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Abstract: We present the existence of solutions for sequential Caputo–Hadamard fractional differen-
tial equations (SC-HFDE) with fractional boundary conditions (FBCs). Known fixed-point techniques
are used to analyze the existence of the problem. In particular, the contraction mapping principle
is used to investigate the uniqueness results. Existence results are obtained via Krasnoselkii’s theo-
rem. An example is used to illustrate the results. In this way, our work generalizes several recent
interesting results.
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1. Introduction

The study of fractional-order calculus has been a subject of research for many years.
It began as a result of Leibniz and L’Hospital’s illustrious discourse, in which the issue
of a half derivative was first raised (see, e.g., [1–3]). Nowadays, fractional differential
equations (FDEs) have gained more popularity due to the impact of deep applications.
Some applications of FDEs are in polymer materials, fractional physics, automatic control
theory, abnormal diffusion, and in random processes (see, e.g., [1–4]).

Fractional-order models are quite useful in epidemic models to predict the spread of
diseases. In 2017, [5] a fractional order Middle East Respiratory Syndrome Corona Virus
(MERSCoV) model used an Adams-type predictor-corrector method for the numerical
solution of fractional integral equations.

Over the past 150 years, fixed-point theory (FPT) has made significant progress in
mathematical analysis. It has applications in a variety of domains, including optimization
theory, mathematical physics, topology, and approximation theory. Poincare launched the
investigation of FPT in the nineteenth century. The existence and uniqueness of differential
and integral equations solutions were established by Banach’s 1922 proof of a classical FPT.

In a Banach space of infinite dimensions, Schauder stated the first FPT called Schauder
FPT in 1930 and has several applications in game theory, economics, and engineering (see,
e.g., [6,7]).
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The field of FDEs is a new branch of mathematics that is a valuable tool in modeling
many phenomena in various fields such as cancer treatment, medicine, and signal process-
ing, etc.; we refer to [2,3,8–15]. The most important definitions of fractional derivatives
(FD) and fractional integral derivatives are stated as follows:

(i) The derivative of the fractional order ν > 0 of a function g : (0, ∞)→ R is given by

Dν
0+g(t) =

1
Γ(n− ν)

d
dt

n ∫ t

0

g(s)
(t− s)ν−n+1 ds,

where n = [ν] + 1, provided the right-hand side is pointwise defined on (0, ∞).
(ii) The fractional order integral of the function g ∈ L1([0, T],R+) of order ν ∈ R+ is

defined by

Iνg(t) =
1

Γ(ν)

∫ t

0
(t− s)ν−1g(s)ds,

where Γ is the Euler’s gamma function.
Recent research on the Hadamard equations has focused primarily on the core theoret-

ical areas. In particular, the existence results of the solutions are investigated in [16–18],
where the strip conditions and FPT are employed. In [19], the authors investigated the sta-
bility of Hadamard fractional systems and provide a new fractional comparison principle.
In [20], the asymptotic of higher order Caputo–Hadamard fractional equations is studied.

A few years ago, many authors studied Caputo and Riemann–Liouville FDs. More-
over, Caputo–Hadamard and Hadamard–Caputo FDs are used to prove the existence and
uniqueness results. Recently, Hadamard, Caputo–Fabrizio, Atangana–Baleanu FDs are
applied in cancer-treatment models, see [21,22].

Jessada Tariboon et al. [23] investigated the existence and uniqueness of solutions for
two sequential Caputo–Hadamard and Hadamard–Caputo FDE separated BCs as (with
δi, κi ∈ R, i = 1, 2)

CDp(HDνx)(η) = f (η, x(η)), η ∈ (a, b), HDν(CDpx)(η) = f (η, x(η)),

δ1x(a) + δ2(
HDνx)(a) = 0, δ1x(a) + δ2(

CDpx)(a) = 0,

κ1x(b) + κ2(
HDνx)(b) = 0, κ1x(b) + κ2(

CDpx)(b) = 0.

where CDp and HDν are the Caputo and Hadamard FDs of orders p and ν, respectively.
In [24], the authors took into account the second-order infinite system of DEs{

t
d2uj
dt2 +

duj
dt = f j(t, u(t)), t ∈ J := [1, q]

uj(1) = uj(q) = 0,

where u(t) = {uj(t)}∞
j=1, in Banach sequence space lp, p ≥ 1. They used the Darbo-type

FPT and the Hausdorff measure of noncompactness to prove the existence of solutions.
It should be remarked that a great amount of research on sequential fractional differ-

ential equations has been carried out by Bashir ahmad and his team, as follows. In [25], the
existence of solutions for a fully coupled Riemann–Stieltjes, integro-multipoint, boundary
value problem of Caputo-type sequential FDEs was studied using a known FPT. In [26],
some theoretical existence results on novel combined configurations of a Caputo sequen-
tial inclusion problem and the hybrid integro-differential in which the BCs appear were
established. In [27], existence and uniqueness results were established for a nonlinear se-
quential Hadamard FDE with multi-point BCs using known FPT. In [28], the existence and
uniqueness of solutions for sequential Caputo FDE equipped with integro multipoint BCs
were obtained. In their study, nonlinearity depends on the unknown function as well as its
lower order FDs. In [29], the existence of solutions for sequential FD inclusions containing
Riemann-–Liouville and Caputo-type derivatives and supplemented with generalized
fractional integral BCs were studied using a combination of different tools. The authors
in [30] investigated the existence of solutions for boundary value problems of Caputo-type
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sequential FDEs and inclusions supplemented with nonlocal integro-multipoint BCs using
tools from functional analysis. One can see [31] for some nice results on a coupled two-
parameter system of sequential fractional integro-differential equations supplemented with
nonlocal integro-multipoint BCs; see also [32].

Inspired by the above FPT and cited works, we consider the FBCs for SC-HFDE of
the form

CDν(HDν1 x)(η) = g(η, x(η)), η ∈ J := [a, b], 1 < ν, ν1 < 2 (1)

x(a) = 0, κ HDδ1 x(b) + (1− κ) HDδ2 x(b) = δ3, δ3 ∈ R (2)

where CDν is the Caputo FD of orders ν, HDν1 is the Hadamard FD of orders ν1, HDδ1 is the
Hadamard FD of orders δ1,the HDδ2 is the Hadamard FD of orders δ2. 0 < δ1, δ2 < ν− ν1,
0 ≤ κ ≤ 1 is some constant and a continuous function g : J ×R→ R.

We use the following assumptions to prove the results of SC-HFDE involving FDs.

(A1) The function g : J = [a, b]×R→ R is continuous.
(A2) There exists nondecreasing functions φg(t) ∈ C([a, b],R+):

|g(t, x)| ≤ φg(t), for any x ∈ R

(A3) There exists the function ψg(t) ∈ C([a, b],R+):

|g(t, x)− g(t, x1)| ≤ ψg(t)|x− x1|, for any x, x1 ∈ R

The most important definitions of the problem (1)–(2) and lemma are stated
in [2,3,10,23].

Our contributions are as follows:

1. Generalizing the results obtained in [33], in particular in the BCs.
2. Generalizing the outcomes in [34] in the sense of the BCs and in the used techniques.

The rest of the article is organized as follows. The next section contains some auxiliary
results, Section 3 is devoted to the main contribution, Section 4 is for various applications,
and in Section 5 we conclude the work.

2. Auxiliary Results

Definition 1 ([1–3]). For at least n-times differentiable function g : [a, ∞)→ R, the Caputo’s FD
(with order ν) is defined by

(CDν
0)g(t) =

1
Γ(n− ν)

∫ t

0
(t− s)n−ν−1g(n)(s)ds, for n− 1 < ν < n,

where n = [ν] + 1 and [ν] denotes the integer part of the real number ν.

Definition 2 ([1–3]). The Riemann–Liouville fractional integral (of order ν) for a function g :
[a, ∞)→ R is defined as follows

(RLIν)g(t) =
1

Γ(ν)

∫ t

a

g(s)
(t− s)1−ν

ds, for ν > 0,

provided the integral exists.

Definition 3 ([1–3]). The Hadamard fractional integral of order ν is defined by

(H Jν)g(t) =
1

Γ(ν)

∫ t

b

(
log

t
s

)ν−1 g(s)
s

ds, ν > 0.

provided the integral exists.
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Definition 4 ([1–3]). The Caputo-type Hadamard FD is defined as

HDνg(t) =
1

Γ(n− ν)

∫ t

a

(
log

t
s

)n−ν−1
δn g(s)

s
ds, n− 1 < ν < n, n = [ν] + 1,

where g : [a, ∞)→ R is an n-times differentiable function and δn =
(

t d
dt

)n
.

Lemma 1. The general solution of cDνx(ρ) = 0 (with ν > 0) is

x(ρ) = c0 + c1ρ + . . . + cn−1(ρ− a)n−1,

where ci ∈ R, i = 0, 1, 2, . . . , n− 1 (n = [ν] + 1).

In view of Lemma 1, it follows that

Iν CDνx(ρ) = x(ρ) + c0 + c1(ρ− a) + . . . + cn−1(ρ− a)n−1, (3)

for i = 0, 1, 2, . . . , n− 1 (n = [ν] + 1) and some ci ∈ R.

Lemma 2. The FBCs

CDν(HDν1 x)(η) = w(η), η ∈ J := [a, b], 1 < ν, ν1 ≤ 2 (4)

κ HDδ1 x(b) + (1− κ) HDδ2 x(b) = δ3, x(a) = 0 (5)

is equivalent to

x(η) =H Iν1(RL Iνw)(η) +
log( η

a )
ν1

λ1Γ(ν1 + 1)

(
δ3 − κ H Iν1(RL Iν−δ1 w)(b)

− (1− κ) H Iν1(RL Iν−δ2 w)(b)
)

, η ∈ J := [a, b],
(6)

where

λ1 =
κ log( b

a )
1−δ1

Γ(2− δ1)
+

(1− κ) log( b
a )

1−δ2

Γ(2− δ2)
6= 0 (7)

Proof. Taking the Riemann–Liouville fractional integral (of order q) and Hadamard frac-
tional integral (of order q1) in Equation (4), we obtain

x(η) =H Iν1(RL Iνw)(η) + c1 + c2
log( η

a )
ν1

Γ(ν1 + 1)
(8)

The first boundary condition of (5)⇒ c1 = 0 and second boundary condition of (5) in the
above, Equation (8), we obtain

δ3 = κH Iν1(RL Iνw)(b) + c2κ
log( b

a )
1−δ1

Γ(2− δ1)
+ (1− κ)H Iν1(RL Iνw)(b) + c2(1− κ)

log( b
a )

1−δ2

Γ(2− δ2)
(9)

c2 =
1

λ1

(
δ3 − κ H Iν1(RL Iν−δ1 w)(b)− (1− κ) H Iν1(RL Iν−δ2 w)(b)

)
(10)

Substituting constant c2 in (8), we obtain the integral Equation (6). The proof is com-
pleted.

Theorem 1 ([35] (Krasnoselskii’s FPT)). Suppose a Banach space X, select a closed, bounded,
and convex set ∅ 6= B ⊂ X. Let A1 and A2 be two operators: (i) A1x + A2y ∈ B whenever
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x,y ∈ B; (ii) A1 is compact and continuous; (iii) A2 is a contraction mapping. Therefore, ∃ z ∈ B:
z = A1z + A2z.

3. Main Results

We start by defining ζ = C([a, b],R+) : [a, b]→ R as the Banach space of all functions
(continuous ) with the norm ||x|| = sup{|x(t)|, t ∈ [a, b]}. Now, define the operator
Φ : C([a, b],R)→ C([a, b],R) by

Φx(t) =H Iν1(RL Iν(gx))(t) +
log( t

a )
ν1

λ1Γ(ν1 + 1)

(
δ3 − κ H Iν1(RL Iν−δ1(gx))(b)

− (1− κ) H Iν1(RL Iν−δ2(gx))(b)
)

, t ∈ J := [a, b],
(11)

where gx(t) = g(t, x(t)) and set abbreviate notation

H Iν1(RL Iν(gx))(t) =
1

Γ(ν1)Γ(ν)

∫ t

a

∫ s

a
(log

t
s
)ν1(s− σ)ν−1g(σ, x(σ))dσ

ds
s

FPT play an essential role in many interesting recent results, see, e.g., [36–38].

3.1. Uniqueness Via Contraction Mapping Principle

Theorem 2. Assume that (A1), (A3) are holds. If λ2ψ∗g < 1, where

ψ∗g = sup{ψg(t) : t ∈ [a, b]}

λ2 = H Iν1 (RL Iν(1))(b) +
| log( t

a )
ν1 |

|λ1|Γ(ν1 + 1)

(
|δ3| − |κ| H Iν1 (RL Iν−δ1 (1))(b)− (|1− κ|) H Iν1 (RL Iν−δ2 (1))(b)

)
,

then the fractional problem (1) and (2) has a unique solution on J.

Proof. Let Br = {x ∈ C : ‖x‖ ≤ r} be a convex and closed bounded subset of C, where the
fixed constant r satisfies

r ≥ pλ2

1− ψ∗gλ2
(12)

where p = sup{g(t, 0) : t ∈ [a, b]}. Next, we prove that ΦBr ⊂ Br and by using the triangle
inequality |gx| ≤ |gx − g0|+ |g0|, we have

|Φx(t)| ≤ H Iν1 (RL Iν(|gx |))(t) +
| log( t

a )
ν1 |

|λ1|Γ(ν1 + 1)

(
|δ3| − |κ| H Iν1 (RL Iν−δ1 (|gx |))(b)

− (|1− κ|) H Iν1 (RL Iν−δ2 (|gx |))(b)
)

,

|Φx(t)| ≤ H Iν1 (RL Iν(|gx − g0|+ |g0|))(t) +
| log( t

a )
ν1 |

|λ1|Γ(ν1 + 1)(
|δ3| − |κ| H Iν1 (RL Iν−δ1 (|gx − g0|+ |g0|))(b)− (|1− κ|) H Iν1 (RL Iν−δ2 (|gx − g0|+ |g0|))(b)

)
,

≤ H Iν1 (RL Iν(ψ∗g + p))(t) +
| log( t

a )
ν1 |

|λ1|Γ(ν1 + 1)

(
|δ3| − |κ| H Iν1 (RL Iν−δ1 (ψ∗g + p))(b)

− (|1− κ|) H Iν1 (RL Iν−δ2 (ψ∗g + p))(b)
)

,

= ψ∗grλ2 + pλ2

≤ r

Therefore, ΦBr ⊂ Br. Let x1, x2 ∈ Br, we have
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|Φx1(t)−Φx2(t)| ≤ H Iν1 (RL Iν(|gx1 − gx2 |))(t) +
| log( t

a )
ν1 |

|λ1|Γ(ν1 + 1)

(
|δ3| − |κ| H Iν1 (RL Iν−δ1 (|gx1 − gx2 |))(b)

− (|1− κ|) H Iν1 (RL Iν−δ2 (|gx1 − gx2 |))(b)
)

,

≤ ψ∗g ||x1 − x2||H Iν1 (RL Iν(1))(t) +
| log( t

a )
ν1 |

|λ1|Γ(ν1 + 1)

(
|δ3| − |κ|ψ∗g ||x1 − x2||H Iν1 (RL Iν−δ1 (1))(b)

− (|1− κ|)ψ∗g ||x1 − x2||H Iν1 (RL Iν−δ2 (1))(b)
)

,

= ψ∗gλ2||x1 − x2||,

⇒ |Φx1(t) − Φx2(t)| ≤ ψ∗gλ2||x1 − x2||. Since ψ∗gλ4 < 1, then the operator Φ is a
contraction. Now, the operator Φ has unique FP, which implies that problem (1)–(2) has a
unique solution on J = [a, b].

3.2. Existence via Krasnoselkii’s Theorem

Theorem 3. Suppose (A1), (A2) are satisfied. If

ψ∗g

[
H Iν1(RL Iν(1))(b)

]
< 1, (13)

then the BVP’s (1) and (2) has at least one solution on [a, b].

Proof. Let Bσ = {x ∈ C([a, b],R) : ||x|| ≤ σ} where a constant σ satisfies σ ≥ φ∗gλ2 and
φ∗g = sup{φg(t) : t ∈ [a, b]}. Divide the operator Φ into the two operators Φ1 and Φ2 on
Bσ with

Φ1x(t) =
log( t

a )
ν1

λ1Γ(ν1 + 1)

(
δ3 − κ H Iν1(RL Iν−δ1(gx))(b)− (1− κ) H Iν1(RL Iν−δ2(gx))(b)

)
,

and
Φ2x(t) = H Iν1(RL Iν(gx))(t).

The ball Bσ is a bounded, closed and convex subset of the Banach space C([a, b],R). Now,
show that Φ1x + Φ2y ∈ Bσ. Let x, y ∈ Bσ; then, we have

|Φ1x(t) + Φ2y(t)| ≤
| log( t

a )
ν1 |

|λ1|Γ(ν1 + 1)

(
|δ3| − |κ| H Iν1(RL Iν−δ1(|gx|))(b)

− (|1− κ|) H Iν1(RL Iν−δ2(|gx|))(b)
)
+ H Iν1(RL Iν(|gy|))(t)

≤
| log( t

a )
ν1 |

|λ1|Γ(ν1 + 1)

(
|δ3| − |κ| H Iν1 φ∗g(

RL Iν−δ1(1))(b)

− (|1− κ|) H Iν1 φ∗g(
RL Iν−δ2(1))(b)

)
+ H Iν1 Ψ∗(RL Iν(1))(t)

= φ∗gλ2

≤ σ,

which implies that Φ1x + Φ2y ∈ Bσ. Next, to prove that Φ2 is a contraction mapping, for
x, y ∈ Bσ, we have

||Φ2x−Φ2y|| ≤ H Iν1(RL Iν(|gx − gy|))(b)
≤ ψ∗g

H Iν1(RL Iν(1))(b)||x− y||,

by (A3), which is a contraction by (13).
Next, we show that the operator Φ1 is continuous and compact. By using the continuity

of g on [a, b]×R, we can conclude that Φ1 is continuous. For x ∈ Bσ,

||Φ1x|| ≤ φ∗gλ3,
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where

λ3 =
| log( t

a )
ν1 |

|λ1|Γ(ν1 + 1)

(
|δ3| − |κ| H Iν1(RL Iν−δ1(1))(b)− (|1− κ|) H Iν1(RL Iν−δ2(1))(b)

)
.

This implies that Φ1Bσ is uniformly bounded. Now, we prove that Φ1Bσ is equicontinuous.
For t1, t2 ∈ [a, b]: t1 < t2 and for x ∈ Bσ, we have

|Φ1x(t1)−Φ1x(t2)| ≤
| log( t2

a )
ν1 − log( t1

a )
ν1 |

|λ1|Γ(ν1 + 1)

(
|δ3| − |κ| H Iν1(RL Iν−δ1(|gx|))(b)

− (|1− κ|) H Iν1(RL Iν−δ2(|gx|))(b)
)

≤ φ∗gλ3| log(
t2

a
)ν1 − log(

t1

a
)ν1 |.

It is obvious that the above expression is independent of x and also tends to zero as t1 → t2.
Therefore Φ1Bσ is equicontinuous. Hence Φ1Bσ is relatively compact. Now, by applying
the Arzela–Ascoli theorem (see, e.g., [39]), the operator Φ1 is compact on Bσ. Thus, Φ1 and
Φ2 satisfy the assumptions of Theorem 1. By the conclusion of Theorem 1, we confirm that
the problem (1) and (2) has at least one solution on [a, b].

4. Example

We consider an example to verify the main results as follows.

Example 1. Suppose the FBCs for SC-HFDEs

CD
3
2 (HDν1 x)(η) = g(η, x(η)), η ∈ (

1
2

,
5
2
), (14)

x(
1
2
) = 0,

1
8

HD
5
2 x(

5
2
) +

7
8

HD
1
4 x(

5
2
) =

9
2

, . (15)

where ν = 3
2 , ν1 = 4

3 , a = 1
2 , b = 5

2 , δ1 = 1
2 , δ2 = 1

4 , δ3 = 3
4 and κ = 1

8 , λ1 = 1.005489449,
H I

4
3 (RL I

3
2 (1))( 5

2 ) = 0.039718, H I
4
3 (RL I1(1))( 5

2 ) = 0.1055989, H I
4
3 (RL I

5
4 (1))( 5

2 ) = 0.0821249,
(log 5)

4
3

λ1Γ( 7
3 )

= 0.519833119, and let g : ( 1
2 , 5

2 )×R→ R with

g(η, x(η)) =
cos2η

4[(η − 1
2 ) + 3]

(
x2 + |x|
|x| ) +

1
7

gives, |g(η, x(η))− g(η, y(η))| ≤ ψ∗g |x− y| and ψ∗g = 1
3 . Thus, ψ∗gλ4 = 0.782827602 < 1.

Hence, by Theorem 2, problem (14) and (15) with g(η, x(η)) has a unique solution on ( 1
2 , 5

2 ).
This illustrates our results.

5. Conclusions

We investigated the existence and uniqueness results for fractional boundary value
problems of SC-HFDE. Potential future works could be to develop new fractional models for
Corona Virus, and to find controlled corona-virus conditions using a numerical approach
with fractional order. Moreover, we intend to investigate our results based on other FD,
such as, e.g., Abu-Shady–Kaabar FD, Katugampola derivative, and conformable derivative.
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