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Abstract: This paper proposes a new image enhancement algorithm. At first, the paper uses the
combination of rough set and particle swarm optimization (PSO) algorithm to distinguish the smooth
area, edge and texture area of the image. Then, according to the results of image segmentation, an
adaptive fractional differential filter is used to enhance the image. Finally, the experimental results
show that the image enhanced by this algorithm has clear edge, rich texture details, and retains the
information of the smooth area of the image.

Keywords: image enhancement; fractional differential; rough set; particle swarm optimization;
adaptive algorithm

1. Introduction

Image enhancement is to improve the visual effect of the image. It is also an important
issue in many fields such as pattern recognition, robotics, medical image processing [1–3],
and remote sensing [4–7]. There are two types of image enhancement methods, one is the
frequency domain method and the other is the spatial domain method [8–10]. Based on two-
dimensional Fourier transform, frequency domain method performs signal enhancement.
Spatial domain method directly performs calculations on the gray level of the image when
processing the algorithm based on the spatial domain. In the past, image enhancement used
integer orders differential operator to enhance the image, but the effect is not ideal, there
are problems such as insignificant enhancement and destruction of smooth areas. Therefore,
it is necessary to improve the traditional image enhancement algorithm to improve the
effect of enhanced image.

In the past few years, fractional differential operator has gradually been used to process
images [11–13], and ref. [14] used the fractional order defined by Grünwald–Letnikov to
design a fractional differential mask, which introduces the fractional order into image
processing. Ref. [15] proposed an adaptive fractional total variation image restoration
method, and ref. [16] proposed a multi-scale denoising model based on fractional partial
differential equations. At present, the use of fractional differential operators to process
images has become a hot issue. Many references have applied this method and achieved
certain results. Ref. [17] introduced a one-dimensional Savitzky–Golay filter, extended it
from integer order to fractional order, and from one dimension to two dimensions. Then,
proposed an image enhancement algorithm based on two-dimensional Savitzky–Golay
filter, and got the smooth area of the image has hardly changed, and the edge details have
also been enhanced, but the enhancement effect is not outstanding. The introduction of
fractional methods in the field of image processing has remained popular in recent years.
Ref. [18] proposed the AFDA (Adaptive Fractional Differential Algorithm) algorithm is
used to enhance medical images, but its algorithm will cause excessive enhancement in
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local areas. Ref. [19] proposed an image segmentation and enhancement algorithm, but the
disadvantage is lower image contrast.

Rough set and PSO are also used in the image processing. Rough set was first proposed
by Polish professor Z. Pawlak in 1982. It is another mathematical method for processing un-
certain information after probability theory and fuzzy set theory [20,21]. As a mathematical
tool for describing uncertainty, it can effectually analyze and process incomplete informa-
tion such as inconsistency, inaccuracy and incompleteness, it can find hidden knowledge
and reveal potential laws [22,23]. Ref. [23] combined rough set and kernel PCA method,
proposed a 3D MR image denoising algorithm, ref. [24] proposed a robust modified Gaus-
sian mixture model with rough set for image segmentation. Ref. [25] proposed a soft fuzzy
rough set-based MR brain image segmentation.

PSO is an evolutionary form research on bird predation behavior [26]. Finding the
optimal solution which is shared among individuals in the group through collaboration
and information is the basic idea of PSO. The advantage of PSO is that it is simple to
implement and does not have many parameter adjustments. Ref. [27] combined integrating
fuzzy entropy clustering with an improved particle swarm optimization, proposed a new
clustering method for segmentation of Magnetic resonance imaging (MRI) brain images.
Ref. [28] proposed a color image segmentation based on multi-level Tsallis–Havrda–Charvát
entropy and 2D histogram using PSO algorithms.

Based on these previous works, in order to enhance the texture area and edge of the
image while retaining the characteristics of the smooth area, an adaptive fractional-order
image enhancement algorithm based on image segmentation is proposed. To achieve
the desired purpose, the main difficulty lies in accurately segmenting the texture area,
edge and smooth area of the image and how to find the suitable fractional order of image
enhancement. The main contributions of the paper are summarized as follows:

• An image segmentation method based on rough set and PSO is proposed, which
accurately segments the image into smooth area, edge and texture area to prepare for
the next step of image enhancement.

• According to the local feature information of the image, an adaptive image enhance-
ment algorithm is designed by using fractional differential filter.

• The image is enhanced by combining the results of image segmentation, so that the
edge and texture area of the image are effectively enhanced while the characteristics
of the smooth area of the image are well preserved.

• Compared with the refs. [14,17,19], the advantage of the algorithm in the paper is that
it combines the rough set and PSO methods to accurately segment the image, and
carries out targeted enhancement according to the segmentation results. The adaptive
fractional enhancement algorithm proposed in the paper enhances the edge details of
the image more obviously, and the texture details are more prominent, which better
overcomes the shortcomings of the traditional fractional filter enhancement that will
make the image blurry and the enhancement effect is not obvious.

The rest structure of the paper are as follows. Section 2 introduces the related knowl-
edge of rough set, PSO and fractional differential filter. Section 3 proposes image segmenta-
tion methods based on rough set and particle swarm optimization, and an adaptive image
enhancement algorithm is proposed. The experimental results are given in Section 4 to
illustrate the effectiveness of the algorithm. Finally, the conclusions are given in Section 5.

2. Preliminaries
2.1. Rough Set

Generally, the whole of the research object is called the domain of discourse U, and xi
is the element in U, that is, the decision object. A part of U is called a subset. If Xi(i ≤ k) is

a subset of U, and Xi 6= ∅(i ≤ k), Xi ∩ Xj = ∅(i 6= j),
k⋃

i=1
Xi = U, then {Xi|i ≤ k} is called

the division of the universe of U, that is, the research objects are divided into different
categories. Let R ⊆ U ⊗U, call R the relationship on U. If the relationship R on U satisfies:
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(1) Reflexivity: (xi, xi) ∈ R(xi ∈ U);
(2) Symmetry: if (xi, xj) ∈ R, then (xj, xi) ∈ R , (xi, xj ∈ U);
(3) Transitivity: if (xi, xj) ∈ R, (xj, xk) ∈ R, then (xi, xk) ∈ R (xi, xj, xk ∈ U).

Then, R is called the equivalent relationship on U, and the equivalent relationship is
also called the indistinguishable relationship. Using the equivalent relationship to classify
the universe, using [xi]R represents the set of all objects that are indistinguishable from xi
under the equivalence relation R, that is, the equivalent of the element xi under R, then
[xi]R can be expressed as,

[xi]R = {xj|(xi, xj) ∈ R}(xi, xj ∈ U). (1)

Regarding the information system K = (U, R) as an approximate space, R is the
equivalence relation on the universe U, xi is an object in U, [xi]R represents a collection of
all objects which are indistinguishable from xi, that is, the equivalence class of R. When
a collection [xi]R can be accurately described by the attributes of R, [xi]R is considered to
be defined by R and is called a definable or exact set of R; when [xi]R cannot be accurately
described by the attributes of R, [xi]R is an undefined set or rough set of R.

In rough set method, the approximate definition of set X about R is,

R(x) = {xi|xj ∈ U, [xi]R ⊆ X}. (2)

The upper approximation of the set X on R is defined as,

R(x) = {xi|xi ∈ U, [xi]R ∩ X 6= ∅}. (3)

The boundary area of the set X on R is defined as,

BNR(X) = R(x)− R(x). (4)

The upper approximation set R(x) of set X, lower approximation set R(x) and bound-
ary BNR(X) as shown in the Figure 1.

Figure 1. Rough set schematic.

The more elements the boundary set BNR(X) contains, the set X are more uncertain.
The uncertainty of the set X is roughness, which is defined as follows,

ρR(X) = 1− |R(X)|∣∣R(X)
∣∣ . (5)
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The roughness function reflects the uncertainty of the set X. The larger the roughness
value, the greater the uncertainty of the set X.

2.2. Particle Swarm Optimization

Particle swarm optimization is inspired by the behavioral characteristics of bird popu-
lations to solve optimization problems, and proposed by Kennedy and Eberhart in 1995 [26].
The particle swarm algorithm first initializes a group of particles that may represent the
optimal solution in the solvable space, and uses velocity, position and fitness value to
represent the characteristics of each particle. Among them, the fitness value is calculated by
the fitness value function, and its value represents the quality of the particle. The optimal
position of the fitness value calculated from the positions experienced by the particle is
called the individual extremum, and the optimal position searched by all particles becomes
the group extremum. The particle continuously updates its speed and position by tracking
the individual extremum and the group extremum. Every time the particle updates its
position, the fitness value is calculated once, and by comparing the fitness value of the new
particle with the individual extremum to update the individual extremum and position
of the group extremum. Until the end of the iteration, find the optimal solution in the
solution space.

Supposing there are n particles in a D-dimensional space, where the position of the ith
particle is denoted by xiD and the velocity is denoted by ViD. The corresponding individual
extremum is denoted as piD, and the group extremum is denoted as giD. In each iteration
process, the particle updates its speed and position through the individual extremum and
the global extremum. The update formula Equations (6) and (7) is as follows:

Vt+1
id = Vt

id + c1 · r1(pid − xt
id) + c2 · r2(gid − xt

id)(i = 1, 2, · · · , m; d = 1, 2, · · · , D), (6)

xt+1
id = xt

id + Vt+1
id (i = 1, 2, · · · , m; d = 1, 2, · · · , D), (7)

among them, generally Vi ∈ [−Vmax, Vmax], Vmax is specified by the user; Vt
id is the velocity

of the i-th particle in the D-dimensional space after the t-th iteration; xt
id is the location of the

i-th particle in the D-dimensional space after the t-th iteration, c1 and c2 are non-negative
constants called acceleration factors, and r1 and r2 are random numbers distributed between
(0, 1). The acceleration factor has the ability to make the particles approach the extremum
position of the group, find the optimal solution in space, and prevent the particles from
blindly searching.

2.3. Enhancement Effect of Fractional Differential on Signal

The definition of fractional order has been proposed for more than 300 years ago,
and it has developed rapidly in recent years [29–32]. So far, there are three main forms
of fractional definition expressions: Riemann–Liouville definition, Caputo definition and
Grünwald–Letnikov defifinition [33]. The Riemann–Liouville definition is as follows,

R
a Dα

t =
1

Γ(n− α)
(

d
dt
)n
∫ t

a

f (τ)

(t− τ)α−n+1 dτ, (8)

where n− 1 < α < n, Γ(·) is the Gamma function. The Caputo definition is as follows,

C
a Dα

t =
1

Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α−n+1 dτ. (9)

The above two definitions both use the Cauchy integral formula, which is relatively
complicated and is not conducive to large-scale data calculations. The Grünwald–Letnikov,
referred definition can be transformed into a convolutional form, so it is compared with
the other two definitions have better effects in image processing. The Grünwald–Letnikov
definition of function f (t) is as follows,
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G
a Dα

t = lim
h→0

h−α
[ t−a

h ]

∑
j=0

(−1)j
(

α
j

)
f (t− jh), (10)

in the Equation (10),
(

α
j

)
represents the combination number parameter.

It is known that for any square integrable energy signal f (t) ∈ L2(R), its Fourier
transform can be obtained from the theory of signal processing as,

f̂ (w) =
∫

R
f (t)e−jwtdt. (11)

Suppose the n-th order derivative of the signal f (t) is f (n)(t), n ∈ Z, based on the
properties of the Fourier transform,

Dn f (t)
FT⇔ (D̂ f )n(w) = (jw)n · f̂ (w) = d̂n(w) f̂ (w). (12)

If the fractional derivative of the v-order of signal f (t) is f (v)(t), v ∈ R+, it can be
obtained by the fractional Fourier transform [34],

Dv f (t)
FT⇔ (D̂ f )v(w) = d̂v(w) · f̂ (w), (13)

where {
d̂v(w) = (jw)v = α̂v(w) · djθv(w),
α̂v(w) = |w|v, θ̂v(w) = vπ

2 sgn(w).
(14)

From the above, the amplitude-frequency characteristic curves can be obtained, when
takes the fractional order is 0.1, 0.2, 0.3, 0.5, 0.6, 0,7, 0.8, 1.2 as shown in Figure 2.

Figure 2. Amplitude frequency characteristic curve of fractional differential operator.

It can be clearly seen from Figure 2 that when the fractional order is below 0.5, the
corresponding differential operator has a certain increase in the signal amplitude, but the
increase is relatively small compared to the fractional order above 0.5. Therefore, the order
of the fraction has different effects on the image. The differential order can be changed
according to the local information and characteristics of the image, so as to achieve effective
enhancement of different areas of the image.
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3. Main Results

The following is the main works of the paper. Firstly, an image segmentation algorithm
is designed using the characteristics of rough set that can deal with incomplete information.
According to the characteristic that PSO can find the optimal solution in a solution space,
another image segmentation algorithm is proposed. Then, the advantages of these two
segmentation algorithms are combined to segment the image. Finally, an adaptive fractional
order algorithm is designed based on the local information characteristic of the image, and
enhances the edge and texture areas of the image by the segmentation results.

The algorithm flow chart of the paper is as shown in Figure 3.

Figure 3. The algorithm flow chart of the paper.

3.1. Image Segmentation Algorithm Based on Rough Set

First of all, for the purpose of enhancing the image better, the smooth area, edge
and texture regions of the image must be accurately segmented. An image segmentation
method based on rough set is proposed here. Dividing the image into sub-blocks of the
same size, with each sub-block as the smallest unit, the boundary threshold is calculated
through the built-in function Otsu of matlab. Then, combining the rough set to find the
best threshold for image segmentation. Experimental results show that this segmentation
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method effectively distinguishes the edge and texture regions of the image. The image
segmentation algorithm steps based on rough set are as follows:

Step 1: For the image I(i, j), the size of which is m× n, dividing I into N sub-blocks
according to the appropriate size, and mark the sub-blocks as Mt(1 ≤ t ≤ N). Then, find
the maximum gray value Mt max and the minimum gray value Mt min in each sub-block.
Analyzing the results of many experiments, it is found that the more complex the image,
the smaller the sub-block segmentation, the more accurate the segmentation. Therefore, the
number of sub-blocks should be as suitable as possible for the image.

Step 2: Using the built-in function Otsu of matlab to calculate the optimal boundary
threshold Tr for each sub-block, and obtain the maximum and minimum thresholds Tmax
and Tmin. Combining rough set, calculate the upper and lower approximate values of the
target Oτ , Oτ and the background Bτ , Bτ by Equations (15)–(18):

Oτ = {Mt|Mt min ≤ M(i, j) ≤ Tmax, r ∈ [1, N]}, (15)

Oτ = {Mt|Mt max ≤ M(i, j) ≤ Tmax, r ∈ [1, N]}, (16)

Bτ = {Mt|Tmin ≤ M(i, j) ≤ Mt max, r ∈ [1, N]}, (17)

Bτ = {Mt|Tmin ≤ M(i, j) ≤ Mt min, r ∈ [1, N]}. (18)

Step 3: After obtaining the upper and lower approximate values of the target and
background, calculate the roughness and entropy by Equations (5) and (19). Then, find
the maximum entropy corresponding to the pixel value of the image itself, which is the
best threshold for segmenting the image. Using the best threshold to segment image I, and
finally get the segmentation result.

E = −
N

∑
R=1

ρR log ρR, (19)

where ρR is roughness of the R-th sub-block.

3.2. Image Segmentation Algorithm Based on PSO

It can be found from Figures 4b and 5b that the image segementation based on rough
set has a ideal effect on the edge and texture area of the image, but the segmentation effect
for the smooth area of the image is not obvious. Therefore, in order to better segment
the smooth area of the image, an image segmentation method based on particle swarm
optimization is proposed. At first, randomly selecting n particles, calculating the individual
extremum of each particle to obtain the global extremum; then calculating the gray-scale
fitness value of each particle, thereby updating the global extremum, the velocity and
position of each particle. In the end of the cycle, the segmentation threshold T is obtained.
The defination of T is as follows,

T = arg max[HO(T) + HB(T)], (20)

where HO(T) and HB(T) represent the entropy of the target area and the background area
in the image, respectively defined as:

HO(T) = −∑
k
(Pk/PO) lg(Pk/PO), k = 0, 1, 2, · · · , T − 1; (21)

HB(T) = −∑
k
(Pk/PB) lg(Pk/PB), k = T, T + 1, T + 2, · · · , 255; (22)

where Pk represents the number of pixels whose gray value is k. In an image, PO represents
the total number of pixels whose gray value is lower than T, PB represents the total number
of pixels in an image whose gray value is higher than T.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 4. Lena image segmentation renderings and partial enlarged images under different algo-
rithms. (a) is the original image of Lena, (b) is the segmentation effect of the rough set method, (c)
is the segmentation effect of the PSO method, (d) is the combined segmentation effect of the two
methods, (e–t) are the corresponding partial enlarged images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 5. Plane image segmentation renderings and partial enlarged images under different algo-
rithms. (a) is the original image of plane, (b) is the segmentation effect of the rough set method, (c)
is the segmentation effect of the PSO method, (d) is the combined segmentation effect of the two
methods, (e–t) are the corresponding partial enlarged images.



Fractal Fract. 2022, 6, 100 10 of 18

The experimental results show that the use of PSO algorithm to perform secondary
segmentation of the image makes the segmentation effect of the smooth area of the image
more obvious. The steps of the image segmentation algorithm based on PSO are as follows:

Step 1: Randomly selecting p among the 256 gray values as the initial particle position
(p = 10 in the paper), that is, the pbest position of each particle in the initial state, and
randomly initializing the velocity Vi (Vi ∈ [−20, 20]) of each particle. Calculating the
individual extreme value of each particle according to the Equation (20), the global extreme
value is the largest of the individual extreme values, setting gbest as the current position of
the particle.

Step 2: Calculating the gray scale fitness value of each particle according to the
Equation (20). If it is better than the individual extreme value of the current position of
the particle, set pbest to the position of the particle, record the position of the particle and
update the global extreme value.

Step 3: Using Equations (6) and (7) to update the position and speed of each particle.
When the particle gray value is greater than 255, start counting from 0, when the gray value
is less than 0, counting backward from 255.

Step 4: In the end of cycle, getting the final gbest, that is to find the threshold T for
image segmentation. The parameter is selected in the paper as c1 = c2 = 2, which is obtained
according to the experiments.

3.3. Combination of Two Image Segmentation Methods

According to the analysis in Figures 4b,j and 5b,n, the rough set segmentation method
has better segmentation effect in the texture area of the image, while the PSO method has
better segmentation effect in the smooth area and edge of the image. Therefore, the paper
combines these two methods to achieve accurate segmentation of image smooth area, edge
and texture area. The combining steps in the paper are as follows:

Step 1: Dividing the two segmentation results into sub-blocks of moderate size, G1
represents the number of pixels whose gray value is 0 in each two corresponding sub-blocks,
and G2 represents the number of pixels whose gray value is 255 in each two corresponding
sub-blocks. If G1 is less than half of the sum of the number of pixels in the two sub-blocks,
it means that the area is more likely to have black background and white edge. If G2 is less
than half of the sum of the number of pixels in the two sub-blocks, it means that the area is
more likely to have a black background and a white edge.

Step 2: Detecting sequentially the pixel values corresponding to the two segmentation
results in turn. If the pixel values corresponding to the two segmentation results are both 0,
the pixel value of this point in the final segmentation image is 0; if both are 255, the pixel
value of this point in the final segmentation image is 255; if the two are different, find what
state the pixel belongs to in step 1, if it is a white background and a black edge, the pixel
value of this point is recorded as 0; if it is a black background and a white edge, the pixel
value of this point is recorded as 255.

3.4. Adaptive Fractional Enhancement Algorithm

Fractional differential filtering not only strengthens high-frequency signal of the
image, but also retains some low-frequency information non-linearly. Therefore, in image
processing, the fractional differential is used to enhance the edge texture details, and to a
certain extent retain the information of the smooth area of the image.

For a two-dimensional image g(s, t), the duration [a, t] is equally divided by unit
interval l = 1, namely n = [ t−a

l ]l=1. Then, the partial fractional differential of g(s, t) in the
x−direction and y−direction is:

∂vg(s, t)
∂sv ≈ g(s, t) + (−v)g(s− 1, t) +

(−v)(−v + 1)
2

g(s− 2, t), (23)

∂vg(s, t)
∂tv ≈ g(s, t) + (−v)g(s, t− 1) +

(−v)(−v + 1)
2

g(s, t− 2). (24)
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Extend the above two Equations (23) and (24) to the other six directions, and get a
fractional filter based on eight directions [14], as shown in Figure 6.

Figure 6. Franctional differencial filter.
W1 = 8× 1
W2 = −v
W3 = −v(−v+1)

2 ,
(25)

where W1, W2, W3 can be calculated by the above formula, v is the fractional order.
In the image enhancement process, the order of the fractional differential has a signifi-

cant impact on the image enhancement effect. It is not only related to the average value of
the gradient amplitude, the maximum of gradient amplitude and the minimum of gradient
amplitude, but is also affected by the partial information of the image. The paper is to
better enhance the edge details of image, an adaptive algorithm is designed according
to the partial information of the image, which calculates the appropriate fractional order
according to the partial information of the image.

Definition 1. [35,36]: Image entropy is characteristic statistical form that reflects the average
amount of information in an image. Generally, the S in the smooth area of the image is small and
which of the edge detail area is large. The expression is as follows,

S = −∑Iij∈W Pij log Pij, (26)

where Pij is the probability of pixel value Iij in the image.

Definition 2. [37]: For an image G(x, y), suppose the average value of the gradient amplitude in
8 directions of each pixel in G(x, y) is K(i, j) and normalized. Taking the maximum of K(i, j) as X,
the minimum of K(i, j) as Y, and dynamic amplitude expression M(i, j) is obtained. The expression
of the gradient magnitude M is as follows,

M =
K−Y
X− K

. (27)

Definition 3. [38]: An image has image roughness C, this value represents the relative offset of the
gray value of the image pixels, which is large in the texture region and small in the smooth region.
The expression of C is as follows,

C =
1

1− σ4 , (28)

where σ is the local mean square error of the image.

The three definitions mentioned above are image entropy, gradient magnitude and
roughness. The common feature of these three definitions is that they are smaller in the
smooth area of the image and larger in the texture area of the image, which means that the
higher the value of the local information parameters M, S, C are. If the value of M, S, C are
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large, it indicates that the probability that the area is the target enhancement area is greater,
and the fractional order should be larger; the smaller the value of M, S, C, the smaller the
probability that the area is the target enhancement area, and the fractional order should
also be smaller. It can be seen that the size of the fractional order is positively correlated
with the size of the local parameter values of the three images.

k1, k2, k3 are the weighting coefficient of the image local information parameter M, S,
C and the sum of the three is 1. Since the value of M, S, C represents different characteristics
of the image, the selected value of k1, k2, k3 can be determined according to its influence
degree. After many experiments, it is found that the roughness compared with the other
two local information parameters, the influence is greater, so takes k3 = 0.6, the influence
of image entropy is second, k1 = 0.3, the influence of gradient amplitude is the least, and
k2 = 0.1.

The parameter P = λ(k1 ·M + k2 · S + k3 · C), λ is adjustment parameter. Since the
E exponent is an increasing function in the real number domain, the enhancement range
increases with the increase of the variable, which is in line with the purpose of the algorithm
in the paper, so the fractional differential adaptive algorithm can be obtained,

v = eP−Q, (29)

where Q is the adjustment parameter. After many experiments with different images, it is
found that the image enhancement effect is the most obvious when λ = 1, Q = 1.7.

4. Simulation Experiment

In this section, the segmentation algorithm proposed in the paper is first evaluated
with two images. Then, the enhancement algorithm is analyzed with five images, and
compared with the [14,17,19]. Finally, a numerical analysis of the experimental results is
carried out.

Taking Lena image as an example, the effectiveness of the image segmentation algo-
rithm in this paper is analyzed. Figure 4b–d are Lena images processed by three image
segmentation algorithms, in which some local area is enlarged and observed. It can be
seen that Figure 4e,q belong to the smooth area of the image, Figure 4m belongs to the
edge of the image, and Figure 4i belongs to the texture area of the image. It can be seen
from Figure 4j that the effect of rough set segmentation method on the processing of the
image texture area is satisfactory, but the segmentation effect of the image smooth areas
(Figure 4f,r) and edge of the image (Figure 4n) is relatively poor. The image segmented
by the particle swarm optimization method shows a excellent segmentation effect at the
edge of the image (Figure 4o) and the smooth area of the image (Figure 4g,s), but the
segmentation effect of the image texture area Figure 4k is poor. Finally, after combining the
segmentation effects of the two methods, it can be seen that whether it is the smooth area
Figure 4h,t of the image, or the edge Figure 4p and texture area Figure 4i of the image, the
segmentation is relatively accurate.

The effectiveness of this algorithm is analyzed by the segmentation effect of plane
image. Figure 5b–d are plane images processed by three segmentation algorithms, and
the same method is used to zoom in and observe some local areas. It can be seen that
Figure 5m,q belong to the texture area of the image, Figure 5i belongs to the smooth area
of the image, and Figure 5e belongs to edge of the image. From the enlarged images of
Figure 5n,r, it can be seen that the segmentation effect of the mountains and the figures
at the tail of the aircraft (texture area of the image) after the rough set method is better,
while for the smooth area Figure 5j of the image and the edge of the image Figure 5f, the
segmentation effect is poor. From the enlarged images of Figure 5g,k, it can be seen that the
PSO method effectively segments both the smooth area and the edge of the image, while
for the texture area of the image Figure 5o,s, the segmentation effect is not satisfactory.
After combining the segmentation effect of the two methods, the segmentation effect of the
rough set method on the texture is retained, and the PSO method is used to make up for
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the insufficient segmentation of the image edge and smooth area by the rough set method.
A satisfactory segmentation effect is achieved.

Visual perception is used to evaluate the effectiveness of this enhancement algorithm.
Figure 7 is the experimental result of the Lena image. The enhancement effect of

0.4-order and 0.6-order are obvious, but the problem of excessive enhancement will occur
in same local area. Ref. [17] enhances the image to a certain extent, but the effect is not
obvious. Ref. [19] enhances edge and texture details but destroys some smooth areas. It
can be seen that the enhancement effect of the image processed by 1-order is not obvious
compared with other methods. Compared with the original image, the algorithm in the
paper has obvious enhancement effect in the texture details such as eyes and hair. The
enhancement effect is also satisfactory at the brim and the outline edge of the entire hat.
There is almost no enhancement in the smooth area at the background and shoulders.
Preserving the properties of the smooth area well. Compared with other algorithms, there
is no problem of over-enhancing and destroying the smooth area, which illustrates the
validity of the algorithm in the paper.

Figure 8 is the experimental result of the plane image. It can be seen that the letters
on the plane in the original picture are relatively blurred, and the junction between the
edge of the plane and the cloud layer is not obvious enough. The 0.6-order and 0.4-order
has obvious over-enhancement problems in the enhancement of letters. It can be seen that
the image of 1-order processing result is not very clear, because integer order processing
will blur the image. The overall enhancement effect of [17] is not obvious. The overall
enhancement effect of [19] is better but destroys the smooth area at the cloud layer. The
processing results of the algorithm in the paper are the clearest letters, the processing
results of mountains are also obvious better than other algorithms. In the paper, the contour
part of the cloud layer is obviously enhanced, and the main part of the cloud layer is
basically consistent with the original image, which once again shows that the algorithm in
the paper has achieved a great balance between the enhancement of the texture area and
the preservation of the smooth area.

For the processing results of Figure 9, the edge of the house of the processing results in
the paper is more obvious, and the middle street part and the overall outline of the tree are
also clearly visible. For the smooth area at the road, there is almost no major change. For
the processing results of the Figure 10, the algorithm in the paper shows that the outlines
of the three cars are very clear, and they are brighter than the original image after being
enhanced in the grass, especially the texture on the front cover of the car below is very
clear. The smooth area is almost unchanged, which achieves the effect of enhancing only
the edge and texture details. For the aerial Figure 11, the entire sea surface belongs to the
smooth area, after processing by the algorithm in the paper, this part is almost unchanged,
while the texture details at the island are rich, which has a good enhancement effect on the
edge contour. To sum up, the enhancement effect of the algorithm in the paper is clearer
at the edge than other algorithms. The texture area has a better enhancement effect, and
the smooth area is well maintained, which illustrates the validity of the algorithm in the
paper again.

(a) (b) (c) (d) (e) (f) (g)

Figure 7. The renderings of Lena image under different algorithms. (a) Original image. (b) 1-order.
(c) 0.4-order. (d) 0.6-order. (e) [17]. (f) [19]. (g) Ours.



Fractal Fract. 2022, 6, 100 14 of 18

(a) (b) (c) (d) (e) (f) (g)

Figure 8. The renderings of plane image under different algorithms. (a) Original image. (b) 1-order.
(c) 0.4-order. (d) 0.6-order. (e) [17]. (f) [19]. (g) Ours.

(a) (b) (c) (d) (e) (f) (g)

Figure 9. The renderings of trucks image under different algorithms. (a) Original image. (b) 1-order.
(c) 0.4-order. (d) 0.6-order. (e) [17]. (f) [19]. (g) Ours.

(a) (b) (c) (d) (e) (f) (g)

Figure 10. The renderings of street image under different algorithms. (a) Original image. (b) 1-order.
(c) 0.4-order. (d) 0.6-order. (e) [17]. (f) [19]. (g) Ours.

(a) (b) (c) (d) (e) (f) (g)

Figure 11. The renderings of aerial image under different algorithms. (a) Original image. (b) 1-order.
(c) 0.4-order. (d) 0.6-order. (e) [17]. (f) [19]. (g) Ours.

In the paper, using SSIM [39] to detect the similarity of two images. The quality of the
image can be detected by calculating the similarity of the structural information of the two
images, and the visual features are better than the traditional MSE, the average Gradient
and other methods are more in line with human visual perception. The value domain of
SSIM is [0, 1], the value is larger, the image distortion is smaller, that is, the better the
image visual effect. Its calculation formula is as follows,
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SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (30)

where: σxy is the covariance of x and y; σx is the variance of x; µx is the mean value of x; µy
is the mean value of y; σy is the variance of y; c1 = (k1L)2; c2 = (k2L)2 are two variables
that maintain stability; L is the dynamic range of the pixel, and has a default value of
k1 = 0.01, k2 = 0.01.

PSNR is the most widely used metric to evaluate the effect of image enhancement [40].
The larger the PSNR value, the less distortion and the better the image enhancement effect.
Its calculation formula is as follows,

PSNR = 10log10[d
2/MSE], (31)

among them, d is the maximum of the image gray value, MSE is the mean square error.
MSE is defined as follows,

MSE =
1

x× y

x

∑
i=1

y

∑
j=1
‖ I(i, j)−O(i, j)‖2, (32)

where (x,y) is the size of the image, I(i, j) is the original image, O(i, j) is the enhanced image.
Contrast is the degree of brightness and darkness of an image [41], which can reflect

the clarity of the image. The greater the contrast, the clearer the visual effect of the image.
The calculation formula of contrast is as follows,

Con = ∑
δ

δ(i, j)2Pδ(i, j), (33)

where δ(i, j) = |i− j| is the gray difference between adjacent pixels, and Pδ(i, j) represents
the pixel distribution probability that the gray difference between adjacent pixels is δ.

Gray level co-occurrence matrix is a matrix function of pixel distance and angle. It
reflects the comprehensive information of image in direction, interval, change amplitude
and speed by calculating the correlation between two gray levels in a certain distance and
direction in the image. Because the amount of data of gray level co-occurrence matrix is
usually large, it generally does not operate on the matrix directly, but extracts some of its
feature quantities to describe the feature information of the original image, such as entropy,
homogeneity, uniformity. The paper uses the statistical feature of homogeneity to evaluate
the effect of image texture enhancement. Homogeneity is used to measure the uniformity of
image texture distribution [35]. The greater the homogeneity, the more uniform the image
texture area and the slower the change, indicating that the better the image enhancement
effect. The calculation formula of homogeneity is as follows,

H = ∑
i,j

p(i, j)
1 + |i− j| , (34)

where p(i, j) is the probability for gray-scale i and j and occurs at two pixels.
Therefore, SSIM represents the degree of smooth area retention, and PSNR represents

the degree of edge detail and contour enhancement. Contrast reflects the clarity of the
image, and homogeneity reflects the uniformity of the image texture area. It can be seen
that from Tables 1 and 2, compared with other algorithms, the SSIM value of the algorithm
in the paper is relatively large, and the PSNR value is relatively high, which indicates that
the algorithm in the paper strengthens the edge and texture of the image while keeping the
smooth area consistent with the original image as much as possible. However, the PSNR
value of the image processed by the algorithm of 0.6-order is relatively small, because
the same fractional order processing the whole image will cause excessive enhancement.
The enhancement also destroys the smooth area. Ref. [17] also has good results, but it is
still insufficient compared with the algorithm in the paper. The enhancement algorithm
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proposed in [19] has a lower SSIM value because the smooth region is destroyed while
enhancing. It can be seen from Table 3 that the contrast of the algorithm in the paper is
slightly lower than other algorithms, because the proportion of the smooth area of the
image is relatively large, and one of the main characteristics of the algorithm in the paper is
to retain the characteristics of the smooth area, so the contrast of the image processed by the
algorithm in the paper is not the highest. It can be seen from Table 4 that the homogeneity
of the images processed by these algorithms is not much different, but the homogeneity of
the five images processed by the algorithm in the paper is relatively large, which shows
that the enhancement effect of the algorithm in the paper is very suitable for all kinds of
images. It can be seen from the above analysis that the algorithm in the paper enhances the
image edge and texture details and retain the information of the smooth area of the image
optimally, which also reflects the effectiveness of the algorithm in the paper.

Table 1. Under different algorithms, the Structural Similarity Index Measure (SSIM) values of
different images.

Ours 0.4-Order 0.6-Order 1-Order [17] [19]

Lena 0.9540 0.9076 0.7012 0.9260 0.9332 0.6700
plane 0.9566 0.9269 0.7647 0.9470 0.9526 0.7529
Trucks 0.9761 0.8802 0.6299 0.9030 0.9154 0.7869
Street 0.8478 0.8812 0.6726 0.8870 0.9017 0.7782
Aerial 0.9208 0.8829 0.6223 0.9033 0.9156 0.7550

Table 2. Under different algorithms, the PSNR values of different images.

Ours 0.4-Order 0.6-Order 1-Order [17] [19]

Lena 30.711 30.6453 24.3025 26.1858 26.2479 21.8462
plane 28.572 27.3842 23.9278 25.2817 25.3700 20.5966
Trucks 36.274 30.9549 23.6656 27.0064 27.0836 13.2124
Street 21.974 23.9357 17.7327 23.1423 16.3556 19.5258
Aerial 26.887 28.6431 21.6291 26.8077 25.9583 24.7166

Table 3. Under different algorithms, the contrast values of different images.

Ours 0.4-Order 0.6-Order 1-Order [17] [19]

Lena 34.9285 35.3760 36.7486 33.3108 33.3612 35.6323
plane 34.7625 35.5782 37.5650 32.8419 32.9148 39.6369
Trucks 20.2284 21.0476 24.5959 18.2502 18.3030 23.2832
Street 45.6793 45.8204 55.0120 33.4451 33.7412 47.1636
Aerial 15.4079 15.8663 21.0302 11.8307 11.9199 15.3956

Table 4. Under different algorithms, the homogeneity values of different images.

Ours 0.4-Order 0.6-Order 1-Order [17] [19]

Lena 0.9997 0.9999 0.9970 0.9966 0.9966 0.9961
plane 0.9982 0.9997 0.9963 0.9966 0.9966 0.9936
Trucks 0.9999 0.9998 0.9984 0.9956 0.9966 0.9989
Street 0.9994 0.9994 0.9947 0.9932 0.9932 0.9674
Aerial 0.9981 0.9980 0.9932 0.9966 0.9966 0.9957

It can be seen from the above analysis that the main advantage of the algorithm in
the paper is that it can effectively enhance the image edge and texture area while retaining
the characteristics of the smooth area of the image. This is because the algorithm in the
paper combines the advantages of rough set and PSO, accurately segments the smooth area,
edge and texture area of the image. According to the local characteristics of the image, an
adaptive image enhancement algorithm is designed to enhance the edge and texture area
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obtained after image segmentation. At the same time, the smooth area of the image is not
enhanced, so that the characteristics of the smooth area of the image can be well preserved.

5. Conclusions

In the paper, two image segmentation methods are firstly proposed. The segmentation
algorithm based on rough set better segments the texture area of the image, and the
segmentation algorithm based on PSO effectively segments the smooth area and edge part
of the image. Combining the advantages of two kinds of image segmentation, the image
is accurately divided into smooth area, edge and texture area. According to the image
segmentation results, the adaptive fractional differential filter is used to effectively enhance
the image. Experiments show that the algorithm in the paper well solves the problem of
excessive enhancement and destruction of smooth areas in image enhancement.

However, the method proposed in the paper still has shortcomings in practical appli-
cation. In the future research work, we need to focus on solving the following problems:
how we can more accurately determine the relationship between the local information of
the image and the fractional differential order, so as to construct a more accurate adap-
tive function; and how we can further reduce the time required to process the image by
optimizing the algorithm.
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