say, we define uniparametric
families of these type of elements. For then, we use the second procedure quoted above,
that is to say, the proposed function is the solution of a functional equation defined in some
abstract space of mappings, with minimal structures and conditions.

The paper is organized as follows. Section 2 describes the foundations of b-metric
spaces. Afterwards, we generalize the concept of quasi-fixed point associated to a set
of operators, introduced in the reference [34], to the framework of b-metric spaces and prove
that the set of quasi-fixed points is a fractal set. We also provide the result of convergence
of the iteration of operators (self-maps) acting on the space. Section 3 is devoted to the
construction of fractal curves with values in abstract spaces such as Banach spaces and
algebras, with minimal conditions. This is carried out via the fixed point of an operator
defined on a b-metric space of functions with domain on a real interval and a partition of it.
The defining operator is linked to a collection of maps (or iterated function system). The
conditions on these mappings determine the properties of the fractal function. Thus, in
Section 4, we construct continuous curves, and Section 5 studies fractal functions belonging
to Bochner spaces of Banach-valued integrable functions. As residual result, we prove the
existence of fractal functions coming from non-contractive operators as well. Section 6
extends the concepts of α-fractal function [27] and fractal convolution [35,36], studied in
real interpolation, to abstract spaces. Section 7 is focused on new definitions of bases for
Banach-valued maps, with a particular mention of spanning systems of functions valued
on C*-algebras.

2. B-Metric Spaces and Convergence

In this section, we first recall the rudiments of the structure of b-metric space, and then
we generalize the concept of the quasi-fixed point of a set of operators introduced in [34]
and consider some of its properties of convergence and self-similarity.

Definition 1. A b-metric space X is a set endowed with a mapping db : X × X → R+ with the
following properties

1. db(x, y) ≥ 0, db(x, y) = 0 if and only if x = y.
2. db(x, y) = db(y, x) for any x, y ∈ X.
3. There exists s ≥ 1 such that db(x, y) ≤ s(db(x, z) + db(z, y)) for any x, y, z ∈ X.
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The constant s is the index of the b-metric space, and db is called a b-metric.

Example 1. For X = Rn, x, y ∈ Rn, let us define

db(x, y) =
n

∑
i=1
|xi − yi|2.

db is a b-metric with index s = 2 (see for instance [37]).

Example 2. The Lebesgue space Lp(I) where I is a real bounded interval and 0 < p < 1, with db
defined as

db( f , g) = (
∫

I
| f − g|pdt)1/p,

is a b-metric space with index s = 2
1
p−1.

Remark 1. A metric space is a particular case of b-metric space with index s = 1.

Let us consider a b-metric space X.

Definition 2. A sequence (xn) ⊆ X is Cauchy if db(xm, xn)→ 0 as m, n tend to infinity.

Definition 3. A sequence (xn) ⊆ X is convergent if there exists x ∈ X such that db(xn, x)→ 0
as n tends to infinity.

Definition 4. A subset A ⊆ X is complete if every Cauchy sequence is convergent.

Definition 5. A subset A ⊆ X is bounded if

diam(A) := sup{db(x, y) : x, y ∈ A} < +∞.

Definition 6. A subset A ⊆ X is compact if any sequence (xn) ⊆ A has a convergent subsequence.

Though it may seem that the b-metric space (bms for short) structure is a plain
generalization of that of metric space, this is not true. For instance, in a bms, the “open”
balls may not be open! (see, for instance, [38]).

Definition 7. For A ⊆ X, the closure Ā is defined as: x ∈ Ā if and only if there exists a sequence
(xn) ⊆ A such that lim xn = x.

In the reference [38] (Theorem 3.2), one can find the following generalization of the
Cantor’s intersection Theorem.

Theorem 1. Let X be a bms. X is complete if and only if every nested sequence of non-empty
closed subsets:

A1 ⊇ A2 ⊇ . . . ⊇ An . . . ,

An ⊆ X, such that diam(An)→ 0 satisfies the equality ∩+∞
n=1 An = {x}, x ∈ X.

Definition 8. A self-map T : X → X, where X is a bms, is continuous if xn → x implies
Txn → Tx.

Banach’s Theorem holds in bms also for some specific contractions (see, for in-
stance, [38]).
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Definition 9. A self-map T : X → X, where X is a bms with index s, is contractive if there exists
k ∈ R, 0 < k < s−1 such that

d(Tx, Ty) ≤ kd(x, y)

for all x, y ∈ X.

Theorem 2. Let X be a complete bms and T contractive. Then, T has a unique fixed point x∗ ∈ X
and Tnx → x∗ for any x ∈ X, as n tends to infinity.

In the following, we generalize the concept of quasi-fixed point, introduced in the
reference [34], to the framework of bms.

Definition 10. Let (Tn) be a sequence of self-maps Tn : X → X, where X is a bms. An element
x∗ ∈ X is a quasi-fixed point of (Tn) if

lim
n→+∞

T1 ◦ T2 ◦ . . . ◦ Tn(x∗) = x∗.

In the next theorem, we generalize a result of convergence of non-autonomous dis-
crete orbits to the context of bms. We can consider it a variant of Theorem 2 for a set
of contractivities.

Theorem 3. Let X be a complete and bounded bms with index s and (Tn) a sequence of contrac-
tivities with factors kn, such that kn < s−1 for all n and ∏n

i=1 ki → 0 as n tends to infinity. Then,
there is a unique quasi-fixed point x∗ ∈ X such that

lim
n→+∞

T1 ◦ T2 ◦ . . . ◦ Tn(x) = x∗

for any x ∈ X. Moreover, x∗ is the limit of the fixed points xn of the composition T1 ◦ T2 ◦ . . . ◦ Tn.

Proof. Let us define the image sets of X: Mn = T1 ◦ T2 ◦ . . . ◦ Tn(X). The set (M̄n) is a
nested sequence of closed sets of X:

M̄1 ⊇ M̄2 ⊇ . . . ⊇ M̄n . . .

Moreover,

diam(Mn) = sup
x,y∈X

{db(T1 ◦ T2 ◦ . . . ◦ Tn(x), T1 ◦ T2 ◦ . . . ◦ Tn(y))} ≤ (
n

∏
j=1

k j)d(x, y).

According to Lemma 3.2 of the reference [38], if Kn := ∏n
j=1 k j,

diam(M̄n) ≤ s2diam(Mn) ≤ s2Kndiam(X)→ 0

as n tends to infinity. Consequently, the sequence of the closed images satisfies the condi-
tions of Cantor’s intersection Theorem 1, and

∩+∞
n=1M̄n = {x∗}.

Let us see that x∗ is an attracting quasi-fixed point. For any x ∈ X, since x∗ ∈ M̄n,
we have

db(T1 ◦ T2 ◦ . . . ◦ Tn(x), x∗) ≤ diam(M̄n)→ 0.

In particular, for x = x∗, the definition of quasi-fixed point is satisfied, and x∗ is
globally attracting.

Let xn be the fixed point of T1 ◦ T2 ◦ . . . ◦ Tn. Then,

db(xn, x∗) ≤ s(db(T1 ◦ T2 ◦ . . . ◦ Tn(xn), T1 ◦ T2 ◦ . . . ◦ Tn(x∗))+ db(T1 ◦ T2 ◦ . . . ◦ Tn(x∗), x∗))
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and
db(xn, x∗) ≤ s(Kndb(xn, x∗) + db(T1 ◦ T2 ◦ . . . ◦ Tn(x∗), x∗)).

Since the last term tends to zero by definition of quasi-fixed point, then db(xn, x∗)→ 0
as n tends to infinity.

In the next definition, we extend the concept of quasi-fixed point to a set of operators
of any cardinal.

Definition 11. Let F = {Ti : X → X, i ∈ J} a set of self-maps on a bms X. An element x∗ ∈ X
is a quasi-fixed point associated with F if there exists σ ∈ JN, σ = (i1i2 . . .) such that

lim
n→+∞

Ti1 ◦ Ti2 ◦ . . . ◦ Tin(x∗) = x∗.

The next result proves that if F is a set of contractivities with some conditions on
the factors and the bms space X, the set Q of quasi-fixed points associated with F is a
fractal set.

Theorem 4. Let X be a complete and bounded bms with index s and F a set of contractivities
whose factors ki are such that supi∈J ki < s−1. Then, the setQ of quasi-fixed points associated with
F is self-similar in the sense that

Q = ∪i∈J Ti(Q)

Proof. Let us check the equality proposed. If x∗ ∈ Q, according to Theorem 3, there exists
σ = (i1i2 . . .) ∈ JN such that

x∗ = lim
n→+∞

Ti1 ◦ Ti2 ◦ . . . ◦ Tin(x) = Ti1( lim
n→+∞

Ti2 ◦ Ti3 ◦ . . . ◦ Tin(x)) = Ti1(x̄),

where x̄ ∈ Q. Consequently x∗ ∈ Ti1(Q).
If x′ ∈ Ti(Q), then there exists σ ∈ JN such that

x′ = Ti( lim
n→+∞

Ti1 ◦ Ti2 ◦ . . . ◦ Tin(x)) = lim
n→+∞

Ti ◦ Ti1 ◦ Ti2 ◦ . . . ◦ Tin(x) ∈ Q,

and the proof is completed.

Consequently, the set Q is a fixed point of the operator:

T (F) = ∪i∈J Ti(F).

3. Fractal Interpolation in Banach Spaces and Algebras

In this section, we give very general conditions for the existence of a fractal curve with
values on a Banach space. We use the term “curve” in a wide sense, representing any map
u : I → A, where I is a real interval and A is a real Banach space or algebra.

Let us start defining general non-linear contractions for b-metric spaces.

Definition 12. A function ψ : [0,+∞) → [0,+∞) is a fixed-point comparison function (or fp-
comparison function for short) for a complete bms (E, db) if it is non-decreasing, and the inequality

db(Tx, Ty) ≤ ψ(db(x, y)), (1)

for any x, y ∈ E implies that T : E→ E has a fixed point. Any T satisfying the inequality (1) for
all x, y is a ψ-contraction.

Example 3. The function ψ(t) = kt, where 0 < k < s−1, is a fp-comparison function for any
complete b-metric space with index s, according to Theorem 2.
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Let us consider the real interval I = [0, B] and a partition of it, ∆ : t0 = 0 < t1 < t2 <
. . . < tN = B. Let us denote In = [tn−1, tn), for i = 1, 2, . . . , N − 1 and IN = [tN−1, tN ]
and define contractive homeomorphisms Ln : I → In. For a real Banach space A, define
Fn : I ×A → A, and Wn(t, A) = (Ln(t), Fn(t, A)) for t ∈ I and A ∈ A.

Theorem 5. Let us consider the setM of curves in A with domain I,M = {u : I → A}, and
let a subset E ⊂M be endowed with a structure of complete b-metric space (E, db). Consider the
operator T : E→ E, defined as

Tu(t) = Fn(L−1
n (t), u ◦ L−1

n (t)), (2)

for t ∈ In. Let T be a ψ-contraction, where ψ is an fp-comparison function for E, that is to say,

db(Tu, Tv) ≤ ψ(db(u, v)), (3)

for any u, v ∈ E. Then, T admits a fixed point ũ : I → A whose graph is a self-similar set of I ×A.

Proof. The existence of fixed point ũ is a consequence of the definition of the fp-comparison
function. Moreover, if ũ : I → A is the fixed point of T:

graph(ũ) = ∪N
n=1 ∪t∈I {(Ln(t), ũ ◦ Ln(t))} = ∪N

n=1 ∪t∈I {(Ln(t), Tũ ◦ Ln(t))}

graph(ũ) = ∪N
n=1 ∪t∈I {(Ln(t), Fn(t, ũ(t)))} = ∪N

n=1Wn(graph(ũ)).

Consequently, graph(ũ) is an invariant of the operator

W(B) := ∪N
n=1Wn(B),

and it owns a self-similar structure.

Definition 13. The mapping ũ : I → A is a Banach-valued fractal interpolation function.

A different approach is given in the reference [26].

Remark 2. Of course, the hypothesis that E is a b-metric space is not a sine qua non-condition.
For instance, E could be an F-complete F-metric space and T a Banach contraction [39], as a type
of (α, β)− admissible mapping [40]. Different metric structures can be read in the reference [41], for
example. The election of a b-metric space is due to the fact that it well fits some spaces of integrable
Banach-valued mappings (see Sections 5–7).

4. Continuous Fractal Curves in Banach Spaces and Algebras

In this section, we consider conditions on the maps Wn in order to define continuous
curves in A.

We consider a set of data {(tn, An)}N
n=1 ⊂ I ×A where 0 := t0 < t1 < t2 < . . . <

tN = B and assume that the mappings Ln, Fn satisfy the so-called “join-up” conditions

Ln(t0) = tn−1, Ln(tN) = tn (4)

Fn(t0, A0) = An−1, Fn(tN , AN) = An (5)

for n = 1, 2, . . . N. In this case, the operator T defined in (2) maps the space C0(I,A) =
{u ∈ C(I,A); u(t0) = A0, u(tN) = AN} into itself. The space E = C0(I,A) is a complete
b-metric space (with index 1) with respect to the distance db(u, v) = ||u− v||sup, where
|| · ||sup denotes the supremum norm.

If Fn is a ψn-contraction in the second variable, that is to say,

||Fn(t, A)− Fn(t, A′)|| ≤ ψn(||A− A′||),
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for any t ∈ I and A, A′ ∈ A, and ψ(t) = supn ψn(t) is an fp-comparison function for E, then

||Tu− Tv||sup ≤ ψ(||u− v||sup)

for any u, v ∈ E, and T admits a fixed point ũ ∈ C0(I,A), whose graph is a continuous
fractal curve. Additionally, the map ũ passes through the points {(tn, An)}N

n=1 as in the
real case.

If A is a real Banach algebra, let us consider

Fn(t, A) = An(t) · A + qn(t), (6)

where An, qn : I → A are continuous functions satisfying the join-up conditions described.
The dot · represents the product operation in the algebra A. If

a := sup{||An(t)|| : t ∈ I, n = 1, 2, . . . N} < 1, (7)

we can consider the fp-comparison function ψ(t) = at and T is a Banach contraction:

||Tu− Tv||sup ≤ a||u− v||sup.

Consequently, it admits a globally attracting fixed point for the Picard iteration

uk+1 = Tuk,

for u0 ∈ E, k ≥ 0.

Example 4. If C is a Banach space, the set of linear and bounded operators L(C) is a Banach
algebra. Let us consider the set of data {(tn, Sn)}N

n=1, where tn ∈ R and Sn ∈ L(C). If Fn satisfies
the conditions described, we obtain a continuous fractal curve of operators ũ : I → L(C) such that
ũ(ti) = Si.

For instance, let us consider C = C[a, b], kernels ki ∈ C[a, b]2, for i = 1, 2, . . . , N, and define
the operators Si ∈ L(C)

Siu(x) =
∫ b

a
ki(x, y)u(y)dy,

for u ∈ C. The norm of Si is

||Si|| = max
t∈[a,b]

∫ b

a
|ki(x, y)|dy.

The image set of the fractal function ũ is a uniparametric family of linear and bounded operators
{St}t∈I interpolating the given “points”, that is to say, Sti = Si, for all i.

5. Bochner Integrable Fractal Functions in Banach Algebras

In this section, we first remind the rudiments of integrability of Banach-valued map-
pings (see, for instance, [42,43]). We consider a real Banach space A with norm || · ||, and
remind the definitions of the Bochner spaces of order p, Bp(I,A):

Definition 14. Let the map u : I → A be strongly measurable, then u ∈ Bp(I,A), for 0 < p <
+∞ if the function t ↪→ ||u(t)||p is Lebesgue integrable. In this case, we define:

|u|p = (
∫

I
||u(t)||pdt)1/p.

The map u belongs to the class B∞(I,A), u ∈ B∞(I,A), if the function t ↪→ ||u(t)|| is
essentially bounded. Then,

|u|∞ = esssupt∈I ||u(t)||.
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For p ∈ [1,+∞], Bp(I,A) is a real Banach space with respect to the norm | · |p. If A
is a Hilbert space with inner product < ·, · >, then B2(I,A) is a Hilbert space with the
inner product

< u, v >=
∫

I
< u(t), v(t) > dt,

for u, v ∈ B2(I,A). Moreover,

Bq(I,A) ⊂ Bp(I,A),

for 1 ≤ p ≤ q ≤ +∞. For 0 < p < 1,

|u|p = (
∫

I
||u(t)||pdt)1/p

is a quasi-norm with index s = 21/p−1. The mapping defined as db(u, v) = |u− v|p is a
b-metric with index s, and Bp(I,A) is a complete b-metric space and a quasi-Banach space
with respect to | · |p.

Let us recall the concept of quasi-norm:

Definition 15. If B is a (real or complex) linear space, the mapping | · |b : B × B → R+ is a
quasi-norm if:

1. |x|b ≥ 0; x = 0 if and only if |x|b = 0.
2. |λx|b = |λ||x|b.
3. There exists s ≥ 1 such that |x + y|b ≤ s(|x|b + |y|)b for any x, y ∈ B.

The “distance” associated with a quasi-norm: db(u, v) := |u− v|b is a b-metric since:

|u− v|b = |u− w + w− v|b ≤ s(|u− w|b + |w− v|b) ≤ s(db(u, w) + db(w, v)).

In this section, we define fractal integrable functions of type u : I → A, where A is a
Banach space or algebra.

We consider the space E of Section 3, defined as E = Bp(I,A). Let the maps Ln be
defined as Ln(t) = ant + bn, satisfying the conditions (4) and Fn be Bochner p-integrable
such that Fn(t,A) ∈ A.

Let the operator T be defined as in (2), then

|Tu− Tv|pp =
N

∑
n=1

∫
In
||Fn(L−1

n (t), u ◦ L−1
n (t))− Fn(L−1

n (t), v ◦ L−1
n (t))||pdt,

with the change t̃ = L−1
n (t), we obtain

|Tu− Tv|pp =
N

∑
n=1

an

∫
I
||Fn(t, u(t))− Fn(t, v(t))||pdt. (8)

Since ∑N
n=1 an = 1 due to the join-up conditions (4), if Fn is a ψn-contraction in the

second variable,
|Tu− Tv|pp ≤

∫
I

ψp(||u(t)− v(t)||)dt,

where ψ(t) = supn ψn(t).
In the case ψn(t) = knt, where kn < s−1, then ψ(t) = kt, with k = supn kn and

|Tu− Tv|p ≤ k|u− v|p, (9)
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where sk < 1. Thus, T is a contraction on the b-metric space E = Bp(I,A), and it owns a
fixed point ũ ∈ Bp(I,A). The function ũ is a global attractor for the T-iterations.

This happens in particular when Fn(t, A) = An(t) · A + qn(t), where An ∈ B+∞(I,A),
qn ∈ Bp(I,A) and the constant

k = a := max{|An|∞ : n = 1, 2, . . . , N}

satisfies the condition
as < 1.

Remark 3. It is easy to check that the inequalities of type (9), proved for p < +∞, are applicable to
the case p = +∞ as well.

Non-Contractive Case

In this subsection, we consider the case where the operator T is non-expansive (not
necessarily contractive), and p = 2.

Definition 16. A self-map T : E→ E on a normed space E is non-expansive if for any x, y ∈ E,

||Tx− Ty|| ≤ ||x− y||.

The following theorem, due to Browder, ensures the existence of a fixed point for
non-expansive maps in Hilbert spaces (see [44]).

Theorem 6. Let C be a closed bounded convex subset of a Hilbert space H, and T : C → C a
non-expansive map, then T has a fixed point in C.

On the basis of this theorem, we prove that there exist fractal interpolation functions
defined by non-contractive operators.

Let us consider I = [0, 1] and Wn(t, A) = (Ln(t), Fn(t, A)) defined in I ×A, where A
is a real Hilbert space or algebra.

Theorem 7. Let us assume that Fn(t, A) satisfies the inequality ||Fn(t, A)|| ≤ 1, for all t ∈ I,
A ∈ A and n = 1, 2, . . . N, and be such that ||Fn(t, A)− Fn(t, A′)|| ≤ ||A− A′|| for all n, t and
A, A′ ∈ A. Then, the operator T : B2(I,A)→ B2(I,A), defined as

Tu(t) = Fn(L−1
n (t), u ◦ L−1

n (t))

for t ∈ In, is non-expansive in the closed ball C = B̄(0, 1) = {u ∈ B2(I,A) : |u|2 ≤ 1}.
Consequently, T has a fixed point in C.

Proof. If Fn satisfies the conditions given, arguing as in (8),

|Tu|22 =
N

∑
n=1

an

∫
I
||Fn(t, u(t))||2dt ≤ 1,

since ∑N
n=1 an = 1 due to the join-up conditions (4).

Thus, T(C) ⊆ C. Moreover, by the expression (8) and the second condition on Fn,

|Tu− Tv|2 ≤ |u− v|2

for any u, v ∈ B2(I,A) and, in particular, for u, v ∈ C. Consequently, C and T satisfy the
hypotheses of Browder’s Theorem, and T has a fixed point ū in C.
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The graph of the fixed point ū of T has a self-similar structure for the reasons given in
the proof of Theorem 5, but ū may not be unique.

6. Generalized α-Fractal Functions

In this section, we consider again E = Bp(I,A), 0 < p ≤ +∞, where A is a real
Banach algebra, and the maps Ln, defined as affine homeomorphisms satisfying (4). Let us
consider for u, v ∈ Bp(I,A) the maps

Fn(t, A) = An(t) · (A− v(t)) + u ◦ Ln(t), (10)

for any t ∈ In, An ∈ B∞(I,A). The operator Tu,v : Bp(I,A)→ Bp(I,A), defined as

Tu,v(w)(t) = u(t) + An(t) · ((w− v) ◦ L−1
n (t)) (11)

for t ∈ In, is such that
|Tu,v(w)− Tu,v(w′)|p ≤ a|w− w′|p,

where
a := sup

t∈I
{||An(t)|| : n = 1, 2, . . . , N}

Thus, Tu,v is a bms contraction if a < s−1. According to Theorem 2, it owns a fixed
point ũ ∈ Bp(I,A) (with the condition on a).

Definition 17. The map ũ : I → A is the generalized α-fractal function of the operator Tu,v.

Remark 4. This concept extends the notion of α-fractal function defined in previous papers for real
functions (see, for instance, [27]) to the setting of Banach-valued maps.

As in the real case, we can define a binary internal operation in Bp(I,A):

u ∗ v = ũ.

It is called fractal convolution of Bochner maps. The algebraic properties of this
operation are similar to those of the real case (see the references [35,36,45]):

• The fractal convolution is idempotent, that is to say, u ∗ u = u for any u ∈ Bp(I,A).
• The operator P : Bp(I,A)×Bp(I,A)→ Bp(I,A) is linear, namely,

(u1 + u2) ∗ (v1 + v2) = (u1 ∗ v1) + (u2 ∗ v2),

λ(u ∗ v) = (λu) ∗ (λv).

for any u, v ∈ Bp(I,A) and λ ∈ R.

According to the expression (11), the fractal convolution satisfies for any t ∈ In:

(u ∗ v)(t) = u(t) + An(t) · ((u ∗ v)− v) ◦ L−1
n (t),

and arguing, as in previous sections, for 0 < p ≤ +∞,

|u ∗ v− u|p ≤ a|u ∗ v− v|p ≤ as(|u ∗ v− u|p + |u− v|p). (12)

Then, we have
|u ∗ v− u|p ≤

as
1− as

|u− v|p (13)

if as < 1, for any u, v ∈ Bp(I,A). Let us define the side operators Lu, Rv : Bp(I,A) →
Bp(I,A), for any u, v ∈ Bp(I,A), as

Lu(v) = u ∗ v,
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Rv(u) = u ∗ v.

Due to the linearity of P ,

Lu(v) + Ru(v) = (u ∗ v) + (v ∗ u) = (u + v) ∗ (u + v) = u + v = u + Id(v),

where Id represents the identity operator. Consequently:

1. Lu + Ru = u + Id.
2. L0 + R0 = Id,

where u = 0 represents the mapping u(t) = 0 ∈ A for any t ∈ I. The linearity of P implies
that L0, R0 are linear operators. Let us see that they are also bounded. Using (13) for u = 0,

|L0(v)|p = |0 ∗ v|p = |0 ∗ v− 0|p ≤
as

1− as
|v|p.

Then,
|L0|p ≤

as
1− as

.

From the second item:

|R0|p = |Id− L0|p ≤ s(1 + |L0|p) ≤
s

1− as
.

Thus, L0, R0 are also bounded.

Remark 5. Let us notice that, for the sake of simplicity, we are using the same notation for the quasi-
norm of elements of Bochner spaces and their operators, though obviously they are different concepts.

Proposition 1. The side operators Lu, Rv are Lipschitz for any u, v ∈ Bp(I,A), 0 < p ≤ +∞.

Proof. The linearity of the operator P implies that

|Luv− Luv′|p ≤ |L0(v− v′)|p ≤
as

1− as
|v− v′|p

and
|Rvu− Rvu′|p ≤ |R0(u− u′)|p ≤

s
1− as

|u− u′|p.

7. Fractal Bases of Bochner Spaces

In this section, we consider a new convolution of operators of functional spaces and
describe a procedure to construct fractal bases of Bochner spaces.

Let us now consider, the case 1 ≤ p ≤ +∞, and the space of linear and bounded
operators on the space of Bochner p-integrable mappings, L(Bp(I,A)). This set is a Banach
algebra, since Bp(I,A) is a Banach space.

The maps considered are: Ln(t) = ant + bn, with the conditions (4). We define Fn as in
the previous section (10) and

a := sup
t∈I
{||An(t)|| : n = 1, 2, . . . , N} < 1.

For S, T ∈ L(Bp(I,A)), let us define the convolution S ∗ T as

(S ∗ T)(u) = S(u) ∗ T(u),

for any u ∈ Bp(I,A).
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Proposition 2. The convolution of operators satisfies the following properties:

• S ∗ S = S for any S ∈ L(Bp(I,A)).
• S ∗ T ∈ L(Bp(I,A)) if S, T ∈ L(Bp(I,A)) and

|S ∗ T|p ≤
|S|p + a|T|p

1− a
.

• For any S, T, S′, T′ ∈ L(Bp(I,A)),

|S ∗ T − S ∗ T′|p ≤
a

1− a
|T − T′|p,

|S ∗ T − S′ ∗ T|p ≤
1

1− a
|S− S′|p

Proof. The first item is a consequence of the idempotency of the fractal convolution
of maps.

Using the fixed point equation for S(u), T(u) (see, for instance, (12)), we obtain

|(S ∗ T)(u)− Su|p ≤ a|(S ∗ T)(u)− Tu|p ≤ a|(S ∗ T)(u)|p + a|T|p|u|p.

Then,

|S ∗ T|p ≤
|S|p + a|T|p

1− a
.

For the third item, the Lipschitz property of the side operators (Proposition 1) im-
plies that

|S(u) ∗ T(u)− S(u) ∗ T′(u)|p ≤
a

1− a
|T(u)− T′(u)|p ≤

a
1− a

|T − T′|p|u|p.

Then,
|S ∗ T − S ∗ T′|p ≤

a
1− a

|T − T′|p.

The last inequality is deduced in a similar way.

Corollary 1. The convolution of operators satisfies all the conditions required to be a metric
convolution in the metric space L(Bp(I,A)), as defined in [46], and the properties deduced for the
operation are applicable to it.

Due to idempotency, the convolved operators fill the whole space:

L(Bp(I,A)) = {S ∗ T : S, T ∈ L(Bp(I,A))}

The following result can be read in ref. [47].

Proposition 3. Let U, V : X → Y, such that U is linear, bounded and invertible, V linear and
X, Y Banach spaces. If there exist constants λ1, λ2 ∈ [0, 1) such that

‖Ux−Vx‖ ≤ λ1‖Ux‖+ λ2‖Vx‖,

for any x ∈ X, then V is invertible and

1− λ1

1 + λ2
‖Ux‖ ≤ ‖Vx‖ ≤ 1 + λ1

1− λ2
‖Ux‖, (14)

1− λ2

1 + λ1

1
||U|| ‖y‖ ≤ ‖V

−1y‖ ≤ 1 + λ2

1− λ1
||U−1||‖y‖,

for any x ∈ X and y ∈ Y.
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Theorem 8. Let S ∈ L(Bp(I,A)) and T : Bp(I,A) → Bp(I,A) linear. If S is invertible and
|Tu|p ≤ |Su|p for any u ∈ Bp(I,A), then S ∗ T is invertible and

|S ∗ T|p ≤
1 + a
1− a

|S|p, (15)

|(S ∗ T)−1|p ≤
1 + a
1− a

|S−1|p.

The sequence (um) is a Schauder basis of Bp(I,A) if and only if (S(um) ∗ T(um)) is a basis.
If (um) is a normalized basis, then (S(um) ∗ T(um)) is a bounded basis and

1− a
1 + a

|S−1|−1
p ≤ |(S ∗ T)(um)|p ≤

1 + a
1− a

|S|p.

Proof. Arguing as in previous sections (12), one has

|(S ∗ T)(u)− Su|p ≤ a|(S ∗ T)(u)− Tu|p ≤ a|(S ∗ T)(u)|p + a|Su|p.

The hypotheses of Proposition 3 are satisfied for U = S, V = S ∗ T and λ1 = λ2 = a < 1.
Then, S ∗ T is invertible and

|S ∗ T|p ≤
1 + a
1− a

|S|p,

|(S ∗ T)−1|p ≤
1 + a
1− a

|S−1|p.

An automorphism preserves the bases, and thus (S(um) ∗ T(um)) is a basis if and only
if (um) is. Let (um) be a normalized sequence then, according to (14),

|(S ∗ T)(um)|p ≤
1 + a
1− a

|S|p

For the left bound, let us consider

1 = |um|p ≤ |S−1|p|Sum|p.

Applying (14),

|(S ∗ T)(um)|p ≥
1− a
1 + a

|Sum|p ≥
1− a
1 + a

|S−1|−1
p .

Remark 6. As a particular case, we obtain bases of type (um ∗ 0) = ((Id ∗ T0)(um)), where T0
is the null operator and Id is the identity, considered, for instance, in the reference [36] in the real
setting (A = R). With the basic hypothesis a < 1, according to Theorem 8, the system (um ∗ 0) is a
Schauder basis if (um) is.

In the next subsection, we consider bases related to C∗-algebras.

Fractal Bases of Mappings Valued in C∗-Algebras

Let us assume that A is a real C∗-algebra. Thus, it is endowed with an involution,
and each element A ∈ A has an adjoint denoted by A+. For u ∈ Bp(I,A), let us define
u+ ∈ Bp(I,A) as

u+(t) = (u(t))+,

for any t ∈ I. Define the operator C : Bp(I,A)→ Bp(I,A)

C(u) = u ∗ u+,
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with the usual fractal convolution of maps. C is a convolution of operators since C = Id ∗H,
where H(u) = u+ for u ∈ Bp(I,A). LetH denote the set of self-adjoint elements of A. The
set of maps:

UH = {u : I → H; u ∈ Bp(I,A)}

is such that UH ⊆ Fix(C), according to the properties of the fractal convolution.
The norm of H is one, since

|Hu|p = (
∫

I
||u+(t)||ppdt)1/p = (

∫
I
||u(t)||ppdt)1/p = |u|p.

Consequently, C = Id ∗ H is an automorphism of Bp(I,A) according to Theorem 8.
The norms of C and C−1 own the same bound:

|C|p ≤
1 + a
1− a

, (16)

|C−1|p ≤
1 + a
1− a

. (17)

Due to isomorphism, we have the following theorem:

Theorem 9. (um) is a Schauder basis of Bp(I,A) if and only if (um ∗ u+
m) is a Schauder basis

of Bp(I,A).

In the case where p = 2 and A is a Hilbert space, the following result concerning
frames is obtained.

Definition 18. A sequence (xm)
+∞
m=0 ⊂ X, where X is a Hilbert space is a frame if there exist

positive constants A, B, such that for any x ∈ X :

A||x||2 ≤
+∞

∑
m=0
| < x, xm > |2 ≤ B||x||2. (18)

Theorem 10. If A is a real Hilbert space and (um) is a frame of B2(I,A) with bounds A, B, then
(um ∗ u+

m) is also a frame with bounds A( 1+a
1−a )

−2 and B( 1+a
1−a )

2.

Proof. Since (um) is a frame with bounds A, B, if C+ is the adjoint operator of C, the
inequalities (18) applied to x = C+(u) take the form:

A|C+(u)|22 ≤
+∞

∑
m=0
| < C+(u), um > |22 ≤ B|C+(u)|22 ≤ B|C|22|u|22.

As
+∞

∑
m=0
| < u, C(um) > |22 =

+∞

∑
m=0
| < C+(u), um > |22,

then

A|C+(u)|22 ≤
+∞

∑
m=0
| < u, C(um) > |22 ≤ B|C|22|u|22 (19)

obtaining the right inequality. For the left,

|u|22 = |(C+)−1 ◦ C+(u)|22 ≤ |(C+)−1|22|C+(u)|22,

and
A|(C+)−1|−2

2 |u|
2
2 ≤ A|C+(u)|22.
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Bearing in mind that |(C+)−1|2 = |C−1|2, from (19),

A|C−1|−2
2 |u|

2
2 ≤

+∞

∑
m=0
| < u, C(um) > |22 ≤ B|C|22|u|22.

Since C(um) = um ∗ u+
m , the bounds (16) and (17) provide the result.

Definition 19. If (um) is a frame, the system (um ∗ u+
m) is the Hermitian fractal frame associated

with (um).

In the following, we recall the operators linked to a frame and give a characterization
of the frame operator of the Hermitian fractal frame.

Given a frame (um) of B2(I,A), the analysis operator is defined as T : B2(I,A) →
l2(R)

T (u) = (< u, um >)

The synthesis operator is the adjoint of T , expressed as T + : l2(R)→ B2(I,A)

T +((cm)) =
+∞

∑
m=0

cmum.

The frame operator is S = T + ◦ T : B2(I,A)→ B2(I,A) :

S(u) =
+∞

∑
m=0

< u, um > um. (20)

Let TH and SH be the analysis and frame operators associated with the Hermitian
frame (um ∗ u+

m). Then,

< SHu, u >=< T +
H ◦ THu, u >=< THu, THu >= ||THu||22,

where || · ||2 represents the 2-norm in l2(R). Using the frame inequalities according to
Theorem 10

A|u|22(
1 + a
1− a

)−2 ≤< SHu, u >≤ B(
1 + a
1− a

)2|u|22.

The frame operator allows the definition of the dual frame: vm = S−1
H (um ∗ u+

m) (see,
for instance, [48]) and the expansion of an element in terms of the frame [47]:

u =
+∞

∑
m=0

< u, vm > (um ∗ u+
m).

In the next Theorem, we provide the relation between the frame operators of original
and fractal frame. The result proves that they are congruent.

Theorem 11. SH is the frame operator of the Hermitian frame (um ∗ u+
m) if and only if SH =

C ◦ S ◦ C+, where S is the frame operator of (um), C = Id ∗ H and Hu = u+.

Proof. C is defined as Cu = u ∗ u+. Then, according to (20),

(S ◦ C+)u =
+∞

∑
m=0

< C+u, um > um =
+∞

∑
m=0

< u, Cum > um.

Since C is linear and bounded

(C ◦ S ◦ C+)u =
+∞

∑
m=0

< u, Cum > Cum.
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The last sum agrees with the fractal frame operator on u, and thus

SH = C ◦ S ◦ C+.

The argument can be followed in the inverse way as well.

8. Conclusions

The concept of quasi-fixed point, associated to a set of contractions on a metric space,
can be generalized to b-metric spaces, if some conditions on the contraction ratios are
imposed. On these hypotheses, the family of quasi-fixed points is a fractal set of the
b-metric space where they are defined.

For a Banach space or algebra A, we consider a set E of curves of type u : I → A,
where I is a compact real interval and E is endowed with a structure of b-metric space. On
E, we define a non-linear ψ-contraction T : E→ E. If ψ is a suitable comparison function,
then T owns a fixed point ũ : I → A, called Banach-valued fractal interpolation function.
The operator T is linked to a partition of I and a collection of maps {Wn : I ×A → I ×A}.
Suitably choosing the properties of Wn, the fractal function ũ may be continuous on I.
In this way, we can define curves of measures, operators or matrices, depending on the
algebra or space considered.

The defined fractal functions may be integrable curves on A, that is to say, mappings
belonging to Bochner spaces of order p, where p ranges from zero to infinity. We proved
that in some specific cases, the operator T is non-expansive (not necessarily contractive,
even in the widest sense), though it owns fixed points whose graphs are self-similar. Thus,
the existence of fractal interpolation functions coming from non-contractive operators is
proved. This fact holds in the real case (A = R) in particular.

The concept of α-fractal function [27] has been generalized to Banach-valued maps.
The fractal convolution [36,45] is extended to mappings and operators defined on Banach
structures. These operations enable the definition of fractal bases for the Bochner spaces
Bp(I,A), as perturbations of pre-existing bases in the same space. A particular case for
C∗-algebras using the involution operator of this type of structures was considered, thus
obtaining specific fractal frames and bases for them. It was also proved that the frame
operators of original and fractal frames are congruent in the Hilbert case.
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