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Abstract: This paper focuses on studying a random effects semiparametric regression model (RE-
SPRM) with separable space-time filters. The model cannot only capture the linearity and nonlinearity
existing in a space-time dataset, but also avoid the inefficient estimators caused by ignoring spatial
correlation and serial correlation in the error term of a space-time data regression model. Its profile
quasi-maximum likelihood estimators (PQMLE) for parameters and nonparametric functions, and a
generalized F-test statistic for checking the existence of nonlinear relationships are constructed. The
asymptotic properties of estimators and asymptotic distribution of test statistic are derived. Monte
Carlo simulations imply that our estimators and test statistic have good finite sample performance.
The Indonesian rice farming data are used to illustrate our methods.

Keywords: RESPRM with separable space-time filters; PQMLE; generalized F-test statistic; asymptotic
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1. Introduction

A space-time panel dataset is a sample collected from a number of spatial units over
time periods. Such data widely exist in various research fields. It is of great theoretical
significance and practical value to conduct statistical modeling and analysis on space-time
panel data. There are three branches of panel data which are defined as ordinary panel
data, spatial panel data, and space-time panel data given the variety heterogeneities of
existing panel datasets. The regression models established on basis of ordinary panel data
are called ordinary panel data regression models. Ordinary panel data regression models
date back to the 1950s when the pioneering paper (Bates et al. [1]) was published. After
that, the theories and methods of ordinary panel data regression models have been greatly
enriched and they are widely available in many fields, such as economics, management and
environmental science, see Chamberlain [2], Baltagi [3], Arellano [4], Baldev and Baltagi [5],
and Hsiao [6], among others. Panel data spatial regression models generated from the turn
of this century when spatial econometrics literature has exhibited a particular interest in
the specification and estimation of econometric relationships based on spatial panel data
(Elhorst [7]). Panel data spatial regression models deal with the spatial correlations between
different individual units in panel data models and their theories have been well developed
and widely used, see Druska and Horrace [8]; Egger, Pfaffermayr, and Winner [9]; Kapoor,
Kelejian, and Prucha [10]; Lee and Yu [11], etc.

Two problems hampering when modeling with space-time panel data are serial cor-
relation and spatial correlation. Serial correlation lies between the observations of each
spatial unit over time, and it is the domain of the voluminous time-series econometrics
literature. Spatial correlation lies between the observations of the spatial units at each
time period, and it is of the spatial econometrics literature, a subfield of econometrics for
dealing with spatial interaction effects among geographical units such as individuals, firms,
governments, etc. In order to overcome the defects that the panel data spatial regression
models do not account for serial correlation and the ordinary panel data regression models
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account for neither spatial correlation nor serial correlation, people have tried to combine
serial correlation and spatial correlations, and established panel data paramertic regression
models with separable/nonseparable space-time filters, which are used to do researches
on estimation, testing and empirical analysis. Elhorst [12] developed ML method of a
panel data linear regression model with nonseparable space-time filters, while did not
establish asymptotic properties of the estimators. Parent and LeSage [13] explored Markov
Chain Monte Carlo methods of random effects panel data linear regression models with
separable space-time filters, and the performance of the method was demonstrated by both
Monte Carlo simulations and an applied illustration. Lee and Yu [14] studied MLE and
its asymptotic properties of fixed and random effects panel data parametric regression
models with separable space-time filters. Lee and Yu [15] provided QMLE and its asymp-
totic properties for a fixed effects panel data linear regression model with disturbances
contained both separable space-time filters and nonseparable space-time filters. Baltagi
et al. [16] derived several Lagrange Multiplier tests for panel data linear regression model
with separable space-time fliters containing random effects. Cohen and Paul [17] analysed
the influencing factors of public infrastructure investment on the costs and productivity of
private enterprises on basis of 1982–1996 state-level U.S. manufacturing data by panel data
parametric regression model with separable space-time filters.

All literature on panel data regression models with separable/nonseparable space-
time filters mentioned above focuses on panel data parametric regression models. Although
the theories and applications of these models have been well developed, they are often
unrealistic in real situations for the reason that they fail to capture complex structure
(e.g., nonlinearity) owing to lacking of flexibility. Moreover, the form of parametric re-
gression models may be misspecified, and estimators based on misspecified models are
able to cause inconsistency and even erroneous conclusions. Driven by these reasons,
Zhao et al. [18] constructed semiparametric minimum average variance estimation method,
and proposed a F-test statistic of partially linear single-index panel regression model with
separable space-time filters, then proved the asymptotic properties of estimators and test
statistic. Bai, Hu, and You [19] established weighted semiparametric least squares and
weighted polynomial spline series estimation method for parametric and nonparametric
component, respectively, of panel data partially linear varying-coefficient regression model
with separable space-time filters, and then proved their asymptotic normalities.

In this paper, we study estimation and testing of random effects semiparametric
regression model (RESPRM) with separable space-time filters. By allowing a nonpara-
metric component in parametric regression model with separable space-time filters, it can
simultaneously capture the linear and nonlinear effects of covariates, spatial correlation
of error structure, serial correlation of remainder error structure, and individual random
effects. To the best of our knowledge, there is no related literature on this model. In this
paper, we aim to study its profile quasi-maximum likelihood estimation (PQMLE) and
hypothesis test methods, and then conduct systematic studies of the asymptotic properties
and small sample performance for estimators and test statistic. Furthermore, we illustrate
the proposed estimation and testing methods by using a real dataset.

The remainder of this paper is organized as follows. Section 2 introduces the RESPRM
with separable space-time filters, and estimators for the model and test statistic for non-
parametric component are constructed. Section 3 mainly provides asymptotic properties of
estimators, asymptotic distribution of test statistic and conditional assumptions. Section 4
presents the finite sample performance of estimates and F-test statistic through Monte Carlo
simulations. Section 5 illustrates the proposed methods by an application of Indonesian
rice farming data. Conclusions are summarized in Section 6. The proofs of some important
lemmas and theorems are given in Appendix A.
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2. The Model, Estimation, and Testing
2.1. The Model

The RESPRM with separable space-time filters can be specified as:

yit = x′itβ + m(zit) + bi + εit, (1)

εit = ρ
N

∑
j=1

wijε jt + νit, (2)

νit = λνi,t−1 + eit, 1 ≤ i ≤ N, 1 < t ≤ T, (3)

where yit is an observation of the response variable for the ith spatial unit at the tth time
period, xit = (xit1, xit2, . . . , xitp)

′
, and zit = (zit1, zit2, . . . , zitq)

′
are observations of p× 1 and

q× 1 vectors of covariates, respectively, bi is an individual random effect which is assumed
to be I ID(0, σ2

b ), εit is an error term, νit is a remainder error term which is weakly stationary
sequence, eit is a random error term which is assumed to be I ID(0, σ2

e ), β = (β1, β2, . . . , βp)′

is a regression coefficient vector of xit, m(·) is an unknown link function, wij is the (i, j)th
element of spatial weights matrix, ρ and λ are spatial correlation and series correlation
coefficients, respectively. Furthermore, we denote θ0 = (ζ ′0, β′0)

′, ζ0 = (ρ0, λ0, σ2
b0, σ2

e0) as
the true parameter vector of θ = (ζ ′, β′)′ and ζ = (ρ, λ, σ2

b , σ2
e ), respectively, and m0(z) as

the true value of nonparametric function of m(z).
We find that separable space-time filters in our model result in a trade-off between

the spatial correlation and serial correlation coefficients. According to Shi and Lee [20],
it is not hard to obtain that the stationarity requires not only |ρ| < 1, |λ| < 1, but also
|λ|+ |ρ|+ |ρλ| < 1, i.e., parameter space Λ of λ and ρ, see Figure 1.

Figure 1. The parameter space Λ of λ and ρ.

2.2. Estimation

Because that random effect bi could be regarded as time-invariant permanent spillovers
(see Baltagi, Fingleton, and Pirotte [21]), the model (1) can be written in matrix form

Y = Xβ + M + η, (4)

where Y = (y11, . . . , yNT)
′, X = (x11, . . . , xNT)

′, M = (m(z11), . . . , m(zNT))
′,

b = (b1, . . . , bN)
′, ν = (ν11, . . . , νNT)

′, η = lT ⊗ b + (IT ⊗ B−1)ν, lT is a T × 1 vector of
ones, B = IN − ρW, IN is an N × N identity matrix, W is an N × N spatial weights matrix.
Then we obtain the variance matrix of transformed error structure η as follows

Ω = E(ηη′) = σ2
b (lT l′T ⊗ IN) + σ2

e [Vλ ⊗ (B−1B−1′)],

Ω−1 =
1

d2(1− λ2)
V−1

λ lT l′TV−1
λ ⊗ Z0 + [V−1

λ − 1
d2(1− λ2)

V−1
λ lT l′TV−1

λ ]⊗ (
1
σ2

b
BB′),
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|Ω| = |Vλ|N |σ2
e B−1B

′−1|T−1|Z−1
0 |,

where

Vλ =
1

1− λ2


1 λ . . . λT−1

λ 1 . . . λT−2

...
...

. . .
...

λT−1 λT−2 . . . 1

,

Z0 = [d2(1 − λ2)σ2
b IN + σ2

e B−1B
′−1]−1, d2 = l

′λ
T lλ

T = 1+λ
1−λ + (T − 1) and lλ

T =

(
√

1+λ√
1−λ

, 1, . . . , 1)′. Therefore, the log-likelihood function of the new transformed model (4)
is defined in (5)

lnL(θ) = −NT
2

ln(2π)− 1
2

ln|Ω| − 1
2

ξ ′(θ)Ω−1ξ(θ), (5)

where ξ(θ) = Y−M− Xβ.
It is difficult to obtain the QMLE by maximizing (5) because that M∗ is unknown. Thus,

we will combine PQML method and Working Independence theory (Cai [22]) to estimate
unknown parameters and nonparametric function of the model. Working independence
assumption is often used to deal with nonparametric/semiparametric regression models
which exist correlation structures. By ignoring the correlation structure entirely, and
pretending as if the data within a cluster were independent, the asymptotically most
efficient estimator of nonparametric function is obtained (Lin and Carroll [23]). It has been
widely used in various correlation structures of nonparametric/semiparametric models,
such as Fan et al. [24], Fan and Zhang [25], and Tang and Liu [26], among others.

The estimation steps are as follows:
Step 1. By supposing that β is known, the initial estimator of m(z) can be obtained. Let

KH(z) = diag(kH(z11 − z), . . . , kH(z1T − z), . . . , kH(zN1 − z), . . . , kH(zNT − z)),

~Z(z) = (Z11(z), . . . , Z1T(z), . . . , ZN1(z), . . . , ZNT(z))′,

where kH(z) = |H|−1k(H−1z), k(·) is q × 1 kernel function, |H| is the determinant of
H = diag(h1, . . . , hq), Zit(z) = [1, H−1(zit − z)′]′. In addition, denote m̂IN(z) = â1, then
we have δ̂ = (â1, (Hâ2)

′)′ and

δ̂ = arg min
a1,a2

1
NT

[Ỹ− ~Z(z)δ]′KH(z)[Ỹ− ~Z(z)δ],

where Ỹ = (ỹ11, . . . , ỹ1T , . . . , ỹN1, . . . , ỹNT)
′, ỹit = yit − x′itβ, a2 is the first derivative of

m(z). Let S(z) = [~Z′(z)KH(z)~Z(z)]−1~Z′(z)KH(z), then δ̂ = S(z)Ỹ and

m̂IN(z) = s′(z)Ỹ, (6)

where s(z) = e′0S(z), e0 = (1, 0, . . . , 0)′ is a (q + 1)× 1 vector.
Step 2. Substituting (6) into (5), the approximate log-likelihood function is given by

lnL(θ, m̂IN(z)) = −
NT
2

ln(2π)− 1
2

ln|Ω| − 1
2
(Y− Xβ)′(I − S)′Ω−1(I − S)(Y− Xβ). (7)

By maximizing (7), the initial estimators of β can be obtained as follows

β̂ IN = [X′(I − S)′Ω−1(I − S)X]−1X′(I − S)′Ω−1(I − S)Y, (8)

Step 3. Substituting β̂ IN into (7), we get the concentrated log-likelihood function of ρ
and λ as

ζ̂ = arg max
ζ

lnL(ζ). (9)
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Step 4. Substituting (9) into (8), the ultimate estimator of β̂ is obtained, and further
substituting β̂ into (6), the ultimate estimator of m̂(z) is obtained.

2.3. Testing

By allowing nonparametric component in a parametric regression model with separa-
ble space-time filters, it provides us the ability to explore potential nonlinear relationship
lies between covariates and response variable. In order to check whether the parametric
specification is correct, it is necessary to do the following hypothesis test

H0 : m(zit) = γ0 +
q

∑
j=1

γjzitj ↔ H1 : m(zit) 6= γ0 +
q

∑
j=1

γjzitj,

where γ0 . . . , γq are unknown parameters. Following Fan, Zhang, and Zhang [27], we
obtain m̂(zit) by PQML method, and m̃(zit) = γ̃0 + ∑

q
j=1 γ̃jzitj is OLS estimator of the

intercept and slopes in the linear regression of yit − x′it β̂, β̂ is also obtained by PQML
method. The resulting residual sums of squares under the null and alternative hypotheses,
respectively, are as follows

RSS(H0) =
N

∑
i

T

∑
t=1

[yit − m̃(zit)− x′it β̂]
2,

RSS(H1) =
N

∑
i

T

∑
t=1

[yit − m̂(zit)− x′it β̂]
2.

To test the null hypothesis, we define generalized F-test statistic as follows:

FNT =
NT
2

RSS(H0)− RSS(H1)

RSS(H1)
. (10)

The asymptotic distribution of FNT is given in Section 3.

3. Asymptotic Property

To prove the asymptotic properties of PQMLE and asymptotic distribution of general-
ized F-test statistic proposed in Section 2, we need to establish some useful assumptions
and lemmas.

3.1. Assumptions

In order to provide a rigorous theoretical analysis, we make the following assumptions.

Assumption 1. (i) {xi, zi}N,T
i=1,t=1 are nonstochastic variables and uniformly bounded (UB) in

X ×Z .

(ii) There is a positive density function ft(·) such that lim
N→∞

1
N ∑N

i=1 υ(zi) =
∫

υ(z) ft(z)dz for

any bounded continuous function υ(·), and ft(·) is bounded away from zero on Z .

(iii) eit are iid and E(|eit|4) < ∞.

Assumption 2. (i) W is a row normalized and prespecified spatial weights matrix.

(ii) B is nonsingular.

(iii) B and B−1 are UB in both row and column sums in absolute value.

Assumption 3. As N → ∞, ‖H‖ → 0, N|H|2 → ∞, ‖H‖4|H|−1 → 0 and N|H|‖H‖4 → c ∈
[0, ∞), where ‖H‖ = tr(H′H)

1
2 = {∑ij |hij|2}

1
2 is the Euclidean norm of matrix H, and |H| is

the determinant of matrix H.
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Assumption 4. The kernel function K(·) is a continuous density with compact support on Rq, all
odd order moments of K vanish. Further, K(·) is bounded, u3K(u) and u3K′(u) are bounded and∫

u4K(u)du < ∞.

Assumption 5. For any (ρ, λ) ∈ Λ, we require that

lim
N,T→∞

[
1

NT
ln|Ω0|+ 1− 1

NT
ln|Ω| − tr(Ω−1Ω0)] 6= 0,

where
|Ω0| = |Vλ0 |

N |σ2
e0B−1

0 B
′−1
0 |

T−1|Z−1
00 |.

Vλ0 =
1

1− λ2
0


1 λ0 . . . λT−1

0
λ0 1 . . . λT−2

0
...

...
. . .

...
λT−1

0 λT−2
0 . . . 1

,

Z00 = [d2(1− λ2
0)σ

2
b0 IN + σ2

e0B−1B
′−1
0 ]−1, d2

0 = l
′λ0
T lλ0

T = 1+λ0
1−λ0

+ (T − 1) and

lλ0
T = (

√
1+λ0√
1−λ0

, 1, . . . , 1)′.

Assumption 6. L11(L44L22− L2
24)− L14(L14L22 + 2L12L24) > 0, where L11 = 2tr[(B−1(ρ0)W)2]

N ,

L44 = 1
2σ4

e0
, L22 = − tr(C̈0C−1

0 )+tr(C−1′
0 Ċ′0Ċ0C−1

0 )
T +

1−3λ2
0

T(1−λ2
0)

, L14 =
tr(WB−1

0 )

Nσ2
e0

, L24 =
tr(C−1′

0 Ċ′0)
Tσ2

e0
,

L12 = − 2
NT tr(C−1′

0 Ċ⊗WB−1
0 ).

Remark: Assumption 1 concerns the features of covariates, random error term, and
density function for the model (1). Assumption 2 provides the basic features of spatial
weight matrix, it parallels Assumption 3 of Su and Jin [28] and Assumption 5 of Lee [29].
The assumption that B and B−1 are UB limits the spatial correlation to a manageable degree.
Assumption 3 concerns the bandwidth sequence, it parallels Assumption 4 of Hamilton
and Truong [30], and Assumption 7 of Ullah and Su [31]. Assumption 4 concerns the
kernel function. Assumptions 5 and 6 are necessary for the consistency and asymptotic
properties of the estimators.

3.2. Asymptotic Properties

From the model (4), we obtain the reduced form equation of Y as

Y = Xβ0 + M0 + η0. (11)

Let S = (s11, . . . , sNT), where sit = s(zit). Denote a typical entry of s(z) by
s(zit, z) = e′[~Z′(z)KH(z)~Z(z)]−1~Z′it(z)KH(zit− z), where ~Z′it(z) is a typical column of ~Z′(z).

Lemma 1. Suppose that Assumptions 1–5 hold, then we have

‖S‖ = Op(N−1/2|H|−1/2).

The proof is given by Hamilton and Truong [30].

Lemma 2. Suppose that Assumptions 1–5 hold, then we have

(i) s(zit, z) = N−1KH(zit − z) f̄ (z){1 + op(1)}, where f̄ (z) = ∑T
t=1 ft(z).

(ii) There is a positive constant c such that lim
N→∞

P{N−1[~Z′(z)KH(z)~Z(z)]ij ≤ c for

z ∈ c f , i, j = 1, . . . , q + 1} = 1.
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(iii) There exists a positive constant c such that

lim
N→∞

P{sup
z

max
1≤i≤N,1≤t≤T

|s(zit, z)| ≤ c(NT)−1|H|−1} = 1.

The proofs is given by Ullah and Su [31].

Lemma 3. Suppose that Assumptions 1–5 hold, then we have

‖(I − S)M‖ = Op(‖H‖2).

The proof is given by Hamilton and Truong [30].
With the above lemmas, we then state main results as follows. Their detail proofs can

be found in the Appendix A.

Theorem 1. Suppose that Assumptions 1–5 hold, then we have θ̂ − θ0 = op(1).

Theorem 2. Suppose that Assumptions 1–6 hold, then we have

√
NT(θ̂ − θ0)

D−→ N(0, Σ−1
θ0

+ Σ−1
θ0

ΩθΣ−1
θ0

),

where “ D−→” means convergence in distribution, Σθ0 = −E[ 1
NT

∂2lnL(θ0)
∂θ∂θ′ ] is the average Hes-

sian matrix (information matrix when e and b obey normal distributions), Ωθ = E(ΩθNT ) and

ΩθNT = 1√
NT

∂lnL(θ0)
∂θ · 1√

NT
∂lnL(θ0)

∂θ′ + 1
NT

∂2lnL(θ0)
∂θ∂θ′ .

Theorem 3. Suppose that Assumptions 1–4 hold, then we have

√
N|H|

(
δ̂− δ−Q−1

(
f̄ (z)

2 (
∫

uu′K(u)duHm̈(z)H)
0

))
D−→ N(0, σ2(δ)),

where m̈(z) is the second derivative of m(z), σ2(δ) = σ2
e {S(z)DI(C′0C0 ⊗ B′0B0)

−1D′IS(z)
′,

DI = I−D−1
ˆ̃U

ˆ̃U(Ĉ⊗ B̂′ B̂)(I− S)and D ˆ̃U = ˆ̃U
′
(IT ⊗ B̂′ B̂) ˆ̃U, Q = f̄ (z)

(
1 0′

0
∫

uu′K(u)du

)
,

f̄ (z) = ∑T
t=1 ft(z).

Theorem 4. Suppose that Assumptions 1–4 hold, then we have

rkFNT
D−→ χ2

d f ,

where rk =
K(0)− 1

2
∫

K2(z)du∫
(K(z)− 1

2 K∗K(z))2du
, ck = K(0) − 1

2

∫
K2(z)du, K(z) = diag(H−1k(H−1(z11 −

z)), . . . , H−1k(H−1(zNT − z))), d f = rkck|Z|/|H|, Z is the support of zit and H is a bandwidth
sequence, besides, note that when K(0) = maxK(z), we get K(0) > ‖K‖2

2, ck >
1
2 K(0) and hence

rk > 0.

4. Monte Carlo Simulation
4.1. Performance of the Estimates

In this section, we report the results of a small-scale Monte Carlo study which is
aimed to evaluate the finite sample performance of PQMLEs. We use mean square error
(MSE), standard deviation (SD), and mean absolute deviation error (MADE) to measure
the parametric and nonparametric estimation performance, respectively, where

MADEj = Q−1
Q

∑
q=1
|m̂(zq)−m(zq)|, j = 1, 2, . . . , mcn,
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mcn = 2000, {zq}Q
q=1 are Q fixed grid points in support set of z. Furthermore, we apply

the rule of thumb method of Mack and Silverman [32] to choose the optimal width and let
K(u) = ( 3

4
√

5
)(1− 1

5 u2)1(u2 ≤ 5) (see Su [33]).
We use data generated from the following model

yit = xitβ + m(zit) + bi + εit,

εit = ρ
N

∑
j=1

wijε jt + νit,

νit = λνi,t−1 + eit,

(12)

where xit ∼ U[−2, 2], zit ∼ U[−3, 3], eit ∼ i.i.d.N(0, 1), bi ∼ i.i.d.N(0, 1), m(zit) = 0.3z2
it,

β = 1, ρ = 0.2, 0.4, and λ = 0.2, 0.4 respectively. In addition, we defined weights matrix
as Rook matrix (see Anselin [34]). The simulation results of cases N = 50, 100, 200, and
T = 10, 20 are presented in Tables 1–4.

It is obvious from Tables 1–4 that: (1) the MSEs of all parametric estimators are fairly
small, which indicates the parametric estimators are approximately unbiased; (2) for fixed
T, when N increases, the MSE of ρ̂, λ̂, β̂, σ̂2

b and σ̂2
e decrease rapidly. For fixed N, when T

increases, the behavior of parametric estimates is similar to the case where N changes with
the fixed T. (3) The SDs and MADEs of m̂(z) decrease as T or N increases. It presents that
the nonparametric estimates are convergent.

Table 1. Results of parametric estimates under the model (12) with T = 10.

N = 50 N = 100 N = 200

True Mean MSE True Mean MSE True Mean MSE

β̂ 1.0000 0.9854 0.0070 1.0000 1.0096 0.0032 1.0000 1.0060 0.0018
ρ̂ 0.2000 0.2034 0.0108 0.2000 0.2027 0.0089 0.2000 0.2017 0.0044

ρ = 0.2 λ̂ 0.2000 0.2079 0.0036 0.2000 0.2074 0.0032 0.2000 0.2027 0.0027
λ = 0.2 σ̂2

e 1.0000 1.0335 0.0013 1.0000 1.0245 0.0011 1.0000 1.0064 0.0008

σ̂2
b

1.0000 1.0356 0.0045 1.0000 1.0297 0.0025 1.0000 1.0160 0.0013
β̂ 1.0000 1.0130 0.0049 1.0000 1.0041 0.0041 1.0000 1.0004 0.0010
ρ̂ 0.2000 0.2059 0.0113 0.2000 0.2018 0.0103 0.2000 0.2041 0.0010

ρ = 0.2 λ̂ 0.4000 0.4120 0.0056 0.4000 0.4046 0.0038 0.4000 0.4039 0.0013
λ = 0.4 σ̂2

e 1.0000 1.0567 0.0088 1.0000 1.0302 0.0045 1.0000 1.0290 0.0043

σ̂2
b

1.0000 1.0536 0.0057 1.0000 1.0145 0.0033 1.0000 1.0022 0.0025
β̂ 1.0000 1.0349 0.0782 1.0000 1.0311 0.0601 1.0000 0.9774 0.0506
ρ̂ 0.4000 0.3846 0.0344 0.4000 0.4026 0.0409 0.4000 0.3929 0.0311

ρ = 0.4 λ̂ 0.2000 0.2069 0.0018 0.2000 0.2055 0.0015 0.2000 0.2044 0.0013
λ = 0.2 σ̂2

e 1.0000 1.0429 0.0027 1.0000 1.0159 0.0023 1.0000 1.0083 0.0017

σ̂2
b

1.0000 1.0378 0.0025 1.0000 1.0083 0.0018 1.0000 1.0055 0.0013
β̂ 1.0000 1.0356 0.0637 1.0000 1.0116 0.0441 1.0000 1.0071 0.0063
ρ̂ 0.4000 0.4083 0.0011 0.4000 0.4014 0.0010 0.4000 0.4008 0.0005

ρ = 0.4 λ̂ 0.4000 0.4109 0.0008 0.4000 0.4107 0.0008 0.4000 0.4009 0.0006
λ = 0.4 σ̂2

e 1.0000 1.0411 0.0019 1.0000 1.0212 0.0005 1.0000 1.0041 0.0004

σ̂2
b

1.0000 1.0399 0.0021 1.0000 1.0138 0.0020 1.0000 1.0022 0.0008
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Table 2. Results of parametric estimates under the model (12) with T = 20.

N = 50 N = 100 N = 200

True Mean MSE True Mean MSE True Mean MSE

β̂ 1.0000 1.0068 0.0061 1.0000 0.9932 0.0025 1.0000 0.9945 0.0010
ρ̂ 0.2000 0.1976 0.0012 0.2000 0.1990 0.0010 0.2000 0.2003 0.0005

λ = 0.2 λ̂ 0.2000 0.2051 0.0022 0.2000 0.2019 0.0015 0.2000 0.2008 0.0008
ρ = 0.2 σ̂2

e 1.0000 1.0102 0.0009 1.0000 1.0098 0.0007 1.0000 1.0005 0.0005

σ̂2
b

1.0000 1.0242 0.0034 1.0000 1.0145 0.0013 1.0000 1.0008 0.0007

β̂ 1.0000 0.9879 0.0025 1.0000 1.0006 0.0008 1.0000 1.0003 0.0003
ρ̂ 0.2000 0.2028 0.0097 0.2000 0.2011 0.0059 0.2000 0.2001 0.0001

ρ = 0.2 λ̂ 0.4000 0.4050 0.0043 0.4000 0.3972 0.0019 0.4000 0.4008 0.0011
λ = 0.4 σ̂2

e 1.0000 1.0082 0.0037 1.0000 1.0056 0.0021 1.0000 1.0014 0.0014

σ̂2
b

1.0000 1.0062 0.0026 1.0000 1.0047 0.0024 1.0000 1.0016 0.0015

β̂ 1.0000 1.0157 0.0369 1.0000 0.9915 0.0282 1.0000 0.9941 0.0008
ρ̂ 0.4000 0.3971 0.0312 0.4000 0.4010 0.0033 0.4000 0.3990 0.0005

ρ = 0.4 λ̂ 0.2000 0.2025 0.0011 0.2000 0.2013 0.0007 0.2000 0.2001 0.0002
λ = 0.2 σ̂2

e 1.0000 1.0096 0.0013 1.0000 1.0068 0.0011 1.0000 1.0041 0.0008

σ̂2
b

1.0000 1.0071 0.0020 1.0000 1.0048 0.0015 1.0000 1.0005 0.0007

β̂ 1.0000 1.0276 0.0063 1.0000 1.0041 0.0043 1.0000 1.0008 0.0003
ρ̂ 0.4000 0.4005 0.0004 0.4000 0.4004 0.0001 0.4000 0.4000 0.0000

ρ = 0.4 λ̂ 0.4000 0.4004 0.0004 0.4000 0.4001 0.0001 0.4000 0.4000 0.0000
λ = 0.4 σ̂2

e 1.0000 1.0025 0.0012 1.0000 1.0012 0.0004 1.0000 1.0004 0.0002

σ̂2
b

1.0000 1.0009 0.0016 1.0000 1.0008 0.0009 1.0000 1.0002 0.0005

Table 3. The medians and SDs of MADEs for nonparametric estimates under the model (12) with
T = 10.

N = 50 N = 100 N = 200

ρ = 0.2
λ = 0.2

Median 0.3364 0.3248 0.3179
SD 0.2750 0.2203 0.2145

λ = 0.4
Median 0.3108 0.3100 0.2927

SD 0.2709 0.2467 0.2247

ρ = 0.4
λ = 0.2

Median 0.3060 0.3046 0.2933
SD 0.2464 0.2156 0.2077

λ = 0.4
Median 0.3275 0.3211 0.3031

SD 0.2540 0.1924 0.1756

Table 4. The medians and SDs of MADEs for nonparametric estimates under the model (12) with
T = 20.

N = 50 N = 100 N = 200

ρ = 0.2
λ = 0.2

Median 0.3355 0.3174 0.2687
SD 0.2429 0.1948 0.1530

λ = 0.4
Median 0.3042 0.2902 0.2883

SD 0.2113 0.1883 0.1858

ρ = 0.4
λ = 0.2

Median 0.3020 0.3007 0.2903
SD 0.2225 0.2069 0.1908

λ = 0.4
Median 0.3244 0.3001 0.2873

SD 0.2040 0.1824 0.1722

Figure 2 shows the fitting image and 95% confidence intervals of m̂(z) under ρ = 0.2
and λ = 0.2, respectively, where the black short dashed line is the average fit over 2000
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simulations m̂(z) by PQML method, the red solid line is the true values of m(z), and the
two black long dashed lines are the corresponding 95% confidence bands. By observing
subgraphs of Figure 2, we know that shorter dotted line is fairly close to solid line and
confidence band is narrow. These mean that nonparametric estimation procedure perfor-
mances well under finite sample. To save space, we do not show the others cases under
ρ = 0.2 with λ = 0.4, ρ = 0.4 with λ = 0.2 and ρ = 0.4 with λ = 0.4 of different N and T
because they are similar with the case ρ = 0.2 with λ = 0.2.

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

N=50,T=10,ρ=0.2,λ=0.2

 

 

m(•)
true

m(•)
estimate

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

N=50,T=20,ρ=0.2,λ=0.2

 

 

m(•)
true

m(•)
estimate

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

N=100,T=10,ρ=0.2,λ=0.2

 

 

m(•)
true

m(•)
estimate

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

N=100,T=20,ρ=0.2,λ=0.2

 

 

m(•)
true

m(•)
estimate

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

N=200,T=10,ρ=0.2,λ=0.2

 

 

m(•)
true

m(•)
estimate

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

N=200,T=20,ρ=0.2,λ=0.2

 

 

m(•)
true

m(•)
estimate

Figure 2. The fitting images and 95% confidence intervals of m̂(z) with ρ = 0.2 and λ = 0.2.
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4.2. Comparison of Results of Different Models

In this section, we will investigate the necessity of including nonparametric compo-
nents, spatial correlation, and serial correlation if the real model is model (12). By deleting
spatial correlation, serial correlation, and spatiotemporal correlations, respectively, in the
model (12), we get the following three deleted models:{

yit = x′itβ + m(zit) + bi + νit,
νit = λνi,t−1 + eit,

(13){
yit = x′itβ + m(zit) + bi + εit,
εit = ρ ∑N

j=1 wijε jt + eit,
(14)

yit = x′itβ + m(zit) + bi + eit, (15)

where all variables in above models are the same as the model (12). To save space, we
only study the case that ρ = 0.4 and λ = 0.4. In addition, we set N = 50, 100, T = 5 and
mcn = 2000. By using PQML method in Section 2, the experimental results are presented
in Table 5.

Table 5. Results of parametric estimates under the models (12)–(15).

N = 50, T = 5 N = 100, T = 5

β̂ ρ̂ λ̂ σ̂2
e σ̂2

b β̂ ρ̂ λ̂ σ̂2
e σ̂2

b

model (12) Mean 0.9848 0.4135 0.4092 1.0211 1.0576 1.0067 0.4063 0.4014 1.0128 1.0266
MSE 0.0048 0.0014 0.0013 0.0015 0.0165 0.0023 0.0011 0.0009 0.0013 0.0125

Mean 0.4711 - 0.5372 1.0221 1.1063 0.8424 - 0.5043 1.0331 1.1221
model (13) MS 5.7078 - 0.0168 0.1057 0.1244 0.9135 - 0.0283 0.0095 0.1365

GR1(%) 118,812.5 - 1192.3 6946.7 653.9 39,617.3 - 3044.4 630.7 992

Mean 0.8372 0.6462 - 1.0234 1.1322 0.9010 0.5968 - 1.0928 1.1012
model (14) MSE 6.2135 0.1281 - 0.0171 0.1211 0.8845 0.1330 - 0.1013 0.1403

GR1(%) 129,347.9 9050 - 1040 633.9 38,356.5 11,990.9 - 7692.3 1022.4

Mean 0.0366 - - 1.0225 1.1123 0.9828 - - 1.0948 1.1044
model (15) MSE 5.8645 - - 0.0160 0.1781 0.7981 - - 0.1036 0.1474

GR1(%) 122,077.1 - - 966.7 979.4 34,600 - - 7869.2 1079.2

Table 5 reports Means, MSEs and GR1s of parametric estimates in the models (12)–(15),
where GR1 is growth rate of MSE on the basis of that in model (12). From Table 5, we
get the following conclusions: (1) the means of parametric estimates in the real model get
closer to the true values as the sample size increases. However, we find that the means
of estimates of σ̂2

e and σ̂2
b in model (13), σ̂2

e in the models (14) and (15) are very unstable,
they do not converge to true values, respectively. Although the means of other parametric
estimates get close to true values as the sample size increases, they still far away from true
values and do not converge to true values. (2) In comparison with the real model, the MSEs
of each parameter estimate in the deleted models increase. For most parametric estimates,
they decrease with the increase in sample size except for λ̂ and σ̂2

b in the model (13), ρ̂, σ̂2
e

and σ̂2
b in the model (14), σ̂2

e in the model (15). (3) The GR1s of all parametric estimates are
large, they do not decrease with the increase in sample size for some parametric estimates
except for β̂ in the model (13)–(15) and σ̂2

e in the model (13).
Table 6 reports the medians and SDs of MADEs, GR2s, and GR3s for nonparametric

estimates of the models (12)–(15), where GR2 and GR3 are growth rates of median and SD,
respectively, on the basis of that in the model (12). It can be seen from Table 6 that, in com-
parison with the real model, the values of medians and SDs of MADEs for nonparametric
estimates of the models (13)–(15) increase rapidly, and do not decrease with the increase in
sample size.
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Table 6. The medians and SDs of MADEs for nonparametric estimates under the models (12)–(15).

Model (12) Model (13) Model (14) Model (15)

N = 50, T = 5

Median 0.2232 0.7632 0.7259 0.7983
GR2(%) (-) (241.9) (225.2) (257.6)

SD 0.1461 0.2857 0.3078 0.4305
GR3(%) (-) (95.5) (1106.7) (194.7)

N = 100, T = 5

Median 0.2042 1.2397 1.3323 1.2387
GR2(%) (-) (507.1) (552.4) (506.6)

SD 0.1453 0.5595 0.4704 0.4810
GR3(%) (-) (285.1) (223.7) (231.0)

The above facts reveal that the efficiency of both parametric and nonparametric
estimates depends on the correct specification of errors in (1)–(3), and violation of which
can lead to inconsistency.

4.3. Performance of the Test

In this section, we aim to evaluate the power of hypothesis test proposed in Section 2.3.
Consider the model (12), and the settings of xit, bi, wij and eit are the same as those in
model (12). In addition, we only study the case that ρ = 0.2 and λ = 0.2. Then, the
corresponding hypothesis is obtained as follows:

H0 : m(zit) = γ0 + γ1zit versus H1 : m(zit) 6= γ0 + γ1zit,

where m(zit) = ηsin(π(zit− 0.5))+ 0.8zit + 0.6, η are values consisting of (0, 0.05, 0.1, 0.2, 0.5)
and zit ∼ U[0.2, 1.6]. In particular, when η = 0, the above null hypothesis is exactly the
true nonparametric function. As the value of η increases, the true nonparametric function
is increasingly farther from the null hypothesis. Figure 3 presents the true nonparametric
functions with different η-values. In this section, we conduct simulations that N = 100,
T = 8, 16 under significant levels α = 0.01 and 0.05, respectively. For each case, there are
1000 repetitions. Then, the powers of the hypothesis test are shown in Figure 4.
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Figure 3. Trajectories of m(zit) with η = 0, 0.05, 0.1, 0.2, and 0.5, respectively.
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Figure 4. Powers of the test with α = 0.01 and 0.05, respectively, with sample size N ∗ T.

We get from the Figure 4 and Table 7 that: (1) while η = 0, the power of the test is very
close to the significance level. As the value of η increases, the power of the test statistic
increases considerably, which indicates that our test statistic is sensitive to the alternative
hypothesis of the proposed test problem. (2) While the number of spatial units is the same,
the power of F-test with T = 16 is higher than that with T = 8. This shows that the F-test
statistic performance get better as sample size increases.

Table 7. Powers of test with significance level α.

N T α η = 0 η = 0.05 η = 0.1 η = 0.2 η = 0.5

100 8 0.05 0.06 0.44 0.99 1 1
0.01 0.02 0.38 0.89 1 1

100 16 0.05 0.05 0.63 1 1 1
0.01 0.01 0.55 1 1 1

5. Real Data Analysis

In this section, we will illustrate the prescribed estimation and testing methods by
Indonesian rice farming dataset with N = 171 and T = 6 which is a quintessential example of
large N and small T in the stochastic frontier literature(see detail for Feng and Horrace [35]).
This dataset has five variables, one response variable and four covariates. The response
variable is natural logarithm of output of Indonesian rice farming, and the covariates
include high, mixed, seed, and land, which are defined in Table 8. The dataset is from
the agricultural economic research center of the Ministry of agriculture of Indonesia and
compiled by the Agro Economic Survey. Based on the panel data of related variables
of 171 farms over 6 growing seasons (three wet and three dry seasons), we will explore
the influencing factors of output of Indonesian rice farming by RESPRM with separable
space-time filters.
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Table 8. Variables and their definitions.

Variable Definition

high
Dummy variable for high yield varieties

(high = 1 if the ith form at tth growing reason used high yield varieties,
otherwise high = 0)

mixed
Dummy variable for mixed yield varieties

(mixed = 1 if the ith form at tth growing reason used mixed varieties,
otherwise mixed = 0)

seed Seed weight used in tth season on ith farm(measured in kilogram)
land Total area that farmers cultivated with rice(measured in hectares)

In order to take the proposed RESPRM with separable space-time filters to Indonesian
rice farming dataset, we apply the F-test statistic proposed in Section 2.3 to verify whether
or not a nonlinear relationship between covariates and response variable exists. The test
results are given in Table 9. From Table 9, we find that land (other covariates) has (have)
significant nonlinear (linear) relationship with natural logarithm of output of Indonesian
rice farming at significant level α = 0.01.

Therefore, we consider the model (1)–(3), and set 1 ≤ i ≤ 171, 1 ≤ t ≤ 6, yit is the ith
observation of ln(rice) at tth growing season, xit are the ith observation of high, mixed, and
seed at tth growing season, respectively, zit is land for the ith observation at tth growing
season. wij equals 1 if farms i and j are in the same village, equals 0 otherwise (see detail
for Druska and Horrace [8]).

Table 9. Results of F-test under significant level α = 0.01.

Variable High Mixed Seed Land

F-test value 2.33326 3.4298 3.7706 185.0233 ***
Note: *** means that it is significant under test level 1%.

The parametric estimates results of the model (1)–(3) for fitting Indonesia rice farming
data are described in Table 10. Via Table 10, we find that: (1) βi(i = 1, 2, 3) > 0 show
expectation of dummy variables for high, mixed, and seed have promotional effects on
output of rice. (2) σ2

e = 2.4049 presents that the output of rice in different farm is relatively
unstable and is affected by external fluctuations.

Table 10. Results of parametric estimates of model (1)–(3) for fitting Indonesia rice farming data.

Parameter ρ̂ λ̂ β̂1 β̂2 β̂3 σ̂2
e σ̂2

b

Estimate −0.7227 *** 0.3891 *** 3.2123 *** 2.6885 *** 0.0172 ** 2.4049 *** 0.0023 ***

Note: *** and ** mean that they are significant under test level 1% and 5% respectively.

Figure 5 shows the results of estimation and corresponding 95% confidence intervals
of m(z), where the blue solid line is the average fit over 500 simulations, the red and green
dotted lines are the corresponding 95% confidence bands. From Figure 5, we know that
land has obvious nonlinear effects on output of rice, and output of rice increases with the
increase in land.
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Figure 5. m̂(z) and its 95% confidence intervals for the dataset of Indonesian rice farming in China.

6. Conclusions

In this paper, we study PQMLE and hypothesis test for RESPRM with separable space-
time filters. The proposed model can simultaneously capture linear and nonlinear effects
of covariates, spatial correlation of error structure, serial correlation of remainder error
structure, and individual random effects. With the given conditional assumptions, asymp-
totic properties of PQMLE and asymptotic distribution of nonparametric components are
proved. Monte Carlo simulations are applied to investigate the performance of estimators
and test statistic under finite samples, and the results show that proposed estimators and
test statistic are well-behaved under finite samples, and consistency of parametric estimates
is hard to guarantee if spatial correlation and series correlation in the real model are ignored
in some cases. In addition, the practicability of the proposed methods are also assessed by
a real dataset.

This paper focuses only on RESPRM with separable space-time filters but does not
account for spatially lagged response variables. How to extend our proposed estimation
and testing methods to a random effects spatial lag semiparametric regression model with
separable space-time filters is an open problem. In addition, we may combine general-
ized moment estimation method, quantile regression method and local linear method to
estimate parametric and nonparametric components of the random effects spatial lag semi-
parametric regression model with separable space-time filters and RESPRM with separable
space-time filters.
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Appendix A

This section aims to prove some lemmas and theorems given by Section 3, before that,
we provide two frequently used evident facts.

Fact 1. If the row and column sums of the n × n matrices B1n and B2n are UB in
absolute value, then the row and column sums of B1nB2n are also UB in absolute value.
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Fact 2. If the row (resp. column) sums of B1n are UB in absolute value and B2n is
a conformable matrix whose elements are uniformly O(on), then so are the elements of
B1nB2n (resp. B2nB1n).

Proof of Theorem 1. Define QNT = E[lnL(θ)]. By direct calculation, we have

QNT(θ) = −
1

2NT
ln[(2π)]− 1

2
ln|Ω| − 1

2
E[ξ ′(θ)Ω−1ξ(θ)], (A1)

and
lnL(θ) = − 1

2NT
ln[(2π)]− 1

2
ln|Ω| − 1

2
ξ ′(θ)Ω−1ξ(θ). (A2)

To show the consistency of θ̂, we follow Lee [29] by showing the uniform convergence
of 1

NT [lnL(θ)−QNT(θ)] to zero on a compact convex parameter space Λ. By comparison
with Lee [29], the difference is that our model setting is more complex. By White [36]
(Theorem 3.4), it needs only to show

1
NT

[lnL(θ)−QNT(θ)] = op(1). (A3)

and

lim
N→∞

1
NT

[QNT(θ)−QNT(θ0)] < 0. (A4)

We first prove (A3). By direct calculation, we know that

ξ ′(θ) = Xβ0 + M0 − (Xβ + M) + ξ,

and
1

NT
[lnL(θ)−QNT(θ)] =

1
2NT

{ξ ′(θ)Ω−1ξ(θ)− E[ξ ′(θ)Ω−1ξ(θ)]}

=
1

2NT
ξ ′Ω−1ξ − p(ζ) +

1
NT

ξ ′Ω−1(Xβ0 + M0),

where p(ζ) = 1
NT tr(Ω−1Ω0). As Ω−1 is UB, we know 1

NT ξ ′Ω−1ξ − p(ζ) = op(1), and as
1

NT ξ ′Ω−1(Xβ0 + M0)
P−→ 0, that is uniform convergence is proved.

We then prove (A4). Recall (A1) and QNT(θ0) = − 1
2NT ln[(2π)] − 1

2 ln|Ω0| − 1
2 . By

direct calculation, we know

E[
1

NT
ξ ′(θ)Ω−1ξ(θ)] =

1
NT

[Xβ0 + M0 − (Xβ + M)]′Ω−1[Xβ0 + M0 − (Xβ + M)] +
1

NT
tr(Ω−1Ω0),

then

QNT(θ)−QNT(θ0) =−
1

2NT
ln|Ω| − 1

2NT
tr(Ω−1Ω0)−

1
2NT

HNT − (
1

2NT
ln|Ω0| −

1
2
)

=T1NT − T2NT ,

where T1NT = − 1
2NT ln|Ω| − 1

2NT tr(Ω−1Ω0)− [ 1
2NT ln|Ω0| − 1

2 ], T2NT = 1
2NT HNT . Conduct

a random effects model Y = Xβ + Ub + ε, we know its log-likelihood function is as follows

lnLp
NT(θ̃) = −

1
2NT

ln[(2π)]− 1
2

ln|Ω| − 1
2NT

ξ ′(θ̃)Ω−1ξ(θ̃),

where ξ ′(θ̃) = Y − Xβ. Using the information inequality of above model, T1NT ≤ 0. In
addition, T2NT is a quadratic function of [Xβ0 + M0 − (Xβ + M)] and T2NT > 0 for given
any ζ 6= ζ0. Next, we prove that T1NT < 0 strictly, i.e.,
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1
NT

ln|Ω0|+ 1− 1
NT

ln|Ω| − tr(Ω−1Ω0) 6= 0.

Combined Assumption 5 and uniform convergence, θ̂ − θ0 = op(1) is proved.

Proof of Theorem 2. By Taylor expansion of (5) at point θ0, we obtain

∂lnL(θ)
∂θ

|θ=θ0 +
∂2lnL(θ)

∂θ∂θ
|θ=θ̃(θ̂ − θ0) = 0

where θ̃ = (ζ̃ ′, β̃′)′, ζ = (ρ̃, λ̃, σ̃2
b , σ̃2

e ) and θ̃ lies in between θ̂ and θ0. According to Theorem 1,

we have θ̃
P−→ θ0. Denote

∂lnL(θ0)

∂θ
=̂

∂lnL(θ)
∂θ

|θ=θ0 ,
∂2lnL(θ0)

∂θ∂θ′
=̂

∂2lnL(θ)
∂θ∂θ′

|θ=θ0 ,
∂2lnL(θ̃)

∂θ∂θ′
=̂

∂2lnL(θ)
∂θ∂θ′

|θ=θ̃ .

Therefore,
√

NT(θ̂ − θ0) = −(
1

NT
∂2lnL(θ̃)

∂θ∂θ′
)−1 1√

NT
∂lnL(θ0)

∂θ
.

Next, we aim to prove

1
NT

∂2lnL(θ̃)
∂θ∂θ′

− 1
NT

∂2lnL(θ0)

∂θ∂θ′
= op(1), (A5)

and
1√
NT

∂lnL(θ0)

∂θ

D−→ N(0, Σθ0 + Φθ). (A6)

In order to prove (A5), we will show that all elements of 1
NT

∂2lnL(θ̃)
∂θ∂θ′ −

1
NT

∂2lnL(θ0)
∂θ∂θ′

converge to 0 in probability. It can be calculated that

1√
NT

∂lnL(θ0)

∂β′
=

1√
NT
− X′Ω−1

0 ξ(θ),

1√
NT

∂lnL(θ0)

∂δi
=

1
2
[ξ ′(θ)

∂Ω−1
0

∂δi
ξ(θ)− tr(

∂Ω0

∂δ′i
Ω−1

0 )](i = 1, 2, 3, 4).

where
∂Ω
∂ρ

=σ2
e {Vλ ⊗ B−1[(WB−1)′ + WB−1]B−1′},

∂Ω
∂λ

=σ2
e {[

2λ

1− λ2 Vλ +
1

1− λ2 Fλ]⊗ B−1B−1′},

∂Ω
∂σ2

e
=Vλ ⊗ (B−1B−1′),

∂Ω
∂σ2

b
=(lT l′T)⊗ IN ,

Ω0 is the true value of Ω, Fλ is the first derivative of Vλ with respect to λ. Consequently,
we get

1
NT

∂2lnL(θ0)

∂β∂β′
=

1
NT

X′Ω−1
0 X,

1
NT

∂2lnL(θ0)

∂β∂δi
=0,

1
NT

∂2lnL(θ0)

∂δ2
i

=− 1
2NT

tr(
∂Ω0

∂δi

∂Ω−1
0

∂δj
)(i, j = 1, 2, 3, 4).
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Then, by mean value theorem, Assumption 2 (iv) and Fact 2, we easily get

1
NT

∂2lnL1(θ0)

∂β∂β′
− 1

NT
∂2lnL1(θ̃)

∂β∂β′
=X′(Ω−1

0 − Ω̃−1)X

=X′[
V−1

λ lT l′TV−1
λ

d2(1− λ2)
⊗ Z0 −

V−1
λ̃

lT l′TV−1
λ̃

d̃2(1− λ̃2)
⊗ Z̃0]X

+ X′(V−1
λ ⊗ BB′

σ2
b
−V−1

λ̃
⊗ B̃B̃′

σ̃2
b
)X

− X′[
V−1

λ lT l′TV−1
λ

d2(1− λ2)
⊗ BB′

σ2
b
−

V−1
λ̃

lT l′TV−1
λ̃

d̃2(1− λ̃2)
⊗ B̃B̃′

σ̃2
b
]X

=op(1).

Then we can similarly prove that (A5) holds.
In order to prove (A6), we follow the idea of Lee [29]. It is easy to obtain that the

components of 1√
NT

∂lnL̃(θ0)
∂θ are linear or quadratic functions of e and their means are all

op(1). With Assumption 1, we have that 1√
NT

∂lnL(θ0)
∂θ is asymptotically normal distributed

with 0 means by using the CLT for linear-quadratic forms of Theorem 1 in Kelejian and
Prucha [37]. In the next step, we calculate the variance. Denote µη03 and µη04 as the third
and forth moments of η, respectively, Aii be the ii-th element of A. By using the facts that
E(U

′
n AnUn) = σ2

0 tr(An), E(U
′
n AnUnU

′
nBnUn) = (µ04− 3σ4

0 )∑n
i=1 an,iibn,ii + σ4

0 [tr(AnBn) +
tr(AnBn) + tr(AnB′n)], it follows by direct calculation that

Var(
1√
NT

∂lnL(θ0)

∂θ
) = E(

1√
NT

∂lnL(θ0)

∂θ
· 1√

NT
∂lnL(θ0)

∂θ′
) = −E(

1
NT

∂2lnL(θ0)

∂θ∂θ′
) + E(ΦθNT ),

where

− 1
NT

∂2lnL(θ0)

∂θ∂θ′
=

 − 1
NT (X′Ω0X)p×p 0p×4

04×p
1

2NT tr( ∂Ω0
∂δ′i

∂Ω−1
0

∂δ′j
)

+ op(1) ≡ Σθ0 + op(1),

Φθ =

 0p×p − 1
2NT µη03

∂Ω0
∂δi

diag(X′Ω−1
0 )p×4

∗ (
(µη04−3σ2

η0)∑NT
i=1(

∂Ω−1
0

∂δi
)ii

4NT )4×4

.

In particular, it is not difficult to know that Φθ = o(1) when e and b obey normal distribution.
This completes the proof.

Proof of Theorem 3. We follow the idea of Ullah and Su [31] to prove the theorem. The
difference is that our error structure setting is more complex. Recall

δ̂ = S(z)(Y− Xβ̂),

then
δ̂ = S(z)(Y− Xβ̂) = S(z)[m(z) + η − X(β̂− β0)]. (A7)

Write δ =

(
m(z)

Hṁ(z)

)
, where ṁ(z) is the first derivative of m(z). By the second order

Taylor expression, we obtain m(zit) = ~Z′it(z)δ +
1
2 (zit − z)′m̈(z)(zit − z) + op(‖H‖2). Thus,

we have

S(z)m(zit) =[~Z′(z)KH(z)~Z(z)]−1~Z′(z)KH(z)~Z(z)δ +
1
2

S(zit)(zit − z)′m̈(z)(zit − z)

=δ +
1
2

S(zit)(zit − z)′m̈(z)(zit − z). (A8)
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Thus, we get

δ̂− δ =
1
2

N

∑
i=1

T

∑
t=1

S(zit)(zit − z)m̈(z)(zit − z) + S(z)η − S(z)X(β̂− β)

and √
N|H|(δ̂− δ) = B11 + B12 − B13, (A9)

where

B11 =

√
N|H|
2

N

∑
i=1

T

∑
t=1

S(zit)(zit − z)′m̈(z)(zit − z),

B12 =
√

N|H|S(z)η,

B13 =
√

N|H|S(z)X(β̂− β).

For B11, write√
N|H|
2

N

∑
i=1

T

∑
t=1

S(zit)(zit − z)m̈(z)(zit − z)

=

√
N|H|
2

Q−1 1
NT

N

∑
i=1

T

∑
t=1

~Z′it(z)KH(zit − z)(zit − z)′m̈(z)(zit − z) + op(1)

=Q−1
√

N|H|
2

1
NT

N

∑
i=1

T

∑
t=1

[1(zit − z)′H−1′ ]′KH(zit − z)(zit − z)′m̈(z)(zit − z) + op(1)

=Q−1
√

N|H|
2

1
NT

(
∑N

i=1 ∑T
t=1 KH(zit − z)(zit − z)′m̈(z)(zit − z)

∑N
i=1 ∑T

t=1(zit − z)′H−1′KH(zit − z)(zit − z)′m̈(z)(zit − z)

)
+ op(1)

=Q−1
√

N|H|
2

(
f̄ (z)

∫
u′uK(u)duHm̈(z)H

0

)
+ op(1).

Thus, we obtain

B11 =
f̄ (z)

√
N|H|

2
Q−1

( ∫
u′uK(u)duHm̈(z)H

0

)
+ op(1),

where Q = f̄ (z)
(

1 0′

0
∫

uu′K(u)du

)
, f̄ (z) = ∑T

t=1 ft(z).

For B12, write B12 =
√

N|H|S(z)η, we can show that E[B12] = 0 and

Var(B12) = E[B2
12] ≤ σ2

η = O(1).

Combined (A9), Slutsky’s theorem and central limit theorem, we get

√
N|H|

(
δ̂− δ−Q−1

(
f̄ (z)

2 (
∫

uu′K(u)duHm̈(z)H)
0

))
D−→ N(0, σ2(η)).

where σ2(δ) = Ω, Q = f̄ (z)
(

1 0′

0
∫

uu′K(u)du

)
, and f̄ (z) = ∑T

t=1 ft(z).
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Proof of Theorem 4. It can be seen that

RSS(H1) =
N

∑
i=1

T

∑
t=1

[yit − m̂(zit)− x′it β̂]
2

=
N

∑
i=1

T

∑
t=1

[yit − m̂(zit)− x′itβ]
2

+ {
N

∑
i=1

T

∑
t=1

[yit − m̂(zit)− x′it β̂]
2 −

N

∑
i=1

T

∑
t=1

[yit − m̂(zit)− x′itβ]
2}

=RSS∗(H1) + T1,

where RSS∗(H1) = ∑N
i=1 ∑T

t=1[yit − m̂(zit) − x′itβ]
2 and T1 = ∑N

i=1 ∑T
t=1[yit − m̂(zit) −

x′it β̂]
2 −∑N

i=1 ∑T
t=1[yit − m̂(zit)− x′itβ]

2. For T1, it is obtained by Theorems 1–3 and direct
calculation that

T1 =
N

∑
i=1

T

∑
t=1

[yit − m̂(zit)− x′it β̂]
2 −

N

∑
i=1

T

∑
t=1

[yit − m̂(zit)− x′itβ]
2

=
N

∑
i=1

T

∑
t=1

[x′itβ + m(zit) + εit − m̂(zit)− x′it β̂]
2

−
N

∑
i=1

T

∑
t=1

[x′itβ + m(zit) + εit − m̂(zit)− x′itβ]
2

=
N

∑
i=1

T

∑
t=1

[Op(
1√
NT

) + O(|H|2) + |H|2Op(
1√

N|H|
) + η]2

−
N

∑
i=1

T

∑
t=1

[O(|H|2) + |H|2Op(
1√

N|H|
) + η]2

=O(1).

Similarly, we know that

RSS(H0) =
N

∑
i=1

T

∑
t=1

[yit − m̃(zit)− x′it β̂]
2

=
N

∑
i=1

T

∑
t=1

[yit − m̃(zit)− x′itβ]
2

+ {
N

∑
i=1

T

∑
t=1

[yit − m̃(zit)− x′it β̂]
2 −

N

∑
i=1

T

∑
t=1

[yit − m̃(zit)− x′itβ]
2}

=RSS∗(H0) + T0,

where RSS∗(H0) = ∑N
i=1 ∑T

t=1[yit − m̃(zit) − x′itβ]
2, and T0 = ∑N

i=1 ∑T
t=1[yit − m̃(zit) −

x′it β̂]
2 −∑N

i=1 ∑T
t=1[yit − m̃(zit)− x′itβ]

2. For T0, it is obtained by Theorems 1–3 and calcula-
tion that
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T0 =
N

∑
i=1

T

∑
t=1

[yit − m̃(zit)− x′it β̂]
2 −

N

∑
i=1

T

∑
t=1

[yit − m̃(zit)− x′itβ]
2

=
N

∑
i=1

T

∑
t=1

[x′itβ + m(zit) + εit − m̃(zit)− x′it β̂]
2

−
N

∑
i=1

T

∑
t=1

[x′itβ + m(zit) + εit − m̃(zit)− x′itβ]
2

=
N

∑
i=1

T

∑
t=1

[Op(
1√
NT

) + m̃(zit)− x′it β̂]
2 −

N

∑
i=1

T

∑
t=1

[m̃(zit)− x′it β̂]
2

=Op(1).

In addition, we obtain that

FNT =
NT
2

RSS∗(H0)− RSS∗(H1)

RSS∗(H1)
(1 + op(1)) + Op(1).

By Remark 3.4 in [27], under H0, we obtain

rkFNT
D−→ χ2

rkck |Z|/|H|,

where rk =
K(0)− 1

2
∫

K2(z)du∫
(K(z)− 1

2 K∗K(z))2du
, K(z) = diag(H−1k(H−1(z11 − z)), . . . , H−1k(H−1(zNT −

z))), ck = K(0)− 1
2

∫
K2(z)du, Z is the support of zit and H is a bandwidth sequence.
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