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Abstract: This article is aimed at reviewing and studying the effects of the 2d-3d crossover on the
effective fractal and spatial dimensions, as well as on the critical exponents of the physical properties
of bulk and bounded systems at criticality. Here we consider the following problems: (1) the two types
of dimensional crossovers and the concept of the universality classes; (2) a smooth 2d-3d crossover
and the calculation of the effective fractal and spatial dimensions, as well as the effective critical
indices; (3) the fractal dimension, its connection with the random mean square order-parameter
fluctuations and a new phase formation; (4) the fractal nuclei of a new phase and the medical
consequences of carcinogenesis and nucleation isomorphism.

Keywords: fractals; effective fractal dimension; dimensional crossover; critical indices (exponents);
bounded systems; nucleation; carcinogenesis

1. Introduction

The main idea of this article is to study the fractal nature and fractal dimensions of
the physical properties of bulk and bounded condensed systems [1–12] from the point of
view of the theory of the phase transitions and critical phenomena [13–24]. The influence of
confinement on various phase transitions and critical phenomena were actively studied in
many systems of experimental, theoretical and practical interest as follows: bounded fluids
and liquid crystals, magnetic systems, porous media, vesicles, biomembranes, synaptic
clefts, etc. [25–39]. In particular, the consequences of the influence of the 2d-3d crossover
(DC) on the change in the fractal dimension will be considered. It should be emphasized
that the direct and reverse transition between three-dimensional and two-dimensional
systems cannot occur abruptly, but must be associated with a fairly smooth and continuous
change in physical properties (for example, such critical parameters as the critical indices
of scaling laws or the critical values of temperature, density, pressure, etc.). The basis for
this statement is the results of the theoretical studies of the layer-by-layer ordering and the
DC in [40–43], as well as the results of computer-simulation studies [28,29,44].

In [41–43], we studied the physical properties of the bounded systems as a result
of a DC of the following two types: the 1st type–the transition from 3d bulk systems
to 3d bounded systems when the linear size L, in the direction of the spatial confine-
ment approaches the correlation radius ξ of the fluctuations of the order parameter (for
single-component fluids–density fluctuations); the 2nd type–a smooth change in the linear
dimensions, which causes a transition between 3d and 2d systems, taking into account the
corresponding changes in the fractal and spatial dimensions, as well as the critical indices
of the physical properties of the bulk and bounded systems at criticality. In connection
with the 2d-3d C, I would like to draw attention to an example that is associated with the
definition of such a physical quantity as the surface tension: the surface tension determines the
average energy of the transfer of molecules from the “bulk” state to the “surface” (two-dimensional)
state [45]. In other words, the surface tension coefficient is directly related to the DC of the
2nd type.

Here in this paper, the following findings will be considered in detail: (a) the influence
a DC of the 2nd type on the fractal dimension [41], as well as (b) the relationship between
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the fractal dimension and the random mean-square (RMS) fluctuations of the number of
particles (in a more general case, the fluctuation of the corresponding order parameters in
the close vicinity of the critical (bifurcation) points and the phase transition points [13–24]).
For this purpose, a synergetic analogy between the physical processes in the metastable
state [46–53] (namely, the nucleation of fractal nuclei of a new phase [48]) and the similar
process of carcinogenesis (the nucleation of malignant neoplasms) in oncology [54,55].
Obviously, synergistically similar processes of phase transitions will require a more de-
tailed consideration of the concept of “the universality class”, which includes systems of
a different nature with the same critical (bifurcation) behavior [17–22,41].

The foregoing defines the following structure of this article, being both a review
and a publication containing original results. The theoretical background of studying
the bounded systems and the classes of universality will be studied and discussed in the
Section 2. Next, the Section 3 will be devoted to studying a smooth layer ordering at the
2d-3d crossover and deriving the formula for effective critical indices at the second-order
phase transitions and critical phenomena. Here in this Section 3, the results of calculating
the effective fractal and spatial dimensions will also be investigated. The main goal of
the Section 4 is to find a connection between the fractal dimension and the RMS order-
parameter fluctuation, as well as to study the problem of a new fractal phase formation.
In the Sections 5 and 6, the fractal nuclei of a new phase and the medical consequences of
carcinogenesis and nucleation isomorphism will be discussed.

2. Classes of Universality and the Theoretical Background of Studying the
Bounded Systems

The unification of two outstanding achievements in physics of the XXth century,
namely: (1) the revolutionary discoveries and the achievements in nanosciences (including
nanomedicine), which will determine the future face of the XXIst century, and (2) the solu-
tion of problems of the 2nd order phase transitions, that continues to incite the increasing
interest of researchers to the study of phase transitions in the mesoscale (nano- and micro-)
systems. The ideas of universality and isomorphism of the phase transitions and critical
phenomena allow, in particular, to transfer the properties of the confined physical systems
to much more complex systems of a medical nature [17–22,24,31–35].

The concept of universality classes becomes very important for this purpose. The basic
conditions of the universal behaviour for infinite-size (bulk) systems of a different nature
are well-known [13,17–22]: (1) the same space dimensionality; (2) the same dimensionality
(number of components) of the order parameters; (3) the same type of intermolecular
interaction (short- or long-range); (4) the same symmetry of a Hamiltonian (fluctuation
part of the thermodynamic potential). The universal behaviour for the confined (bounded)
systems needs the following conditions, in addition to four previous conditions: (5) the
same geometric factors (number of monolayers) for the system’s confinement; (6) the same
low crossover dimensionality (geometric form of the restricted volume); (7) the same type
of boundary conditions; (8) the same physical properties under consideration [25,27,41,42].

The essential progress in physics of the phase transitions and the critical phenom-
ena of various nature are achieved because of a deeper understanding of the role of the
correlation effects of the order-parameter fluctuations at large distances and times. The
creation of the theory of superconductivity, by Vitaliy Ginzburg and Lev Landau [14], the
development of fundamental ideas of the fluctuation theory of scaling invariance [17–20]
and the renormalization group approach by Kenneth Wilson and Michel Fisher [21,22],
understanding the Levanyuk–Ginsburg conditions under which the Landau mean-field the-
ory of phase transitions is valid [15,16], and a number of precise experiments (see, e.g., the
monograph by Mikhail Anisimov [18] and references there) have revealed a decisive role of
the order-parameter fluctuations near the phase transition and critical (bifurcation) points.

As the theoretical background to study the properties of bounded systems, we use in
our approach, the method of finding the pair correlation function (CF) G2(r) of the order
parameter fluctuations, as a Green function of the Helmholtz operator, corresponding to
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the differential Ornstein–Zernike (OZ) equation with appropriate boundary conditions at
limiting surfaces [26,30].

The differential OZ equation is derived from the exact integral OZ equation for short-
range direct correlation functions (DCF) C(r) considering any number of its spatial mo-
ments Ci and short-range intermolecular potentials. Taking into account only the main
contributions to CF G2(r) and the hydrophobic (zero) boundary conditions, the following
formulae were obtained for G2(r) in the spatially confined systems with a geometry of
slitlike and cylindrical pores [30]:

G2(ρ
∗, z) = (πH)−1K0[ρ

∗(κ2 + π2/H2)
1/2

] cos(πz/H), (1)

G2(ρ
∗, z) = D1 J0(µ1ρ∗/a0) exp[−(κ2 + µ2

1/a2
0)

1/2|z|]. (2)

where K0(u), J0(u) are the McDonald and Besel functions, correspondingly;.ρ∗ = (x2 + y2)
1/2;

κ = ξ−1 is the inverse value of the correlation length ξ;µ1 ≈ 2.405 is the first zero of the
Besel function; a0 is the radius of the cylinder; H is the thickness of the slitlike pore.

Since CF G2(r) for the confined systems does not have an exponential form, it is natural
to define the correlation length ξ of the order-parameter fluctuations, as a normalized
second spatial moment M2, in accordance to the following formula:

ξ =
√

M2 =

√∫
G2(r)r2dr/

∫
G2(r)dr. (3)

Using this approach, the following formula was obtained for the deviation of the
temperature variable from its critical value for the bounded systems:

τ(S, ξ∗) = (G/S)1/ν + [1 + (G/S)1/ν](ξ∗)−1/νsignτ, (4)

as well as similar formulas for the deviation of density ∆ρ(S, ξ∗) and pressure ∆P(S, ξ∗)
from their critical values for spatially limited systems. In Formula (4) for the temperature
deviation τ(S, ξ∗), the following designations were used: S is the number of monomolecular
layers in the direction of the system confinement; ξ∗ = ξ/ξ0 is the dimensionless correlation
radius with the amplitude ξ0 of the correlation radius; G is a constant characterizing the
geometric shape of a limited volume (G = π for a slitlike pore, G = µ1 = 2.405 for
a cylindrical sample, where µ1 is the first zero of the Bessel function J0(z).

Direct consequences of Formula (4) are the following limiting cases: (a) for bulk
systems when S � ξ∗, we obtain τ = (ξ∗)−1/ν, which gives the well-known scaling
formula for the temperature dependence of the correlation radius ξ(τ) = ξ0τ−ν; (b) for
the bounded systems when S� ξ∗, instead of the dependence of the physical properties
on the correlation radius, and through it on the thermodynamic variables, we obtain the
dependence of these properties on S, which determines the size effects in accordance with
the scaling formula τ(S) = (G/S)1/ν.

As an example, consider the surface tension coefficient σ(S, ξ∗), which, in accordance
with (4) at d = 3, is described by the following formulas [43]:

(a) σ(τ) = σ0[ξ
∗(τ)]−2 ∼ τ2ν; (5)

for bulk systems, when S >> ξ∗;

(b) σ(S) = σ0[τ(S)]
2ν ∼ 1/S2 (6)

for bounded systems, when S � ξ∗. The last result (6), which predicts the inversely
proportional dependence of the surface tension coefficient σ(S) on the square of the number
S of the monomolecular layers in the direction of the spatial limitations of the volume
under study, is new and needs to be experimentally verified.
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3. Effective Critical Indices, Effective Fractal and Spatial Dimensions at the
2d-3d Crossover

Here, we consider the result, which is important from the point of view of the subject
matter of this article, of the influence of the 2d-3d crossover on the effective fractal and
spatial dimensions and on the effective values of the critical indices of bulk and bounded
systems [41,42]. The problem discussed is as follows: how do the results of 3d systems
transfer to the results of 2d systems, and vice versa? Obviously, such a 2d-3d C should be
smooth and without discontinuities. The fact that the critical exponents in the 3d and 2d sys-
tems have different numerical values [18] and the results of computer experiments [28,29]
should be taken into account while describing this DC.

The Kawasaki idea from the theory of mode coupling [23] was used to obtain the
following formula for any effective critical exponents n giving a smooth transition from its
3d value n3 to its 2d value n2 [41,42]:

n = n3 +

{
2
π

arctan(ax− b)− 1
}

n3 − n2

2
. (7)

Here x = L/L0 is the dimensionless width of the slitlike pore or radius of the cylin-
drical pore; L0 is the linear size of the system in the restricted geometry at which the
crossover occurs; a and b are the dimensionless parameters characterizing slope and posi-
tion of the 2d-3d crossover. In order to check Formula (7) by the results of the computer
experiments [28,29], the size dependence of the critical exponent ν(H) for the correlation
length was substituted into the following formula (see, for example, [28,41,42]):

Tc(H)

Tc(∞)
= 1 + kH−1/ν (8)

where k is the coefficient of proportionality, H is the width of the slitlike pore. Formula (8)
describes the shift of the critical temperature, Tpore

c = Tc(H) compared with its bulk
value T3D = Tc(∞). The size dependence of the critical temperature Tc(H) in the slitlike
pores was theoretically obtained from (8) and shown in Figure 1, taking into account the
dependence of the critical index ν on the number S of the monomolecular layers (see
Table 1). As pointed out by the authors of [28] and that can be seen in Figure 1, the
beginning of the 2d-3d C occurs approximately at a slitlike thickness Hcross ≈ 2.4 nm. It
corresponds to approximately eight monolayers of water molecules in the slitlike pore.
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Table 1. Effective fractal, spatial dimensions and the critical exponents.

S αeff βeff δeff γeff νeff deff=(2−αeff)/νeff dfr=deff−βeff/νeff

1 0 0.125 15.000 1.750 1.000 2.000 1.875

2 0.025 0.171 10.544 1.632 0.915 2.158 1.971

3 0.026 0.173 10.416 1.629 0.912 2.163 1.973

4 0.027 0.174 10.339 1.625 0.910 2.168 1.977

5 0.028 0.176 10.199 1.619 0.906 2.177 1.982

6 0.030 0.179 10.000 1.611 0.900 2.189 1.990

7 0.032 0.184 9.696 1.600 0.892 2.206 2.000

8 0.036 0.191 9.277 1.581 0.878 2.237 2.019

9 0.044 0.205 8.546 1.547 0.853 2.293 2.053

10 0.059 0.233 7.335 1.476 0.802 2.420 2.129

11 0.084 0.278 5.892 1.360 0.719 2.665 2.278

12 0.102 0.313 5.064 1.272 0.655 2.898 2.742

13 0.110 0.3265 4.789 1.237 0.630 3.000 2.482

Table 1 contains the calculation results [42] of the effective critical exponents
αe f f , βe f f , δe f f , γe f f , νe f f for the confined fluids, taking into account a 2d↔3d crossover
between the values of the critical exponents α = 0, β = 1/8, δ = 15, γ = 7/4, ν = 1 for the
2d-systems and α = 0.110, β = 0.3265, δ = 4.789, γ = 1.237, ν = 0.630 for the 3d-systems.
These exact value data and theoretical calculations seem to be quite good. It should be
stressed that the critical exponents for the 3d systems, obtained by M.A. Anisimov with his
co-authors in [36–39], are now considered generally accepted for the systems belonging to
the universality class of the 3d Ising model.

The last two columns in Table 1 contain the effective fractal dfr and spatial deff dimen-
sions calculated from a hyperscaling equality

de f f = (2− αe f f )/νe f f (9)

and the B. Mandelbrot’s formula

d f r = de f f − βe f f /νe f f (10)

Figure 2 illustrates an interesting consequence of the DC in the process of layer
ordering. Here, a smooth change can be seen in the effective spatial deff and fractal dfr
dimensions with a change in the number S of molecular layers.

As is known, the hyperscaling equalities between the critical indices are sometimes
identified as such equalities that contain the spatial dimension d. In this sense, the well-
known formula of Benoit Mandelbrot (10) for the fractal dimension d f r, is also a hyperscal-
ing equality, since it includes the spatial dimension d and the critical indices β and ν, which
describe two main scaling laws, namely: the shape of the phase coexistence curve (binodal)
and temperature dependence of the correlation radius, respectively.

It should also be noted that in layer-by-layer ordering, for each number of molecular
layers, the scaling and hypercaling equalities, such as the Mandelbrot Formula (10), are
valid. Therefore, one of the consequences of the results of calculating the fractal and spatial
dimensions, as well as the critical exponents, is the following conclusion: a 2d↔3d crossover
leads to the gradually varying dependence of deff and dfr on number S, which determines a fixed
number of monolayers in the direction of the system’s spatiality.
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Figure 2 illustrates the result of the size dependence of the fractal dfr and the spatial
deff dimensions on number S of the monomolecular layers obtained in Table 1.

It should be noted that a 2d-3d crossover occurs in confined liquids with a slitlike
pore geometry filled with water, if the number of molecular layers S ≈ 8. Actually, as
was mentioned above, Brovchenko and Oleinikova [28,29], using results of their computer
simulation, showed that the critical index ν of the temperature dependence of the correlation
length changes from its bulk three-dimensional value ν = 0.63 to the two-dimensional value
ν = 1.0 for water in the slitlike pores at a pore’s thickness of about 2.4 nm.

4. Fractal Dimension, Its Connection with the Random Mean-Square Fluctuation of
Order Parameters and a New Phase Formation

At the initial stages, new phase nuclei do not have a spherical shape but are fractal
objects. An important characteristic of fractals is their fractal dimension d f r, which does
not coincide with the spatial dimension d (always d f r < d). It turns out that the fluctuation
of the number of particles in the nucleus of the new phase is directly determined by the
fractal dimension of this cluster (see review article [48]).

Indeed, near the critical (bifurcation) points, the susceptibility χ of the system
(e.g., the isothermal compressibility βT of the liquid) becomes a strongly fluctuating
quantity. As a result, the RMS fluctuation of the number of particles (in the general
case—fluctuations of the order parameter)

< ∆N2 >1/2 ∼ ((N2/V)kBTχ)
1/2 ∼ Ld/2ρ(kBTχ)1/2 (11)

reveals a rather complex dependence on the linear size L of the cluster. Here in (8), N is the
number of particles in volume V, ρ = N/V is the numerical density of the particles, kB is
the Boltzmann constant, T is the absolute temperature.

Far from the critical (bifurcation) points, the RMS fluctuation of the number of parti-
cles < ∆N2 >1/2 ∼ Ld/2, for example, is determined only by the spatial dimension d of
the system. It should be emphasized that this dependence changes radically when the
fluctuation effects are taken into account. Due to the scaling hypothesis for the spatially
limited systems [25] (the new phase nuclei are just such objects), the following formula for
the susceptibility χ, as a fluctuating quantity, can be written in a bounded system:

χ = Lγ/ν fχ(AτL1/ν, BhLβ/ν), (12)

where fχ(x, y) is the scaling function; x = AτL1/ν is the first scaling argument connecting
with the temperature variable τ = (T− Tc)/Tc; y = BhLβ/ν is the second scaling argument
connecting with the field variable h, which determines the influence of an external field on
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the process of the new phase formation; A and B are the non-universal constants; β, γ, ν are
the critical indices.

Based on Formulas (11) and (12), we have the following expression for the RMS
fluctuation in the number of particles for a fractal cluster with an arbitrary spatial dimension
d for a fluctuation region in a close neighborhood of critical points and points of the second-
order phase transitions:

< ∆N2 >1/2= L(γ/2ν)+d/2 fN(x, y). (13)

Let us consider in more detail the value of the exponent (γ/2ν) + d/2 in dependence
(13) for the RMS fluctuations in the number of particles for a fractal cluster. For this
purpose, we use the Mandelbrot formula d f r = d− β/ν, as well as the following scaling
and hyperscaling (containing the spatial dimension d) equalities for the critical exponents:
α + 2β + γ = 2, dν = 2− α. As a result of the obvious transformations, we obtain the
following result for the exponent (γ/2ν) + d/2:

γ

2ν
+

d
2
=

2− α− 2β

2ν
+

d
2
=

dν− 2β

2ν
+

d
2
=

d
2
− β

ν
+

d
2
= d− β

ν
= d f r (14)

Thus, the scale transformation RMS fluctuation in the number of particles in the
nucleus of a new phase is characterized by a critical index, which is exactly equal to the
fractal dimension d f r of this cluster, which made it possible to obtain, apparently for the
first time in [48], the following formula, which is of fundamental importance for the theory
of fractals and physics of phase transitions and critical phenomena:

< ∆N2 >1/2= Ld f r fN(x, y). (15)

The conclusions regarding the fractal nature of the new phase nuclei near the critical
(bifurcation) points and the points of the structural phase transitions are confirmed, not only
by the direct calculations, based on Formulas (11)–(14), but also by computer simulation
results [46]. It should be emphasized again, the importance of using the Mandelbrot
formula as a hyperscaling equality between the fractal and spatial dimensions and the
critical exponents, to derive Formula (15).

As a result of studying the process of growth of the fractal clusters for the systems with
a scalar order parameter and a centrally symmetric potential of intermolecular interaction,
it was shown [46] that the fractal nuclei of the new phase quite quickly reach a spherical
shape and increase or decrease in size depending on whether they have reached the critical
radius Rcrit or not. If the radius of such a nucleus of a new phase is R < Rcrit, then the
process of fluctuation resorption turns out to be energetically favorable for such a nucleus
of a subcritical size. If the opposite inequality R > Rcrit holds, then the coalescence process
is energetically favorable for such a supercritical nucleus of a new phase, in which the
radius of the nucleus R begins to grow in time t, according to law R ∼ t1/3 obtained by
I.M. Lifshits and V.V. Slezov [49].

5. Medical Consequences of Carcinogenesis and Nucleation Isomorphism

The physical mechanism of the formation (nucleation) of new phase nuclei considered
above, is synergistically similar (isomorphic) to the process of carcinogenesis in oncology.
In this section, we shall consider more rigorously the main medical consequences of the
physical process of the formation of embryos of a new phase, obtained in theoretical studies
and confirmed by the results of experiments and simulations.

The starting point of studying the process of nucleation of a new phase in a liquid-
vapor metastable system, is the following formula for the minimum work (energy) W to
create a spherical new-phase nucleus of radius R [24,43,46,47]:

W(R) = −(4/3)πR3δµδρcoex + 4πσR2, (16)
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Here in (16), the first and second terms correspond, respectively, to the volume and
surface contributions to the energy of nucleation, δµ=µ(ρ,T) − µ(ρcoex(T) is the degree of
metastable vapor supersaturation, δρcoex = [ρcoex(T) − ρc]/ρc is the dimensionless deviation
of the density along the binodal (coexistence curve) and in the critical point, σ is the surface
tension coefficient.

Taking into account an obvious extremum condition dW(R)/dR = 0, one may calcu-
late the critical size Rcr and the nucleation energy (nucleation barrier) W(Rcr), required to
create a critical nucleus of a new phase:

Rcr = 2σ/δµδρcoex (17)

W(Rcr) = 16πσ3/3(δµ)2(δρcoex)
2 (18)

Allowing for (17) and (18), it is convenient to represent the nucleation energy W(R)
by the following expansion in the powers of the deviation of the nucleus size R from its
critical value Rcr:

W(R) = W(Rcr) + 4πσ(R− Rcr)
2 − (4π/3)δµδρcoex(R− Rcr)

3 (19)

This expansion is accurate, since all of the derivatives W(n)(Rcr) = 0 for n ≥ 4.
As it follows from (17)–(19), away from the points (lines) of phase transitions and the

boundary of the stability, the growth of Rcr and W(Rcr) occurs (a) at the increasing surface
tension coefficient σ, as is seen from numerator in Formulas (17) and (18), as well as (b),
by decreasing both values of the degree of supersaturation (or superheating) δµ and the
order parameter δρbin on the binodal (coexistence curve), as is seen from the denominator
in Formulas (17) and (18).

With the approaching critical (bifurcation) points, the following situation should
be realized:

(a) The critical size Rcr of the embryo of the new phase should increase as the correla-
tion length ξ of the order parameter fluctuations, i.e., Rcr~ξ. In other words, the temperature
dependence of the critical size of the embryo is described by the formula Rcr~|τ|−ν, where
τ = (T − Tc)/Tc. This means that the critical nucleus size Rcr arises, according to the
hyperbolic law Rcr ∼ 1/|T − Tc|ν at approaching the critical temperature Tc with the
critical exponent ν = 0.63 in a 3-dimensional system with linear dimensions L far exceeding
the correlation length ξ, for example, for L >> ξ. This result, regarding the temperature
dependence of Rcr(τ), directly follows from (17) taking into account the following formu-
las of the fluctuation theory of the phase transitions [13,17,18]: σ ∼|τ|(d−1)ν, δµ ∼|τ|βδ,
δρcoex ∼|τ|β, β(δ + 1) = γ + 2β = 2− α = dν;

(b) The energetic nucleation barrier W(Rcr) appears to have no singularities at the
critical (bifurcation) points or at the boundary of stability (spinodal) because Formula (18)
can be rewritten in such an equivalent form:

W(Rcr)= 4πσR2
cr/3 (20)

which gives the following result for the 3-dimensional case:

W(Rcr)∼ σ cr2 ∼ σξ2∼ τ(d−1)ντ−2ν ∼ τ0 → const. (21)

Now let us pay special attention to the role of the fluctuation effects near the critical
(bifurcation) points. These effects can be estimated by the Ginsburg number Gi and by the
Levanyuk–Ginsburg criterion [15,16] of the validity of the Landau thermodynamic theory
of phase transitions [13]. The Ginsburg number Gi is determined as the ratio of the RMS
fluctuation <∆φ2> of the order parameter to the square of the equilibrium order parameter
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φ2
0. It is possible to show (see e.g., [17,18,24]) that the Ginsburg number is determined by

the following formula:
Gi =< ∆φ2 > /φ2

0 ∼ φd−4
0 /ξd

0 , (22)

where ξ0 is the amplitude of the correlation radius of the order parameter, which has the
order of the radius of the intermolecular interaction (for water ξ0≈ 0.3 nm).

It follows that the Ginsburg number is rather small Gi << 1, near the critical (bifurca-
tion) points and the boundaries of stability (spinodal), if the spatial dimensionality d ≥ 4
and/or the intermolecular interaction is long-ranged, i.e., the value of the interaction radius
becomes large enough (ξ0→ ∞ ). As a result, the fluctuation effects can be neglected for
systems with a small Ginsburg number. In this case, the Landau theory of the phase
transitions in the average-field approximation becomes valid.

Thus, the process of formation of a new phase is energetically disadvantageous
along the coexistence curve (binodal) of the phases, and even for the deep quenching
into the metastable region only for systems with a small Ginsburg number (for example, in
a liquid-crystal state, which is typical for the medical and biological objects because of its
membrane structures, in polymer mixtures with a long-ranged intermolecular interaction,
etc.). The latter result is confirmed by the considerations related to the ratio (22) that gives
the reverse-proportional dependence of the nucleation (carcinogenesis) barrier with the
Ginsburg number Gi [24,27]:

W(Rcr) ∼ Gi−1 (23)

As was shown above, that the energy, which is necessary to create a new phase nucleus
(tumor) or, similarly, height of the nucleation (carcinogenesis) barrier, becomes larger the
smaller the Ginsburg number, therefore preventing the growth of the pathological neoplasm.

Here, an approach, based on using the hypothesis of a synergetic isomorphism (simi-
larity) between the processes of carcinogenesis and nucleation allows for formulating the
following conclusions:

1. The critical size of a tumor’s fractal embryo is directly proportional to the coefficient
of the surface tension.

2. The value of the energetic barrier of carcinogenesis is directly proportional to the cube
of the surface tension coefficient and inverse proportional to the Ginsburg number Gi.

3. Our main fundamental medical finding is as follows: a necessary condition that
should prevent the formation and further uncontrolled growth of pathological tumors,
is the use the appropriate surface-inactive substances (surfinactants), which increase
the surface tension coefficient.

As a result, this will lead to the following consequences:

(a) the increase in the value of the critical size of new phase fractal nuclei, which will
reduce the number of subcritical embryos, thus decreasing their sizes,

(b) the creation of a higher nucleation barrier W (Rcr), which significantly reduces the
probability of the emergence of capable fractal embryos and the further growth of
such supercritical fractal nuclei.

The confirmation of the theoretical consequences, based on the hypothesis of the
synergetic similarity between carcinogenesis and the nucleation processes requires, without
any doubt, further experimental studies and careful selection of effective non-toxic surface-
inactive substances. At the same time, we would like to believe that the attractive idea
of a synergetic isomorphism of similar phenomena in open non-equilibrium systems of
a different nature, which has already proved its effectiveness in a large number of studies,
will be useful for a deeper understanding of the carcinogenesis processes and preventing
the formation of cancer tumors.

The studies carried out allow us to hope that the theoretical results concerning the
effects of 2d-3d C on the fractal dimension and other physical properties in various systems
under confinement will stimulate new experimental studies and practical applications in
this important direction.
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6. Conclusions

This article is aimed at studying the effective fractal dimension of bulk and bounded
condensed systems, taking into account the 2d-3d crossover effects. As a result of the study,
the following conclusions are proposed:

1. For the numerical calculations of the effective fractal dimension d f r, the Mandel-
brot Formula (10) was used as a hyperscaling equation that includes, in addition
to d f r, the spatial dimension d and the critical exponents β and ν, which describe,
respectively, the shape of the phase coexistence curve (binodal) and the tempera-
ture dependence of the correlation length of the order-parameter fluctuations. In
the process of layer-by-layer ordering, it was assumed that all known scaling and
hyperscaling equations, including the Mandelbrot formula, are satisfied for each fixed
number S of the monomolecular layers. It has been established (see Table 1) that the
2d-3d crossover leads to a smooth change in the dependence of the effective fractal
dimension d f r on number S in the following interval: from d f r = 1.971 at d = 2
(two-dimensional systems) to d f r = 2.482 at d = 3 (three-dimensional systems),

2. It is proved that the size dependence of the RMS fluctuations of the particle (molecule)
number for a fractal cluster is characterized by a critical index, which is exactly equal
to the fractal dimension d f r (see the derivation of Formula (15)),

3. Using the hypothesis of the synergetic similarity of the process of carcinogenesis
in oncology and the process of nucleation in physics, the following results were
obtained: (a) the critical size of a fractal tumor’s embryo is directly proportional to the
surface tension coefficient (see Formula (17)); (b) the energetic barrier of carcinogenesis
is directly proportional to the cube of the surface tension coefficient (see Formula
(17)) and the inverse proportional to the Ginzburg number (see Formula (23)). The
immediate consequence of these results is the following fundamental conclusion: the
use of non-toxic and surface-inactive substances that increase the surface tension coefficient
should prevent the emergence and uncontrolled growth of malignant neoplasms or, in other
words, not promote the transition of the carcinogenesis process to the coalescence stage. Thus,
the apparent effectiveness of the science of fractals and other natural sciences (above
all—physics) in the sciences of the animate world, will stimulate the development of
modern medicine and medicine of the future.
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