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1. Introduction and Preliminaries

In the literature of metric fixed point theory, the Poincaré concept was introduced by
Banach [1] in a metric space called contraction mapping, and this was the first result after
Brouwer [2] in which a fixed point of the contraction map was unique. The main beauty of
the Banach fixed point theorem is the richness of the hypothesis and the elegant proof of
the theorem. One can observe that the metric fixed point theory has immense applications
in the fields of financial economics, medical sciences (for most approximate diagnoses of
medicine), defense (missile technology to penetrate the target accurately), and various
branches of mathematical and computational sciences.

Jungck [3] was perhaps the first to utilize the concept of commutative pairs of map-
pings for obtaining a unique fixed point by generalizing the contraction condition intro-
duced by Banach.

Later, it was quite natural to ask a question among the researchers: Does there exist any
condition weaker than commuting pairs of maps? The answer given by Sessa [4] in the year
1982 was in the affirmative by generalizing the commuting pair of maps and introduced
the weakly commuting pair of maps in a metric space. A pair of self-mappings (Ω, Υ)
on a metric space (f, ρ) is said to be weakly commuting [4] if ρ(ΩΥκ, ΥΩκ) ≤ ρ(Υκ, Ωκ)
for all κ ∈ f. Furthermore, in 1986, Jungck [5] defined more generalized commutativity,
known as compatibility. A pair of self-mappings (Ω, Υ) on a metric space (f, ρ) is said to
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be compatible [5] if lim
n→+∞

ρ(ΩΥκn, ΥΩκn) = 0 whenever {κn} is a sequence in f such that

lim
n→+∞

Ωκn = lim
n→+∞

Υκn = κ for some κ in f.

Most of the common fixed point results of compatible mappings and its variants require
the following:

(1) Continuity of one of the maps under consideration;
(2) Containment of the range spaces;
(3) Completeness of the spaces or range spaces.

In 1996, Jungck [6] extended the notion of compatible mappings to a larger class of
mappings known as WC. Let Ω and Υ be two mappings from a metric space (f, ρ) into
itself. If Ω and Υ commute at their coincidence point (i.e., if Ωκ = Υκ for some κ ∈ f
implies ΩΥκ = ΥΩκ), then Ω and Υ are called WC [6]. In 1994, Pant [7] introduced
the notion of RWC mappings in metric spaces first to widen the scope of the study of
common fixed point theorems from the class of compatibility to the wider class of RWC
mappings. Secondly, the maps are not necessarily continuous at the fixed point. A pair
of self-mappings (Ω, Υ) on a metric space (f, ρ) is said to be RWC [7] if there exists some
R ≥ 0 such that ρ(ΩΥκ, ΥΩκ) ≤ Rρ(Ωκ, Υκ) for all κ ∈ f.

In 1997, Pathak et al. [8] introduced the improved notions of RWC mappings and
called these maps RWC mappings of the type (AΩ) and RWC mappings of the type (AΥ):

Definition 1 ([8]). A pair of self-mappings (Ω, Υ) on a metric space (f, ρ) is said to be the
following:

(1) RWC mappings of the type (AΩ) if there exists some R > 0 such that ρ(ΩΥκ, ΥΥκ) ≤
Rρ(Ωκ, Υκ) for all κ ∈ f;

(2) RWC mappings of the type (AΥ) if there exists some R > 0 such that ρ(ΥΩκ, ΩΩκ) ≤
Rρ(Ωκ, Υκ) for all κ ∈ f;

In 2009, Kumar et al. [9] introduced the notion of RWC mappings of the type (P) as
follows:

Definition 2 ([9]). A pair of self-mappings (Ω, Υ) on a metric space (f, ρ) is said to be RWC
mappings of the type (P) if there exists some R > 0 such that ρ(ΩΩκ, ΥΥκ) ≤ Rρ(Ωκ, Υκ) for all
κ ∈ f.

Example 1. Let f = [−2, 2] and ρ be an usual metric on f. We define the self-mappings Ω and Υ
on a metric space (f, ρ) as

Ω(κ) = |κ| and Υ(κ) = |κ| − 2.

Then, ρ(Ωκ, Υκ) = 2, ρ(ΩΥκ, ΥΩκ) = 2(2− |κ|), ρ(ΩΥκ, ΥΥκ) = 2, ρ(ΥΩκ, ΩΩκ) = 2,
and ρ(ΩΩκ, ΥΥκ) = 2|κ| for all κ in f.

From Example 1, we have the following:

(1) The pair (Ω, Υ) is not weakly commuting;
(2) For R = 2, the pair (Ω, Υ) is RWC, RWC of the type (AΩ), RWC of the type (AΥ) and

RWC of the type (P);
(3) For R = 3

2 , the pair (Ω, Υ) is RWC of the type (AΩ) but not RWC of the types (P) or
RWC.

For the results for common fixed points, see [10–17]. Now, we are ready to establish
some common fixed point theorems in metric spaces by using WC and RWC pairs of maps
which are weaker than the variants of weak commuting pairs of maps in metric spaces and
other abstract spaces. The results in this paper are new, and other published papers do not
cover them.
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2. Main Results

In 2021, Kumar et al. [18] introduced a new weak contraction that involves the cubic
terms of a distance function and proved the common fixed point theorems for compatible
mappings and their variants:

Theorem 1 ([18]). Let ξ, ζ, Ω, and Υ be four mappings of a complete metric space (f, ρ) in itself
satisfying the following conditions:
(C1) ξ(f) ⊂ Υ(f), ζ(f) ⊂ Ω(f);

(C2) ρ3(ξκ, ζω) ≤p max{1
2
[ρ2(Ωκ, ξκ)ρ(Υω, ζω) + ρ(Ωκ, ξκ)ρ2(Υω, ζω)],

ρ(Ωκ, ξκ)ρ(Ωκ, ζω)ρ(Υω, ξκ), ρ(Ωκ, ζω)ρ(Υω, ξκ)ρ(Υω, ζω)}
− φ(m(Ωκ, Υω)),

for all κ, ω ∈ f, where

m(Ωκ, Υω) =max{ρ2(Ωκ, Υω), ρ(Ωκ, ξκ)ρ(Υω, ζω),

ρ(Ωκ, ζω)ρ(Υω, ξκ),
1
2
[ρ(Ωκ, ξκ)ρ(Ωκ, ζω) + ρ(Υω, ξκ)ρ(Υω, ζω)]}

In addition, p is a real number satisfying 0 < p < 1 and a continuous function φ : [0,+∞)→
[0,+∞) with φ(0) = 0 and φ(s) > 0 for s > 0;
(C3) One of ξ, ζ, Ω, or Υ is continuous.

Suppose that the pairs (ξ, Ω) and (ζ, Υ) are type-(A) compatible, type-(B) compatible, type-
(C) compatible, or type-(P) compatible. Then, ξ, ζ, Ω and Υ have a unique common fixed point
in f.

Now, we extend Theorem 1 from the class of compatible mappings to a larger class of
mappings having weak compatibility without appealing to the continuity:

Theorem 2. Let ξ, ζ, Ω, and Υ be four self-mappings on a metric space (f, ρ) satisfying (C1),
(C2), and the following condition:
(C4) One of the subspaces ξf, ζf, Ωf, or Υf is complete.

Then ξ, ζ, Ω, and Υ have a unique common fixed point, provided that the pairs (ξ, Ω) and
(ζ, Υ) are WC.

Proof. Let κ0 ∈ f be an arbitrary point. From (C1), we can find κ1 such that ξ(κ0) =
Υ(κ1) = ω0. For this κ1, one can find κ2 ∈ f such that ζ(κ1) = Ω(κ2) = ω1. By continuing
in this way, one can construct a sequence {ωn} such that

ω2n = ξ(κ2n) = Υ(κ2n+1), ω2n+1 = ζ(κ2n+1) = Ω(κ2n+2) for each n ≥ 0.

From the proof of Theorem 1 [18], {ωn} is a Cauchy sequence.

Let Ω(f) be complete subspace of f. Then, there exist η ∈ f such that

ω2n+1 = ζ(κ2n+1) = Ω(κ2n+2)→ η as n→ +∞.

Accordingly, we can find ϑ ∈ f such that Ωϑ = η. A Cauchy sequence {ωn} has a
convergent subsequence {ω2n}, and therefore we have

ω2n = ξ(κ2n) = Υ(κ2n+1)→ η as n→ +∞.
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We show that ξϑ = η. By putting κ = ϑ and ω = κ2n+1 into (C2), we have

ρ3(ξϑ, ζκ2n+1) ≤p max
{1

2
[ρ2(Ωϑ, ξϑ)ρ(Υκ2n+1, ζκ2n+1)

+ ρ(Ωϑ, ξϑ)ρ2(Υκ2n+1, ζκ2n+1)],

ρ(Ωϑ, ξϑ)ρ(Ωϑ, ζκ2n+1)ρ(Υκ2n+1, ξϑ),

ρ(Ωϑ, ζκ2n+1)ρ(Υκ2n+1, ξϑ)ρ(Υκ2n+1, ζκ2n+1)
}

− φ(m(Ωϑ, Υκ2n+1)),

where

m(Ωϑ, Υκ2n+1) =max
{

ρ2(Ωϑ, Υκ2n+1), ρ(Ωϑ, ξϑ)ρ(Υκ2n+1, ζκ2n+1),

ρ(Ωϑ, ζκ2n+1)ρ(Υκ2n+1, ξϑ),
1
2
[ρ(Ωϑ, ξϑ)ρ(Ωϑ, ζκ2n+1)

+ ρ(Υκ2n+1, ξϑ)ρ(Υκ2n+1, ζκ2n+1)]
}

.

By letting n→ +∞, we have

ρ3(ξϑ, η) ≤p max{1
2
[ρ2(Ωϑ, ξϑ)ρ(η, η) + ρ(Ωϑ, ξϑ)ρ2(η, η)],

ρ(Ωϑ, ξϑ)ρ(Ωϑ, η)ρ(η, ξϑ), ρ(Ωϑ, η)ρ(η, ξϑ)ρ(η, η)}
− φ(m(Ωϑ, η)),

where

m(Ωϑ, η) =max
{

ρ2(Ωϑ, η), ρ(Ωϑ, ξϑ)ρ(η, η), ρ(Ωϑ, η)ρ(η, ξϑ),

1
2
[ρ(Ωϑ, ξϑ)ρ(Ωϑ, η) + ρ(η, ξϑ)ρ(η, η)]

}
= 0.

Upon simplification, we have

ρ3(ξϑ, η) ≤ p max
{1

2
[0 + 0], 0, 0

}
− φ(0).

This implies that ξϑ = η and hence ξϑ = Ωϑ = η. Therefore, ϑ is a point of coincidence
of ξ and Ω. Since η = ξϑ ∈ ξf ⊂ Υf, there exist ν ∈ f such that η = Υν.

Next, we show that ζν = η. Upon putting κ = κ2n and ω = ν into (C2), we have

ρ3(ξκ2n, ζν) ≤p max
{1

2
[ρ2(Ωκ2n, ξκ2n)ρ(Υν, ζν)

+ ρ(Ωκ2n, ξκ2n)ρ
2(Υν, ζν)],

ρ(Ωκ2n, ξκ2n)ρ(Ωκ2n, ζν)ρ(Υν, ξκ2n),

ρ(Ωκ2n, ζν)ρ(Υν, ξκ2n)ρ(Υν, ζν)
}

− φ(m(Ωκ2n, Υν)),

where

m(Ωκ2n, Υν) =max
{

ρ2(Ωκ2n, Υν), ρ(Ωκ2n, ξκ2n)ρ(Υν, ζν),

ρ(Ωκ2n, ζν)ρ(Υν, ξκ2n),
1
2
[ρ(Ωκ2n, ξκ2n)ρ(Ωκ2n, ζν)

+ ρ(Υν, ξκ2n)ρ(Υν, ζν)]
}

.
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By letting n→ +∞, we obtain

ρ3(η, ζν) ≤p max
{1

2
[ρ2(η, η)ρ(Υν, ζν) + ρ(η, η)ρ2(Υν, ζν)],

ρ(η, η)ρ(η, ζν)ρ(Υν, η), ρ(η, ζν)ρ(Υν, η)ρ(Υν, ζν)
}

− φ(m(η, Υν)),

where

m(η, Υν) =max
{

ρ2(η, Υν), ρ(η, η)ρ(Υν, ζν), ρ(η, ζν)ρ(Υν, η),

1
2
[ρ(η, η)ρ(η, ζν) + ρ(Υν, η)ρ(Υν, ζν)]

}
= 0.

Upon simplification, we have

ρ3(η, ζν) ≤ p max
{1

2
[0 + 0], 0, 0

}
− φ(0).

This implies that ζν = η and hence η = ζν = Υν. Thus, ν is a coincidence point of ζ
and Υ. Since the pairs (ξ, Ω) and (ζ, Υ) are WC, therefore

ξη = ξ(Ωϑ) = Ω(ξϑ) = Ωη, ζη = ζ(Υν) = Υ(ζν) = Υη.

Next, we show that ξη = η. Suppose that ξη 6= η. Upon putting κ = η and ω = κ2n+1
into (C2), we obtain

ρ3(ξη, ζκ2n+1) ≤p max
{1

2
[ρ2(Ωη, ξη)ρ(Υκ2n+1, ζκ2n+1)

+ ρ(Ωη, ξη)ρ2(Υκ2n+1, ζκ2n+1)],

ρ(Ωη, ξη)ρ(Ωη, ζκ2n+1)ρ(Υκ2n+1, ξη),

ρ(Ωη, ζκ2n+1)ρ(Υκ2n+1, ξη)ρ(Υκ2n+1, ζκ2n+1)
}

− φ(m(Ωη, Υκ2n+1)),

where

m(Ωη, Υκ2n+1) =max
{

ρ2(Ωη, Υκ2n+1), ρ(Ωη, ξη)ρ(Υκ2n+1, ζκ2n+1),

ρ(Ωη, ζκ2n+1)ρ(Υκ2n+1, ξη),
1
2
[ρ(η, ξη)ρ(Ωη, ζκ2n+1)

+ ρ(Υκ2n+1, ξη)ρ(Υκ2n+1, ζκ2n+1)]
}

.

By letting n→ +∞, and upon simplification, we obtain

ρ3(ξη, η) ≤ p max
{1

2
[0 + 0], 0, 0

}
− φ(d2(ξη, η)).

This implies that ρ3(ξη, η) ≤ −φ(ρ2(ξη, η)), which is a contradiction, and hence
ξη = η.

Thus, we have ξη = Ωη = η.
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Now, we show that ζη = η. Suppose that ζη 6= η. We put κ = κ2n and ω = η into
(C2), and we have

ρ3(ξκ2n, ζη) ≤p max
{1

2
[ρ2(Ωκ2n, ξκ2n)ρ(Υη, ζη)

+ ρ(Ωκ2n, ξκ2n)ρ
2(Υη, ζη)],

ρ(Ωκ2n, ξκ2n)ρ(Ωκ2n, ζη)ρ(Υη, ξκ2n),

ρ(Ωκ2n, ζη)ρ(Υη, ξκ2n)ρ(Υη, ζη)
}

− φ(m(Ωκ2n, Υη)),

where

m(Ωκ2n, Υη) =max
{

ρ2(Ωκ2n, Υη), ρ(Ωκ2n, ξκ2n)ρ(Υη, ζη),

ρ(Ωκ2n, ζη)ρ(Υη, ξκ2n),
1
2
[ρ(Ωκ2n, ξκ2n)ρ(Ωκ2n, ζη)

+ ρ(Υη, ξκ2n)ρ(Υη, ζη)]
}

.

By letting n→ +∞, and upon simplification, we obtain

ρ3(η, ζη) ≤ φ(ρ2(η, ζη)), a contradiction .

Thus, we have η = ζη = Υη.
Therefore, η is a common fixed point of ξ, ζ, Ω, and Υ.
Similarly, one can complete the proof by taking ζf, ξf, or Υf as a complete subspace

of f. The uniqueness of a common fixed point follows easily from the condition (C2). This
completes the proof.

If we put ξ = ζ into Theorem 2, then we obtain the following result:

Corollary 1. Let ξ, Ω, and Υ be self-mappings on a complete metric space (f, ρ) satisfying the
following conditions:

(C5) ξ(f) ⊂ Υ(f), ξ(f) ⊂ Ω(f);
(C6)

ρ3(ξκ, ξω) ≤p max
{1

2
[ρ2(Ωκ, ξκ)ρ(Υω, ξω) + ρ(Ωκ, ξκ)ρ2(Υω, ξω)],

ρ(Ωκ, ξκ)ρ(Ωκ, ξω)ρ(Υω, ξκ), ρ(Ωκ, ξω)ρ(Υω, ξκ)ρ(Υω, ξω)
}

−φ(m(Ωκ, Υω)),

for all κ, ω ∈ f, where

m(Ωκ, Υω) =max
{

ρ2(Ωκ, Υω), ρ(Ωκ, ξκ)ρ(Υω, ζω), ρ(Ωκ, ξω)ρ(Υω, ξκ),

1
2
[ρ(Ωκ, ξκ)ρ(Ωκ, ξω) + ρ(Υω, ξκ)ρ(Υω, ξω)]

}
.

Furthermore, p is a real number such that 0 < p < 1 and φ : [0,+∞) → [0,+∞) is a
continuous function with φ(0) = 0 and φ(s) > 0 for each s > 0;

(C7)One of the subspaces ξf, Ωf, or Υf is complete.
Then ξ, Ω, and Υ have a unique common fixed point, provided that the pairs (ξ, Ω) and (ξ, Υ)
are WC.

If we put Ω = Υ = I (identity map) in Theorem 2, then we obtain the following result:
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Corollary 2. Let ξ and ζ be two self-mappings on a metric space (f, ρ) satisfying the follow-
ing conditions:

ρ3(ξκ, ξω) ≤p max
{1

2
[ρ2(κ, ξκ)ρ(ω, ξω) + ρ(κ, ξκ)ρ2(ω, ξω)],

ρ(κ, ξκ)ρ(κ, ξω)ρ(ω, ξκ), ρ(κ, ξω)ρ(ω, ξκ)ρ(ω, ξω)
}

−φ(m(κ, ω)),

for all κ, ω ∈ f, where

m(κ, ω) =max
{

ρ2(κ, ω), ρ(κ, ξκ)ρ(ω, ζω), ρ(κ, ξω)ρ(ω, ξκ),

1
2
[ρ(κ, ξκ)ρ(κ, ξω) + ρ(ω, ξκ)ρ(ω, ξω)]

}
.

Furthermore, p is a real number such that 0 < p < 1 and φ : [0,+∞)→ [0,+∞) is a continuous
function with φ(0) = 0 and φ(s) > 0 for each s > 0.
Assume that one subspace ξf or ζf is complete. Then, ξ and ζ have a unique common fixed point.

Now, we prove a theorem for WC mappings by avoiding the condition of completeness
of the subspaces.

Theorem 3. Let ξ, ζ, Ω, and Υ be four self-mappings on a complete metric space (f, ρ) satisfying
(C1), (C2), and the following condition:
(C8) One of subspace ξf, ζf, Ωf, or Υf is closed;
Then ξ, ζ, Ω, and Υ have a unique common fixed point provided that the pairs (ξ, Ω) and (ζ, Υ)
are WC.

Proof. Since the subspace of a complete metric space is complete if and only if it is closed,
the conclusion easily follows from Theorem 2.
This completes the proof.

In the next theorem, we are going to replace the concept of WC pairs of maps in
previously established Theorems 2 and 3 by variants of weakly commuting pair of maps.
In addition, we can realize that the conclusions of said theorems still hold well without
changing the rest of the hypothesis:

Theorem 4. The Theorems 2 and 3 remain true if the WC property of the pairs (ξ, Ω) and (ζ, Υ)
is replaced by any one (retaining the rest of hypothesis) of the following:

(1) Pairs (ξ, Ω) and (ζ, Υ) satisfy the RWC property;
(2) Pairs (ξ, Ω) and (ζ, Υ) satisfy the RWC property of types (Aξ) and (Aζ), respectively;
(3) Pairs (ξ, Ω) and (ζ, Υ) satisfy the RWC property of types (AΩ) and (AΥ), respectively;
(4) Pairs (ξ, Ω) and (ζ, Υ) satisfy the RWC property of type (P);
(5) Pairs (ξ, Ω) and (ζ, Υ) satisfy the weakly commuting property.

Proof. Since all the conditions of Theorems 2 and 3 are satisfied, then the existence of coin-
cidence points for both the pairs is ensured. Let µ and ν be arbitrary points of coincidence
for the pairs (ξ, Ω) and (ζ, Υ), respectively. Then, using the RWC property, we obtain

ρ(ξΩκ, Ωξκ) ≤ Rρ(ξκ, Ωκ) = 0

and
ρ(ζΥν, Υζν) ≤ Rρ(ζν, Υν) = 0,

which implies that ξΩκ = Ωξκ and ζΥν = Υζν. Thus, the pairs (ξ, Ω) and (ζ, Υ) are WC.
Now, using Theorems 2 and 3, we obtain ξ, ζ, Ω, and Υ have a unique common fixed point.
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In case the pair (ξ, Ω) satisfies the RWC property of type (Aξ), then

ρ(ξΩκ, ΩΩκ) ≤ Rρ(ξκ, Ωκ) = 0,

which implies that ξΩκ = ΩΩκ.
Additionally, ρ(ξΩκ, Ωξκ) ≤ ρ(ξΩκ, ΩΩκ) + ρ(ΩΩκ, Ωξκ) = 0, which provides

ξΩκ = Ωξκ. Similarly, for the pair (ζ, Υ), we have ζΥν = Υζν.
Similarly, if the pairs (ξ, Ω) and (ζ, Υ) are RWCs of types (AΩ) and (AΥ), respectively,

RWC of type (P) or weakly commuting, then (ξ, Ω) and (ζ, Υ) also commute at their points
of coincidence. Now, in view of Theorems 2 and 3, in all four cases, ξ, ζ, Ω, and Υ have a
unique common fixed point.

Example 2. Let f = [2, 20] and d be a usual metric. Let ξ, ζ, Ω, and Υ be four self-mappings on
f defined by

ξ(κ) =

{
2, κ ∈ [2, 4)
27
10 , κ ∈ [4, 20],

ζ(κ) =

{
κ, κ = 2
12
5 , κ ∈ (2, 20],

Ω(κ) =


2, κ ∈ [2, 4)
12
5 , κ = 4

κ − 1
2 , κ ∈ (4, 20],

Υ(κ) =

{
κ, κ = 2, 27

10

6, κ ∈ (2, 20]− { 27
10}.

Let φ : [0,+∞) → [0,+∞) be a function defined by φ(s) = s
16 for s ≥ 0. Then, one can

easily verify that all the conditions of Theorems 2 and 3 are satisfied for p = 9
10 , and two is the

unique common fixed point of ξ, ζ, Ω, and Υ.

3. Applications

Assume that Ω ⊂ f is the state space and D ⊂ Y is the decision space, where f and Y
are Banach spaces. Let R = (−∞,+∞) and B(Ω) denote the set of all bounded real-valued
functions on Ω. Following Bellman and Lee [19], the basic form of the functional equation
of dynamic programming is defined as follows:

ξ(κ) = optω H(κ, ω, ξ(Υ(κ, ω))),

where κ and ω represent the state and decision vectors, respectively, Υ is the transformation
of the process, and ξ(κ) is the optimal return with the initial state κ, where the opt denotes
the maximum or minimum.

In this section, we shall discuss the existence and uniqueness of a common solution to
the following functional equations arising in dynamic programming:

ξi(κ) = sup
ω∈D

Hi(κ, ω, ξi(Υ(κ, ω))), κ ∈ Ω, (1)

ζi(κ) = sup
ω∈D

Fi(κ, ω, ζi(Υ(κ, ω))), κ ∈ Ω, (2)

where Υ : Ω× D → Ω and Hi, Fi : Ω× D× R→ R, i = 1, 2:
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Theorem 5. Assume that the following conditions are satisfied:

(1) For i = 1, 2, Hi and Fi are bounded;
(2)

|H1(κ, ω, h̄(s))− H2(κ, ω,ℵ(s))|3 ≤ p max{1
2
[|Υ1h̄(s)−Q1h̄(s)|2 · |Υ2ℵ(s)−Q2ℵ(s)|

+ |Υ1h̄(s)−Q1h̄(s)| · |Υ2ℵ(s)−Q2ℵ(s)|2], |Υ1h̄(s)−Q1h̄(s)| · |Υ1h̄(s)−Q2ℵ(s)|
· |Υ2ℵ(s)−Q1h̄(s)|, |Υ1h̄(s)−Q2ℵ(s)| · |Υ2ℵ(s)−Q1h̄(s)| · |Υ2ℵ(s)−Q2ℵ(s)|}
− φ(m(Υ1h̄(s), Υ2ℵ(s))),

for all (κ, ω) ∈ Ω× D, h̄,ℵ ∈ B(Ω) and s ∈ Ω, where

m(Υ1h̄(s), Υ2ℵ(s)) = max{|Υ1h̄(s)− Υ2ℵ(s)|2, |Υ1h̄(s)−Q1h̄(s)| · |Υ2ℵ(s)−Q2ℵ(s)|,

|Υ1h̄(s)−Q2ℵ(s)| · |Υ2ℵ(s)−Q1h̄(s)|, 1
2
[|Υ1h̄(s)−Q1h̄(s)|

· |Υ1h̄(s)−Q2ℵ(s)|+ |Υ2ℵ(s)−Q1h̄(s)| · |Υ2ℵ(s)−Q2ℵ(s)|]}

and p and φ are the same as in Theorem 1. Additionally, the mappings Qi and Υi are defined
as follows:

Qi h̄(κ) = sup
ω∈D

Hi(κ, ω, h̄(Υ(κ, ω))), κ ∈ Ω, h̄ ∈ B(Ω), i = 1, 2,

Υiℵ(κ) = sup
ω∈D

Fi(κ, ω, k(Υ(κ, ω))), κ ∈ Ω,ℵ ∈ B(Ω), i = 1, 2,

(3) For any h̄,ℵ ∈ B(Ω), there exist ℵ1,ℵ2 ∈ B(Ω) such that

Q1h̄(κ) = Υ2ℵ1(κ), Q2h̄(κ) = Υ1ℵ2(κ), κ ∈ Ω,

(4) For any h̄ ∈ B(Ω), if Qi h̄ = Υi h̄, then QiΥi h̄ = ΥiQi h̄ and i = 1, 2.
Then, the system of functional Equations (1) and (2) has a unique common solution in B(Ω).

Proof. Let ρ(h̄,ℵ) = sup{|h̄(κ) − ℵ(κ)| : κ ∈ Ω} for any h̄,ℵ ∈ B(Ω). Then, (B(Ω), ρ)
is a complete metric space. From conditions (1–4), Qi and Υi are self-mappings of B(Ω),
i = 1, 2, Q1(B(Ω)) ⊂ Υ2(B(Ω)), and Q2(B(Ω)) ⊂ Υ1(B(Ω)), and the pairs of mappings
Qi, Υi, and i = 1, 2 are WC. Let h̄i(i = 1, 2) be any two pints of B(Ω), κ ∈ Ω and α be any
positive number. Suppose that there exists ωi(i = 1, 2) in D such that

Qi h̄i(κ) < Hi(κ, ωi, h̄i(κi)) + α, (3)

where κi = Υ(κ, ωi), i = 1, 2. In addition, we have

Q1h̄1(κ) ≥ H1(κ, ω2, h̄1(κ2)), (4)

Q2h̄2(κ) ≥ H2(κ, ω1, h̄2(κ1)). (5)
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Since α is any positive number, from Equations (2), (3) and (5), we have

(Q1h̄1(κ)−Q2h̄2(κ))
3 (6)

< (H1(κ, ω1, h̄1(κ1))− H2(κ, ω1, h̄2(κ1)))
3 + α

≤ (|H1(κ, ω1, h̄1(κ1))− H2(κ, ω1, h̄2(κ1))|)3 + α

≤ p max{1
2
[|Υ1h̄1(κ1)−Q1h̄1(κ1)|2.|Υ2h̄2(κ1)−Q2h̄2(κ1)|

+ |Υ1h̄1(κ1)−Q1h̄1(κ1)| · |Υ2h̄2(κ1)−Q2h̄2(κ1)|2], |Υ1h̄1(κ1)−Q1h̄1(κ1)|
· |Υ1h̄1(κ1)−Q2h̄2(κ1)| · |Υ2h̄2(κ1)−Q1h̄1(κ1)|, |Υ1h̄1(κ1)−Q2h̄2(κ1)|
· |Υ2h̄2(κ1)−Q1h̄1(κ1)| · |Υ2h̄2(κ1)−Q2h̄2(κ1)|} − φ(m(Υ1h̄1(κ1), Υ2h̄2(κ1))) + α,

where

m(Υ1h̄1(κ1), Υ2h̄2(κ1))

= max{|Υ1h̄1(κ1)− Υ2h̄2(κ1)|2, |Υ1h̄1(κ1)−Q1h̄1(κ1)| · |Υ2h̄2(κ1)−Q2h̄2(κ1)|,

|Υ1h̄1(κ1)−Q2h̄2(κ1)| · |Υ2h̄2(κ1)−Q1h̄1(κ1)|,
1
2
[|Υ1h̄1(κ1)−Q1h̄1(κ1)|

· |Υ1h̄1(κ1)−Q2h̄2(κ1)|+ |Υ2h̄2(κ1)−Q1h̄1(κ1)| · |Υ2h̄2(κ1)−Q2h̄2(κ1)|]}.

From Equation (6), we have

(Q1h̄1(κ)−Q2h̄2(κ))
3 (7)

≤ p max{1
2
[ρ2(Υ1h̄1, Q1h̄1)ρ(Υ2h̄2, Q2h̄2) + ρ(Υ1h̄1, Q1h̄1)ρ

2(Υ2h̄2, Q2h̄2)],

ρ(Υ1h̄1, Q1h̄1)ρ(Υ1h̄1, Q2h̄2)ρ(Υ2h̄2, Q1h̄1), ρ(Υ1h̄1, Q2h̄2)ρ(Υ2h̄2, Q1h̄1)

ρ(Υ2h̄2, Q2h̄2)} − φ(m(Υ1h̄1(κ1), Υ2h̄2(κ1))) + α,

where

m(Υ1h̄1(κ1), Υ2h̄2(κ1)) = max{ρ2(Υ1h̄1, Υ2h̄2), ρ(Υ1h̄1, Q1h̄1)ρ(Υ2h̄2, Q2h̄2),

ρ(Υ1h̄1, Q2h̄2)ρ(Υ2h̄2, Q1h̄1),
1
2
[ρ(Υ1h̄1, Q1h̄1)

ρ(Υ1h̄1, Q2h̄2) + ρ(Υ2h̄2, Q1h̄1)ρ(Υ2h̄2, Q2h̄2)]}.

Since α is any positive number, from Equations (3) and (4) and condition (2), we have

(Q1h̄1(κ)−Q2h̄2(κ))
3 (8)

≥ −p max{1
2
[ρ2(Υ1h̄1, Q1h̄1)ρ(Υ2h̄2, Q2h̄2) + ρ(Υ1h̄1, Q1h̄1)ρ

2(Υ2h̄2, Q2h̄2)],

ρ(Υ1h̄1, Q1h̄1)ρ(Υ1h̄1, Q2h̄2)ρ(Υ2h̄2, Q1h̄1), ρ(Υ1h̄1, Q2h̄2)ρ(Υ2h̄2, Q1h̄1)

ρ(Υ2h̄2, Q2h̄2)}+ φ(m(Υ1h̄1(κ1), Υ2h̄2(κ1)))− α,

where m(Υ1h̄1(κ1), Υ2h̄2(κ1)) is same as in Equation (7). The combination of Equations (7)
and (8) gives

|Q1h̄1(κ)−Q2h̄2(κ)|3 (9)

≤ p max{1
2
[ρ2(Υ1h̄1, Q1h̄1)ρ(Υ2h̄2, Q2h̄2) + ρ(Υ1h̄1, Q1h̄1)ρ

2(Υ2h̄2, Q2h̄2)],

ρ(Υ1h̄1, Q1h̄1)ρ(Υ1h̄1, Q2h̄2)ρ(Υ2h̄2, Q1h̄1), ρ(Υ1h̄1, Q2h̄2)ρ(Υ2h̄2, Q1h̄1)

ρ(Υ2h̄2, Q2h̄2)} − φ(m(Υ1h̄1(κ1), Υ2h̄2(κ1))) + α.
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Since Equation (9) holds for any κ ∈ Ω, and α is any positive number, upon taking
supremum over all κ ∈ Ω, we have

ρ3(Q1h̄1, Q2h̄2)

≤ p max{1
2
[ρ2(Υ1h̄1, Q1h̄1)ρ(Υ2h̄2, Q2h̄2) + ρ(Υ1h̄1, Q1h̄1)ρ

2(Υ2h̄2, Q2h̄2)],

ρ(Υ1h̄1, Q1h̄1)ρ(Υ1h̄1, Q2h̄2)ρ(Υ2h̄2, Q1h̄1), ρ(Υ1h̄1, Q2h̄2)ρ(Υ2h̄2, Q1h̄1)

.ρ(Υ2h̄2, Q2h̄2)} − φ(m(Υ1h̄1(κ1), Υ2h̄2(κ1))).

Therefore, by Theorem 2, Q1, Q2, Υ1, and Υ2 have a unique common fixed point
h̄′ ∈ B(Ω) (i.e., h̄′(κ) is a unique solution of the functional Equations (1) and (2)). This
completes the proof.

Remark 1. On replacing condition (4) of Theorem 5, by any one of the following conditions (a–e),
then we obtain applications for Theorem 4.

(a) For all h̄(κ) ∈ B(Ω), there exists some R, R′ ≥ 0 such that

sup
κ∈Ω
|Q1Υ1h̄(κ)− Υ1Q1h̄(κ)| ≤ R sup

κ∈Ω
|Q1h̄(κ)− Υ1h̄(κ)|

and
sup
κ∈Ω
|Q2Υ2h̄(κ)− Υ2Q2h̄(κ)| ≤ R′ sup

κ∈Ω
|Q2h̄(κ)− Υ2h̄(κ)|.

(b) For all h̄(κ) ∈ B(Ω), there exists some R, R′ > 0 such that

sup
κ∈Ω
|Q1Υ1h̄(κ)− Υ1Υ1h̄(κ)| ≤ R sup

κ∈Ω
|Q1h̄(κ)− Υ1h̄(κ)|

and
sup
κ∈Ω
|Q2Υ2h̄(κ)− Υ2Υ2h̄(κ)| ≤ R′ sup

κ∈Ω
|Q2h̄(κ)− Υ2h̄(κ)|.

(c) For all h̄(κ) ∈ B(Ω), there exists some R, R′ > 0 such that

sup
κ∈Ω
|Υ1Q1h̄(κ)−Q1Q1h̄(κ)| ≤ R sup

κ∈Ω
|Q1h̄(κ)− Υ1h̄(κ)|

and
sup
κ∈Ω
|Υ2Q2h̄(κ)−Q2Q2h̄(κ)| ≤ R′ sup

κ∈Ω
|Q2h̄(κ)− Υ2h̄(κ)|.

(d) For all h̄(κ) ∈ B(Ω), there exists some R, R′ > 0 such that

sup
κ∈Ω
|Q1Q1h̄(κ)− Υ1Υ1h̄(κ)| ≤ R sup

κ∈Ω
|Q1h̄(κ)− Υ1h̄(κ)|

and
sup
κ∈Ω
|Q2Q2h̄(κ)− Υ2Υ2h̄(κ)| ≤ R′ sup

κ∈Ω
|Q2h̄(κ)− Υ2h̄(κ)|.

(e) For all h̄(κ) ∈ B(Ω), we have

sup
κ∈Ω
|Q1Υ1h̄(κ)− Υ1Q1h̄(κ)| ≤ sup

κ∈Ω
|Q1h̄(κ)− Υ1h̄(κ)|

and
sup
κ∈Ω
|Q2Υ2h̄(κ)− Υ2Q2h̄(κ)| ≤ sup

κ∈Ω
|Q2h̄(κ)− Υ2h̄(κ)|.
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4. Conclusions

We have demonstrated the power of the very essential tools in this paper, such as
WC mappings and variants of RWC pairs of maps. We made use of satisfying the weak
contraction condition in which cubic terms exist in the metric function. The results provided
here are the extension of the results from the class of compatible mappings to a larger class
of mappings having weak compatibility without appealing to continuity in the context
of metric fixed point theory and applications. Our results were also obtained using the
condition of WC to avoid the condition of completeness of the subspaces. Finally, as an
application of our results, we have discussed the existence and uniqueness of common
solutions to the functional equations arising in dynamic programming.

Retrospect:

• The present study under the given title sounds as though a lot of research can also be
performed in the area of contraction and weak contraction conditions.

• On the applications side, a lot of work is in progress for applying the concept of the vari-
ants of weak commutativity and weak compatibility to the nonlinear integral equations.

• We are also exploring the possibility of obtaining applications of fixed point theory to
day-to-day life, such as the recently faced COVID-19 pandemic, for the most appropri-
ate diagnosis.
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