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Abstract: Our paper is devoted to the issue of the existence and uniqueness of common fixed points
for two mappings in complete b-metric spaces by virtue of the new functions F and θ, respectively.
Moreover, two specific examples to indicate the validity of our results are also given. Eventually, the
generalized forms of Jungck fixed point theorem in the above spaces is investigated. Different from
related literature, the conditions that the function F needs to satisfy are weakened, and F only needs
to be non-decreasing in this paper. To some extent, our conclusions and methods improve the results
of previous literature.
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1. Introduction

The conceptual framework of b-metric spaces, as a meaningful generalization of
metric spaces, was first formally proposed by Czerwik [1] who discussed the convergence
of measurable functions and also established the Banach contraction principle in b-metric
spaces. Subsequently, the Banach contraction principle plays an important role in b-metric
spaces, and it is one of the most valid tools in the research fields of nonlinear analysis
and its applications. In fact, it is extensively regarded as the beginnings of metric fixed
point theory.

Thereafter, many scholars have focused on fixed point problems in the tendency of
the generalization of b-metric spaces. To be specific, Samet [2] fully certified that the class
of (α, ψ)-type contractions contains a good deal of contraction-type operators, and the
fixed points of the operators can be obtained in virtue of the Picard iteration. Mohanta [3]
discussed the existence and uniqueness of common fixed points for mappings defined on a
b-metric space endowed with a graph. In [4], the authors gave some common fixed point
results for a pair of self-mappings that satisfy g-generalized weakly contractive conditions
in a b-metric space endowed with an amorphous binary relation.

In [5], an interesting generalization of the Banach contraction principle was shown
by introducing the notion of F-contractions, which as a new type of contraction, have
been applied to obtain fixed point results for single-valued mappings and multi-valued
mappings in b-metric spaces. In [6], Cosentinoet et al. introduced the notion of Hardy–
Rogers-type F-contractions as a generalization of F-contractions in complete metric spaces.
Moreover, a number of consequences related to F-contractions and their extensions have
been obtained, for details please see [7–17]. Suzuki [18] investigated fixed point theo-
rems for set-valued F-contractions in complete b-metric spaces and also proposed a fixed
point theorem for single-valued F-contractions in complete b-metric spaces. Moreover,
Mirmostafaee et al. [19] established a set-valued version of Suzuki’s fixed point theorem in
complete b-metric spaces. Jang [20] presented Hardy–Rogers-type and Reich-type common
fixed point theorems in complete metric spaces which generalize and unify previously
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known results. Recently, the existence and uniqueness of fixed points for F-contractions
in complete Branciari b-metric spaces were considered in [21]. The theory of set-valued
mappings has been established to extend the framework of fixed point theorems in b-metric
spaces and has applications in control theory, convex optimization, differential inclusions,
and economics.

Motivated by the above-mentioned discussions, we mainly study the existence and
uniqueness of common fixed points for two mappings in complete b-metric spaces by
virtue of the new functions F and θ, respectively. Furthermore, we present two specific
instances to show the availability of our results. In the specific proof process, we discuss
and deal with various cases in detail. Compared with the previous results, we weaken the
conditions of the function F, which only needs to be non-decreasing. Hence, to some extent,
our conclusions and methods improve the results of previous literature.

2. Preliminaries

We begin with some auxiliary lemmas and basic definitions in this section. Let N be
the set of all positive integers andR be the set of all real numbers respectively.

Definition 1 ([22]). Let V be a non-empty set and consider s ≥ 1 be a given real number. A
function db : V × V → [0, ∞) is a b-metric if the following conditions are satisfied for every
c1, c2, c3 ∈ V :

(a1) db(c1, c2) = 0 if and only if c1 = c2;
(a2) db(c1, c2) = db(c2, c1);
(a3) db(c1, c2) ≤ s[db(c1, c3) + db(c3, c2)].
In this case, the pair (V, db) is called a b-metric space with constant s ≥ 1.

Definition 2 ([5]). A function F : (0,+∞) → R belongs to F if the following conditions
are satisfied:

(F1) F is strictly decreasing;
(F2) for each sequence {αn} (αn > 0) , lim

n→+∞
αn = 0 if and only if lim

n→+∞
F(αn) = −∞;

(F3) there exists k ∈ (0, 1) such that lim
x→0+

xkF(x) = 0.

Definition 3 ([5]). Let (V, d) be a metric space and P : V → V be a mapping. Assume that
there exist F ∈ F and τ > 0 such that for all x, y ∈ V, the inequality d(Px, Py) > 0 implies
τ + F(sd(Px, Py)) ≤ F(d(x, y)), then P is called an F-contraction.

Example 1 ([5]). Let (V, d) be a b-metric space and F : (0, ∞) → R be defined by F(κ) = ln κ.
Then F satisfies (F1)-(F3). Each mapping P : V → V satisfying the inequality of Definition 3 is an
F-contraction such that

db(Px, Py) ≤ e−τdb(x, y), for all x, y ∈ V, Px 6= Py.

In the case of Px = Py, the inequality also holds, we obtain that every Banach contraction is
an F-contraction.

Example 2 ([5]). Consider F(κ) = ln κ + κ, κ > 0. F satisfies (F1)-(F3) and the inequality of
Definition 3 implies

db(Px, Py)
db(x, y)

edb(Px,Py)−db(x,y) ≤ e−τ , for all x, y ∈ V, Px 6= Py.

Let L, J : V → V be two mappings defined on a metric space (V, d). If there exists
u ∈ V such that u = L(u), then u is said to be a fixed point of L. Moreover, if u = L(u) =
J(u), then u is said to be a common fixed point of the mappings L and J.
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Theorem 1 ([23]). Let L be a continuous self-map on a complete metric space (V, d). Then L has a
fixed point if and only if there exist a constant ϕ ∈ [0, 1) and a map J : V → V which commutes
with L and the following conditions hold

J(V) ⊆ L(V) and d(J(u), J(t)) ≤ ϕd(L(u), L(t)) for all u, t ∈ V.

Indeed, L and J have a unique common fixed point if the above conditions hold.

Theorem 2 ([24]). Let L : V → V be a self-map on a complete metric space (V, d). If there exist
the constants ϕ, ω, µ, η, λ ∈ [0, 1) with ϕ + ω + µ + η + λ < 1 such that for all u, t ∈ V,

d(L(u), L(t)) ≤ ϕd(u, L(u)) + ωd(t, L(t)) + µd(u, L(t)) + ηd(t, L(u)) + λd(u, t),

then L has a unique fixed point.

Before giving the main results, we first show a useful lemma.

Lemma 1. Let L and J be self-mappings on a b-metric space (V, db) with s ≥ 1. Suppose that
there exist ϕ, ω, µ, η, λ ∈ [0, 1) with ϕ + ω + sµ + sη + λ < 1 such that

db(L(u1), J(u2)) ≤ ϕdb(u1, L(u1)) + ωdb(u2, J(u2)) + µdb(u1, J(u2))

+ ηdb(u2, L(u1)) + λdb(u1, u2),

for all u1, u2 ∈ V. Then

db(L(u), J(L(u))) ≤ ϕ + sµ + λ

1− sµ−ω
db(u, L(u)),

db(J(t), L(J(t))) ≤ ω + sη + λ

1− sη − ϕ
db(t, J(t)),

for all u ∈ V and t ∈ L(V).

Proof. Let u ∈ V. It is not difficult to see that

db(L(u), J(L(u))) ≤ ϕdb(u, L(u)) + ωdb(L(u), J(L(u))) + µdb(u, J(L(u)))

+ λdb(u, L(u)).
(1)

By using condition (a3) of Definition 1 and adding −sµdb(u, L(u)) on both sides of (1),
we obtain

db(L(u), J(L(u)))− sµdb(u, L(u))

≤ ϕdb(u, L(u)) + ωdb(L(u), J(L(u))) + µdb(u, J(L(u)))

− sµdb(u, L(u)) + λdb(u, L(u))

≤ ϕdb(u, L(u)) + ωdb(L(u), J(L(u))) + sµdb(L(u), J(L(u))) + λdb(u, L(u)).

Thus
db(L(u), J(L(u))) ≤ ϕ + sµ + λ

1− sµ−ω
db(u, L(u)).

Let t ∈ L(V). Notice that

db(J(t), L(J(t))) = db(L(J(t)), J(t))

≤ ϕdb(J(t), L(J(t))) + ωdb(t, J(t)) + ηdb(t, L(J(t))) + λdb(J(t), t).
(2)
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By adding −sηdb(J(t), L(J(t))) on both sides of (2), we have

db(J(t), L(J(t)))− sηdb(J(t), L(J(t))) ≤ ϕdb(J(t), L(J(t))) + ωdb(t, J(t))

+ sηdb(t, J(t)) + λdb(t, J(t)).

Thus
db(J(t), L(J(t))) ≤ ω + sη + λ

1− sη − ϕ
db(t, J(t)).

3. Main Results

In this section, we consider the problem of the existence and uniqueness of common
fixed points of two mappings on a complete b-metric space.

3.1. Existence and Uniqueness of Common Fixed Points for Two Mappings

Theorem 3. Let L, J : V → V be two mappings on a complete b-metric space (V, db) with s ≥ 1.
Suppose that F: [0,+∞)→ R is a non-decreasing function, and there exist τ > 0, 0 < ϕ, ω < 1
and 0 ≤ µ, η, λ < 1 satisfying the following properties:

(1) ϕ + ω + 2sµ + λ < 1 and ϕ + ω + 2sη + λ < 1,
(2) s2 < 1

pq and sϕ
1−η < 1, and

(3) for u, t ∈ V, the inequality db(L(u), J(t)) > 0 implies

τ + F(db(L(u), J(t))) ≤ F(ϕdb(u, L(u)) + ωdb(t, J(t)) + µdb(u, J(t)) + ηdb(t, L(u)) + λdb(u, t)).

Then L and J have a unique common fixed point.

Proof. Let u be an element of V. Put u0 = u. For each n ∈ N , we define

u2n−1 = L(u2n−2) and u2n = J(u2n−1).

We consider the following four cases:
Case I. If u0 = u1, that is u0 = L(u0), then u0 = J(u0). Indeed, if u0 6= J(u0) =

J(L(u0)) = J(u1), then db(L(u0), J(u1)) > 0. From condition (3), it follows that

F(db(L(u0), J(u1))) < τ + F(db(L(u0), J(u1))

≤ F(ϕdb(u0, L(u0)) + ωdb(u1, J(u1)) + µdb(u0, J(u1))

+ ηdb(u1, L(u0)) + λdb(u0, u1))

= F(ωdb(u1, J(u1)) + µdb(u0, J(u1))).

Since F is non-decreasing, we obtain

(1−ω− sµ)db(L(u0), J(u1)) ≤ 0,

which yields 1− ω − sµ ≤ 0, a contradiction. Hence, u0 is a common fixed point of the
mappings L and J.

Case II. If u1 = u2, that is u1 = J(u1), then u1 = L(u1). If u1 6= L(u1) = L(J(u1)) =
L(u2), then db(J(u1), L(u2)) > 0. From condition (3) and the fact that F is non-decreasing,
we have

db(L(u2), J(u1)) ≤ ϕdb(u2, L(u2) + ωdb(u1, J(u1)) + µdb(u2, J(u1))

+ ηdb(u1, L(u2)) + λdb(u2, u1)).

By Lemma 1, we get

(1− ϕ− sη)db(L(u2), J(u1)) ≤ 0,
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which implies db(L(u2), J(u1)) = 0, a contradiction. Hence, u1 is a common fixed point of
L and J.

Case III. Similarly, if un = un+1 for some n, we can also obtain that un is a common
fixed point of L and J.

Case IV. If u0 6= u1 and u1 6= u2, then from condition (1), we get

ϕ + ω + sµ + sη + λ < 1.

Combining with Lemma 1, we deduce that

db(u1, u2) ≤ pdb(u0, f (u0)),

db(u2, u3) ≤ qdb(u1, u2) ≤ pqdb(u0, f (u0)),

where p = ϕ+sµ+λ
1−sµ−ω , q = ω+sη+λ

1−sη−ϕ and 0 ≤ p, q < 1. Repeating this process, it is not difficult
to see that

db(un, un+1) ≤
{

p
n
2 q

n
2 db(u0, f (u0)), i f n is even,

p
n+1

2 q
n−1

2 db(u0, f (u0)), i f n is odd.

Now, we will verify that {un}n∈N is a Cauchy sequence. To this end, we discuss the
following two cases.

(b1) Let m = n + i, if i is odd and i > 2, we have

db(un, um) ≤ s(db(un, un+1) + db(un+1, um))

≤ sdb(un, un+1) + s2db(un+1, un+2) + s2db(un+2, um)

≤ sdb(un, un+1) + s2db(un+1, un+2) + s3db(un+2, un+3) + s3db(un+3, um)

≤ sdb(un, un+1) + s2db(un+1, un+2) + s3db(un+2, un+3)

+ s4db(un+3, un+4) + · · ·+ sm−n−1db(um−2, um−1) + sm−n−1db(um−1, um).

In this case, when n is even, we obtain

db(un, um) ≤ sp
n
2 q

n
2 db(u0, u1) + s2 p

n+2
2 q

n
2 db(u0, u1)

+ s3 p
n+2

2 q
n+2

2 db(u0, u1) + s4 p
n+4

2 q
n+2

2 db(u0, u1) + . . .

+ sm−n−1(p
m−1

2 q
m−3

2 + p
m−1

2 q
m−1

2 )db(u0, u1)

= sp
n
2 q

n
2 (1 + sp + s2 pq + s3 p2q + s4 p2q2 + . . .

+ sm−n−2 p
m−n−1

2 q
m−n−3

2 + sm−n−2 p
m−n−1

2 q
m−n−1

2 )db(u0, u1)

= sp
n
2 q

n
2 [(1 + s2 pq + s4 p2q2 + · · ·+ sm−n−1 p

m−n−1
2 q

m−n−1
2 )

+ (sp + s3 p2q + s5 p3q2 + · · ·+ sm−n−2 p
m−n−1

2 q
m−n−3

2 )]db(u0, u1)

= [
1− sm−n+1 p

m−n+1
2 q

m−n+1
2

1− s2 pq
+

sp(1− sm−n−1 p
m−n−1

2 q
m−n−1

2 )

1− s2 pq
]

sp
n
2 q

n
2 db(u0, u1)

= [
1− si+1 p

i+1
2 q

i+1
2

1− s2 pq
+

sp(1− si−1 p
i−1

2 q
i−1

2 )

1− s2 pq
]sp

n
2 q

n
2 db(u0, u1)

= [
1 + sp− (1 + sq)si p

i+1
2 q

i−1
2

1− s2 pq
]sp

n
2 q

n
2 db(u0, u1).
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When n is odd, we get

db(un, um) ≤ sp
n+1

2 q
n−1

2 db(u0, u1) + s2 p
n+1

2 q
n+1

2 db(u0, u1)

+ s3 p
n+3

2 q
n+1

2 db(u0, u1) + s4 p
n+3

2 q
n+3

2 db(u0, u1) + . . .

+ sm−n−1(p
m−2

2 q
m−2

2 + p
m
2 q

m−2
2 )db(u0, u1)

= sp
n+1

2 q
n−1

2 (1 + sq + s2 pq + s3 pq2 + s4 p2q2 + . . .

+ sm−n−2 p
m−n−3

2 q
m−n−1

2 + sm−n−2 p
m−n−1

2 q
m−n−1

2 )db(u0, u1)

= sp
n+1

2 q
n−1

2 [(1 + s2 pq + s4 p2q2 + · · ·+ sm−n−1 p
m−n−1

2 q
m−n−1

2 )

+ (sq + s3 pq2 + s5 p2q3 + · · ·+ sm−n−2 p
m−n−3

2 q
m−n−1

2 )]db(u0, u1)

= [
1− sm−n+1 p

m−n+1
2 q

m−n+1
2

1− s2 pq
+

sq(1− sm−n−1 p
m−n−1

2 q
m−n−1

2 )

1− s2 pq
]

sp
n+1

2 q
n−1

2 db(u0, u1)

= [
1− si+1 p

i+1
2 q

i+1
2

1− s2 pq
+

sq(1− si−1 p
i−1

2 q
i−1

2 )

1− s2 pq
]sp

n+1
2 q

n−1
2 db(u0, u1)

= [
1 + sq− (1 + sp)si p

i−1
2 q

i+1
2

1− s2 pq
]sp

n+1
2 q

n−1
2 db(u0, u1).

(b2) If i is even and i > 2, by the similar argument, we deduce that

db(un, um) ≤ sp
n
2 q

n
2 db(u0, u1) + s2 p

n+2
2 q

n
2 db(u0, u1)

+ s3 p
n+2

2 q
n+2

2 db(u0, u1) + s4 p
n+4

2 q
n+2

2 db(u0, u1) + . . .

+ sm−n−1(p
m−2

2 q
m−2

2 + p
m
2 q

m−2
2 )db(u0, u1)

≤ sp
n
2 q

n
2 (1 + sp + s2 pq + s3 p2q + s4 p2q2 + . . .

+ sm−n−2 p
m−n−2

2 q
m−n−2

2 + sm−n−2 p
m−n

2 q
m−n−2

2 )db(u0, u1)

≤ sp
n
2 q

n
2 [(1 + s2 pq + s4 p2q2 + · · ·+ sm−n−2 p

m−n−2
2 q

m−n−2
2 )

+ (sp + s3 p2q + s5 p3q2 + · · ·+ sm−n−2 p
m−n

2 q
m−n−2

2 )]db(u0, u1)

≤ sp
n
2 q

n
2 (1 + sp)

1− sm−n p
m−n

2 q
m−n

2

1− s2 pq
db(u0, u1)

≤ sp
n
2 q

n
2 (1 + sp)

1− si p
i
2 q

i
2

1− s2 pq
db(u0, u1),

where n and m are even. Moreover,

db(un, um) ≤ sp
n+1

2 q
n−1

2 db(u0, u1) + s2 p
n+1

2 q
n+1

2 db(u0, u1)

+ s3 p
n+3

2 q
n+1

2 db(u0, u1) + s4 p
n+3

2 q
n+3

2 db(u0, u1) + . . .

+ sm−n−1(p
m−1

2 q
m−3

2 + p
m−1

2 q
m−1

2 )db(u0, u1)

≤ sp
n+1

2 q
n−1

2 (1 + sq)
1− sm−n p

m−n
2 q

m−n
2

1− s2 pq
db(u0, u1)

≤ sp
n+1

2 q
n−1

2 (1 + sq)
1− si p

i
2 q

i
2

1− s2 pq
db(u0, u1),
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where n is odd and m is even. Thus,

db(un, um) ≤

sp
n
2 q

n
2 [ 1+sp−(1+sq)si p

i+1
2 q

i−1
2

1−s2 pq ]db(u0, u1), i f i is odd and n is even,

sp
n+1

2 q
n−1

2 [ 1+sq−(1+sp)si p
i−1

2 q
i+1

2

1−s2 pq ]db(u0, u1), i f i is odd and n is odd,

sp
n
2 q

n
2 (1 + sp) 1−si p

i
2 q

i
2

1−s2 pq db(u0, u1), i f i is even and n is even,

sp
n+1

2 q
n−1

2 (1 + sq) 1−si p
i
2 q

i
2

1−s2 pq db(u0, u1), i f i is even and n is odd.

Letting n, m→ ∞, we obtain that db(un, um)→ 0, since 0 ≤ p, q < 1. Hence, we draw
the conclusion that {un} is a Cauchy sequence. Noticing that the completeness of the space,
there exists r ∈ V such that

lim
n→∞

db(un, r) = 0.

Next, we verify that r is a common fixed point of L and J. Indeed, if db(L(r), r) > 0,
condition (3) yields

F(db(L(r), u2n)) < τ + F(db(L(r), u2n)) = τ + F(db(L(r), J(u2n−1)))

≤ F(ϕdb(r, L(r)) + ωdb(u2n−1, u2n) + µdb(r, u2n)

+ ηdb(u2n−1, L(r)) + λdb(r, u2n−1)).

Since F is non-decreasing, we get

db(L(r), u2n) ≤ ϕdb(r, L(r)) + ωdb(u2n−1, u2n) + µdb(r, u2n)

+ ηdb(u2n−1, L(r)) + λdb(r, u2n−1).

Moreover, from condition (a3) of Definition 1, it follows that

db(L(r), r) ≤ s[db(L(r), u2n) + db(u2n, r)].

Then
1
s

db(L(r), r) ≤ lim
n→∞

sup db(L(r), u2n) ≤
ϕ

1− sη
db(L(r), r).

Hence, we deduce that 1
s ≤

ϕ
1−sη which contradicts the fact sϕ

1−sη < 1. Therefore, we
obtain db(L(r), r) = 0. Similarly, we can get J(r) = r. Therefore, we can write

L(r) = J(r) = r.

For the uniqueness, we assume that r and r∗ are two distinct common fixed points of
f and g. Then

τ + F(db(r, r∗)) = τ + F(db(L(r), J(r∗)))

≤ F(ϕdb(r, L(r)) + ωdb(r∗, J(r∗)) + µdb(r, J(r∗))

+ηdb(r∗, L(r)) + λdb(r, r∗))
= F(µdb(r, J(r∗)) + ηdb(r∗, L(r)) + λdb(r, r∗)).

Since F is non-decreasing, we deduce that

db(r, r∗) ≤ µdb(r, J(r∗)) + ηdb(r∗, L(r)) + λdb(r, r∗),

which implies
(1− λ− µ− η)db(r, r∗) ≤ 0.



Fractal Fract. 2022, 6, 103 8 of 16

Then
1− λ− µ− η ≤ 0,

which is a contradiction. Hence, r = r∗.

The following example shows the validity of Theorem 3.

Example 3. Let V = [0, 8], and L, J : V → V be two mappings defined by

L(u) =

{
7, i f u ∈ (0, 8],
8, i f u = 0,

and

J(u) =

{
7, i f u ∈ (0, 8],
6, i f u = 0.

We define a b-metric db : V ×V → [0, ∞) by

db(u, t) = (u− t)2, f or all u, t ∈ V.

Clearly, (V, db) is a complete b-metric space with constant s = 2 (see [25] for details). We
observe that db(L(u), J(t)) > 0, when (u, t) ∈ D =

{
(u, t) : u ∈ (0, 8], t = 0

}
∪
{
(u, t) : u =

0, t ∈ (0, 8]
}
∪
{
(u, t) : u = 0, t = 0

}
.

Define E : V ×V → [0, ∞) by

E(u, t) =
1
4

db(u, L(u)) +
1
4

db(t, J(u)) +
1

16
db(u, t), u, t ∈ V.

Next, we discuss the following three cases:
(i) If u ∈ (0, 8] and t = 0, then we obtain

1
6
− 1

db(L(u), J(0)) + 1
≤ 1

6
− 1

2
= −1

3

< − 4
36

= − 4
db(0, J(0))

≤ − 1
E(u, 0)

< − 1
E(u, 0) + 1

.

(3)

(ii) If t ∈ (0, 8] and u = 0, then we have

1
6
− 1

db(L(0), J(t)) + 1
≤ 1

6
− 1

2
= −1

3

< − 4
64

= − 4
db(0, f (0))

≤ − 1
E(0, t)

< − 1
E(0, t) + 1

.

(4)
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(iii) If t = 0 and u = 0, then we get

1
6
− 1

db(L(0), J(0)) + 1
≤ 1

6
− 1

3

< − 1
25

≤ − 1
E(0, 0)

< − 1
E(0, 0) + 1

.

(5)

Combining with (3), (4), and (5), we deduce that

1
6
− 1

db(L(u), J(t)) + 1
< − 1

E(u, t) + 1
,

for all (u, t) ∈ D.
Therefore, if we consider F(h) = − 1

h+1 , where h ≥ 0, t ∈ (0, ∞), and τ = 1
6 , then all the

conditions of Theorem 3 are satisfied with ϕ = 1
4 , ω = 1

4 , µ = η = 0, λ = 1
16 . Meanwhile, we

notice that L(z) = J(z) = z if and only if z = 7. Hence, L and J have a unique common fixed point.

Next, we give the following result which shows the uniqueness and existence of
the common fixed point for two mappings in a complete b-metric space by virtue of the
function θ.

Theorem 4. Let L and J be two self-maps on a complete b-metric space (V, db) with constant
s ≥ 1. Let ϕ, ω ∈ (0, 1), µ, η, λ ∈ [0, 1) be the constants with ϕ + ω + sµ + sη + λ < 1,
s2 ϕ + s2η + (s3 + s4)(µ + λ) < 1, and s2ω + s2µ + (s3 + s4)(η + λ) < 1. Define θ : [0, 1]×
[0, 1]× [0, 1]× [0, 1]× [0, 1]→ (0, 1] by

θ(ϕ, ω, µ, η, λ) = min{1− s2 ϕ− s2η − (s3 + s4)(µ + λ)

1− s3µ− s2η − s3λ
,

1− s2ω− s2µ− (s3 + s4)(η + λ)

1− s2µ− s3η − s3λ
}.

Suppose that each of the conditions

θ(ϕ, ω, µ, η, λ)db(u, L(u)) ≤ s2db(u, t) or

θ(ϕ, ω, µ, η, λ)db(t, J(t)) ≤ s2db(u, t),

implies

db(L(u), J(t)) ≤ ϕdb(u, L(u)) + ωdb(t, J(t)) + µdb(u, J(t)) + ηdb(t, L(u))

+ λdb(u, t),

for u, t ∈ V. Then L and J have a unique common fixed point r.

Proof. It is not difficult to see that θ(ϕ, ω, µ, η, λ) ∈ (0, 1), since

1− s2 ϕ− s2η − (s3 + s4)(µ + λ) < 1− s3µ− s2η − s3λ,

and
1− s2ω− s2µ− (s3 + s4)(η + λ) < 1− s2µ− s3η − s3λ.
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Let e ∈ V. Put e0 = e. For each n ∈ N , we define e2n+1 = L(e2n) and e2n = J(e2n−1).
If e0 = e1, that is e0 = L(e0), then e0 = J(e0). Indeed, if e0 6= J(e0) = J(L(e0)) = J(e1), then

θ(ϕ, ω, µ, η, λ)db(e0, L(e0)) ≤ s2db(e0, L(e0)).

Hence, we have

db(e1, e2) = db(L(e0), J(e1))

≤ ϕdb(e0, e1) + ωdb(e1, e2) + sµ[db(e0, e1) + db(e1, e2)] + λdb(e0, e1).

It yields

(1−ω− sµ)db(e1, e2) ≤ 0,

which shows that db(e0, J(e1)) = 0, a contradiction. Hence, e0 is a common fixed point of
the mappings L and J.

Similarly, as in Case II and Case III of Theorem 3, we conclude that if en = en+1 for
some n, then en is also the common fixed point of the mappings L and J.

If e0 6= e1 and e1 6= e2, we notice that

θ(ϕ, ω, µ, η, λ)db(e0, L(e0)) ≤ s2db(e0, L(e0)),

since θ(ϕ, ω, µ, η, λ) < 1 ≤ s2. Then, we have

db(e1, e2) = db(L(e0), J(e1))

≤ ϕdb(e0, e1) + ωdb(e1, e2) + µdb(e0, e2) + λdb(e0, e1).

From Lemma 1, it follows that

db(e1, e2) ≤ pdb(e0, e1), where p =
ϕ + sµ + λ

1− sµ−ω
∈ (0, 1).

Similarly, we can also deduce that

θ(ϕ, ω, µ, η, λ)db(e1, e2) ≤ s2db(e1, e2).

From Lemma 1, we obtain

db(e2, e3) ≤ qdb(db(e1, e2)) ≤ pqdb(e0, e1), where q =
ω + sη + λ

1− sη − ϕ
∈ (0, 1).

By repeating the above process, we can establish using a similar argument as in
Theorem 3 that {en} is a Cauchy sequence and lim

n→∞
en = r for some r ∈ V. Now we will

prove that r is a common fixed point of the mappings L and J. Let u 6= r be an arbitrary
element of V. Then there exists N ∈ N such that db(en, r) ≤ 1

2+s db(u, r) for all n ≥ N .
Hence, we have

db(u, r) ≤ s[db(u, e2n−1) + db(e2n−1, r)] ≤ s[db(u, e2n−1) +
1

2 + s
db(u, r)],

for large enough n. Thus
2

2 + s
db(u, r) ≤ sdb(u, e2n−1).
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What is more,

θ(ϕ, ω, µ, η, λ)db(e2n−1, J(e2n−1)) ≤ db(e2n−1, J(e2n−1))

≤ s[(db(e2n−1, r) + db(r, e2n))]

≤ 2s
2 + s

db(u, r)

≤ s2db(u, e2n−1).

Hence, we deduce that

db(L(u), J(e2n−1)) ≤ ϕdb(u, L(u)) + ωdb(e2n−1, J(e2n−1))

+ µdb(u, J(e2n−1)) + ηdb(e2n−1, L(u)) + λdb(u, e2n−1).

Then

db(L(u), r) ≤ s[db(L(u), e2n) + db(e2n, r)]

≤ sϕdb(u, L(u)) + sωdb(e2n−1, J(e2n−1))

+ s2µ[db(u, r) + db(r, e2n)] + s2η[db(e2n−1, r) + db(L(u), r)]

+ s2λ[db(u, r) + db(r, e2n−1)] + sdb(e2n, r)

≤ lim
n→∞

sup{sϕdb(u, L(u)) + sωdb(e2n−1, J(e2n−1))

+s2µ[db(u, r) + db(r, e2n)] + s2η[db(e2n−1, r) + db(L(u), r)]

+s2λ[db(u, r) + db(r, e2n−1)] + sdb(e2n, r)}
= sϕdb(u, L(u)) + s2(µ + λ)db(u, r) + s2ηdb(L(u), r).

(6)

It follows that

db(L(r), r) ≤ sϕdb(L(r), r) + s2ηdb(L(r), r),

which implies (1− sϕ− s2η)db(L(r), r) ≤ 0. Notice that

1− sϕ− s2η > (s2 − s)ϕ + s2ω + (s3 + s4)(µ + λ) > 0.

Hence, we deduce db(L(r), r) = 0. By adding −s3(µ + λ)db(L(u), r) on both sides
of (6), we have

db(L(u), r)− s3(µ + λ)db(L(u), r)

≤ sϕdb(u, L(u)) + s2(µ + λ)db(u, r)− s3(µ + λ)db(L(u), r) + s2ηdb(L(u), r)

≤ sϕdb(u, L(u)) + s3(µ + λ)db(u, L(u)) + s2ηdb(L(u), r).

Thus

db(L(u), r) ≤ sϕ + s3µ + s3λ

1− s3µ− s2η − s3λ
db(u, L(u)), (7)

and

db(u, L(u)) ≤ s[db(u, r) + db(L(u), r)]

≤ sdb(u, r) +
s2 ϕ + s4µ + s4λ

1− s3µ− s2η − s3λ
db(u, L(u)).

Therefore, we obtain

1− s2 ϕ− s2η − (s3 + s4)(µ + λ)

1− s2ηs3 − (µ + λ)
db(u, L(u)) ≤ s2db(u, r). (8)
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Similarly, we can also deduce db(J(r), r) = 0 and

1− s2ω− s2µ− (s3 + s4)(η + λ)

1− s2µ− s3(η + λ)
db(u, g(u)) ≤ s2db(u, r). (9)

Hence, r is a common fixed point of the mappings L and J. Furthermore, we also have

θ(ϕ, ω, µ, η, λ)db(u, L(u)) ≤ s2db(u, r), θ(ϕ, ω, µ, η, λ)db(u, J(u)) ≤ s2db(u, r).

Next, we show the uniqueness of the common fixed point of the mappings L and J.
Assume that there exist r, r′ ∈ V such that L(r) = J(r) = r and L(r′) = r′ = J(r′). Note that

θ(ϕ, ω, µ, η, λ)db(r, L(r)) ≤ s2db(r, r′).

Then we have

db(r, r′) = db(L(r), J(r′)) ≤ ϕdb(r, L(r)) + ωdb(r′, J(r′))

+ µdb(r, J(r′)) + ηdb(r′, L(r)) + λdb(r, r′),

which yields

(1− µ− η − λ)db(r, r′) ≤ 0.

Since
1− µ− η − λ > ϕ + ω > 0,

we get db(r, r′) = 0. This completes the proof.

Example 4. Let V = [0, 1] be equipped with b-metric db(u, t) = (u− t)2 and u, t ∈ V, where
s = 2. Define L and J by

L(u) =
u
2

, J(u) =
u
3

, u ∈ V,

and set
E(u, t) =

1
32

db(u, L(u)) +
1
32

db(t, J(t)) +
1

64
db(u, t),

for all u, t ∈ V. Let ϕ = 1
32 , ω = 1

32 , µ = η = 0, λ = 1
64 , it is easy to verify that

ϕ + ω + sµ + sη + λ < 1,

s2 ϕ + s2η + (s3 + s4)(µ + λ) < 1,

s2ω + s2µ + (s3 + s4)(η + λ) < 1,

and

θ(ϕ, ω, µ, η, λ) = min{1− s2ω− s2µ− (s3 + s4)η − (s3 + s4)λ

1− s2µ− s3η − s3λ
,

1− s2 ϕ− (s3 + s4)µ− s2η − (s3 + s4)λ

1− s3µ− s2η − s3λ
} = 4

7
.

Next, we claim that the condition

θ(ϕ, ω, µ, η, λ)db(u, L(u)) ≤ s2db(u, t) or

θ(ϕ, ω, µ, η, λ)db(t, J(t)) ≤ s2db(u, t),
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implies

db(L(u), J(t)) ≤ ϕdb(u, L(u)) + ωdb(t, J(t)) + µdb(u, J(t)) + ηdb(t, L(u))

+ λdb(u, t),

for u, t ∈ V. Indeed,

db(L(u), J(t)) = (
u
2
− t

3
)2 ≤ 1

128
u2 +

1
72

t2 +
1
64

(u− t)2, u, t ∈ V. (10)

Moreover, if

θ(ϕ, ω, µ, η, λ)db(u, L(u)) ≤ s2db(u, t),

then we deduce
u2

28
≤ (u− t)2. (11)

Now, we study the following two cases:
(i) If u > t, we have

t ≤ (1− 1√
28

)u. (12)

Combining (10) and (12) yields

Au2 ≤ 0,

where

A = (
1
4
− 1

128
− 1

64
) + (

1
9
− 1

72
− 1

64
)(1− 1√

28
)2 + (

1
32
− 1

3
)(1− 1√

28
) > 0,

which means that u = t = 0. Therefore, when u = t = 0, the condition

θ(ϕ, ω, µ, η, λ)db(u, L(u)) ≤ s2db(u, t),

implies

db(L(u), J(t)) ≤ ϕdb(u, L(u)) + ωdb(t, J(t)) + µdb(u, J(t)) + ηdb(t, L(u))

+ λdb(u, t).

(ii) If u < t, we get

u ≤
√

28√
28 + 1

t. (13)

Then by (10) and (13), we obtain

Bt2 ≤ 0,

where

B = (
1
4
− 1

128
− 1

64
)(

√
28√

28 + 1
)2 + (

1
9
− 1

72
− 1

64
) + (

1
32
− 1

3
)

√
28√

28 + 1
< 0.

Therefore, for u, t ∈ [0, 1], when u ≤
√

28√
28+1

t, the condition

θ(ϕ, ω, µ, η, λ)db(u, L(u)) ≤ s2db(u, t),
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implies

db(L(u), J(t)) ≤ ϕdb(u, L(u)) + ωdb(t, J(t)) + µdb(u, J(t)) + ηdb(t, L(u))

+ λdb(u, t).

As a consequence, we claim that all the conditions of Theorem 4 are satisfied with ϕ = 1
32 , ω =

1
32 , µ = η = 0, λ = 1

64 . Meanwhile, it is not difficult to see that 0 is the unique common fixed point
of the mappings L and J.

3.2. A Generalized Form of Jungck Fixed Point Theorem

Next, we give a generalized form of Jungck fixed point theorem in complete b-
metric spaces.

Theorem 5. Let L be a continuous self-map on a complete b-metric space (V, db). Then L has a
fixed point if and only if there exist the constants ω ∈ (0, 1), ϕ, µ, η, λ ∈ [0, 1) with ϕ + ω + µ +
2sη + λ < 1 and a continuous self-map J on V satisfying the following properties:

(1) J(V) ⊆ L(V),
(2) L and J commute under composition (i.e., J(L(u)) = L(J(u)) for all u ∈ V),
(3) db(J(u), J(t)) ≤ ϕdb(L(u), J(u)) + ωdb(L(t), J(t)) + µdb(L(u), J(t)) + ηdb(L(t),

J(u)) + λdb(L(u), L(t)) for all u, t ∈ V.
If the above conditions hold, then L and J have a unique common fixed point.

Proof. If L has a fixed point r ∈ V, then we define J : V → V by J(u) = r for all u ∈ V.
It follows immediately that J(V) ⊆ L(V). Moreover, for any u ∈ V, J(L(u)) = r and
L(J(u)) = L(r) = r, which implies that J(L(u)) = L(J(u)) for all u ∈ V. In addition, for
any ϕ, ω, µ, η, λ ∈ [0, 1) and u, t ∈ V, we obtain

db(J(u), J(t)) = db(r, r) = 0

≤ ϕdb(L(u), r) + ωdb(L(t), r) + µdb(L(u), r)

+ ηdb(L(t), r) + λdb(L(u), L(t)).

On the other hand, if conditions (1)–(3) are satisfied, we claim that L has a fixed
point, and L and J have a unique common fixed point. To see this, let u0 ∈ V. It follows
from condition (1) that there exists u1 ∈ V such that L(u1) = J(u0). Repeating this
process, we can find {un} ⊂ V such that L(un) = J(un−1) for n ∈ N , which together with
condition (3) yields

db(L(un+1), L(un)) = db(J(un), J(un−1))

≤ ϕdb(L(un), L(un+1)) + ωdb(L(un−1), L(un))

+ ηdb(L(un−1), L(un+1)) + λdb(L(un), L(un−1))

≤ ϕdb(L(un), L(un+1)) + ωdb(L(un−1), L(un))

+ sη[db(L(un−1), L(un)) + db(L(un), L(un+1))]

+ λdb(L(un), L(un−1)).

Then
db(L(un+1), L(un)) ≤

ω + sη + λ

1− ϕ− sη
db(L(un), L(un−1)).

Since ω+sη+λ
1−ϕ−sη < 1, we see that {L(un)} is a Cauchy sequence. Moreover, by the

completeness of the space, we deduce that lim
n→∞

L(un) = r for some r ∈ V. From L(un) =

J(un−1), it follows that lim
n→∞

J(un) = r. By condition (2), we get

L(r) = lim
n→∞

L(J(un)) = lim
n→∞

J(L(un)) = J(r),
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which yields L(L(r)) = L(J(r)) = J(L(r)) = J(J(r)). By condition (3), we deduce that

db(J(r), J(J(r))) ≤ ϕdb(L(r), J(r)) + ωdb(L(J(r)), J(J(r)))

+ µdb(L(r), J(J(r))) + ηdb(L(J(r)), J(r)) + λdb(L(r), L(J(r)))

= µdb(L(r), L(L(r))) + ηdb(L(r), L(L(r))) + λdb(L(r), L(L(r))),

which implies (1− µ− η − λ)db(L(r), L(L(r))) ≤ 0. Since 1− µ− η − λ > 0, we deduce
that L(r) is a common fixed point of L and J.

For the uniqueness, if there exist r, k ∈ V such that L(r) = r = J(r) and L(k) = k =
J(k), then by condition (3), it follows that

db(r, k) = db(J(r), J(k))

≤ ϕdb(L(r), J(r)) + ωdb(L(k), J(k))

+ µdb(L(r), J(k)) + ηdb(L(k), J(r)) + λdb(L(r), L(k)

= µdb(r, k) + ηdb(r, k) + λdb(r, k).

Clearly, we can get (1− µ− η − λ)db(r, k) ≤ 0. Since 1− µ− η − λ > 0, we have
db(r, k) = 0 which implies r = k.

4. Conclusions

In this paper, we mainly study the existence and uniqueness of common fixed points
for two mappings in complete b-metric spaces by virtue of the new functions F and θ,
respectively. Moreover, we present two specific instances to show the availability of our
results. Compared with the previous results, we weaken the conditions of the function
F, which only needs to be non-decreasing. Hence, to some extent, our conclusions and
methods improve the results of previous literature. However, for the application of the
results, we need to continue to study, especially the existence of solutions of some integral
equations and differential equations.
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