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1. Introduction

The study of differential equations and variational issues involving p(x)-growth con-
ditions has received a majority of attention in recent years. The development of numerous
significant models in electrorheological and thermorheological fluids, image processing,
and other fields inspired a systematic study of partial differential equations with variable
exponents; see [1-3]. The literature on the study of such operators is very large and rich,
but we only list some newly published articles for interested readers, see, e.g., [4-8].

The study of elliptic equations with fractional operators is one of the most fascinating
areas of nonlinear analysis. These issues have received much attention in both pure math-
ematics study and practical applications. In reality, this sort of operator often appears in
a variety of settings. Few authors have also studied elliptic problems involving inequali-
ties [9,10]. As far as we know, the fractional Sobolev spaces with variable exponents and
the fractional p(-)-Laplacian were introduced firstly by U.Kaufmann, J.D.Rossi and R.Vidal
in [11]. Here, the authors obtained the embedding result of fractional Sobolev spaces with
variable exponents to variable-exponent Lebesgue spaces. In addition, they also discussed
the existence result of a fractional p(-)-Laplacian problem.

After that, many mathematicians were concerned with equations involving the op-
erator and studied it extensively, see [12-17]. In particular, this combination of fractional
p(x)-Laplace operators and Kirchhoff functions is very interesting. For example, E. Azroul
etal. [13] investigated a class of fractional p(-)-Kirchhoff type problems using the mountain
pass lemma, direct variational method, Ekeland’s variational principle and concluded
the existence of nontrivial weak solutions for the above problem in various cases of the
competition between the growth rates of functions. In addition, we recommend that in-
terested readers read the literature [18]. The basic Kirchhoff problem was first introduced
by Kirchhoff [19] as an extension of the classical D’Alembert’s wave equation for free
vibrations of elastic string. Kirchhoff’s model takes into account the changes in the length
of the string produced by transverse vibrations. A detailed advancement in the Kirchhoff
elliptic problem and its physical interpretation can be seen in [20].
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On the other hand, elliptic, parabolic and hyperbolic equations with logarithmic non-
linearity have received extensive attention from many scholars, and many mathematicians
have conducted extensive research; see [21-27]. In particular, we point out that Xiang
et al. [26] investigated the existence of two local least energy solutions for fractional p-
Kirchhoff problems involving logarithmic nonlinearity by means of the Nehari manifold
approach. This method is used essentially because the functional corresponding to the
equation is not bounded below in the whole workspace, so it is difficult to find the critical
points in the whole workspace, and thus, we need to find the critical points on a smaller set.
For more details on this approach, we recommend some very good papers for interested
readers [28-31].

To our best knowledge, there are no results concerned with the Kirchhoff type problem
driven by a p(-)-fractional Laplace operator with logarithmic nonlinearity. Motivated by
the works discussed above, in this paper, we are interested in the existence of two nontrivial
weak solutions for the following fractional p(-)-Kirchhoff type problems.

XY

\
)

u(x)—u(y) |PY) dxdy> (=8)5 1 = h(x) [P~ 2uIn |u] + Blu|"®) 24 in Q,

‘x7y|N+SP(Xry)
in RN\ Q,

)

where ) C R”" is a smooth and bounded domain with N > p(x,y)s for any (x,y) €
QxQ, p(x) = p(x,x) for x € O, Bis a positive parameter, 2 < g(x) < 0p(x) < pi(x)
for any x € Q and h(x) € C(Q) is a positive function, M is a Kirchhoff function model,
(—A);J ()isa p(-)-fractional Laplace operator, with s € (0,1), defined as follows: for each
x e,

(%) =P 72 (x) —"(y))

|X _ y‘N+sp(x,y)

(=A)pwP(0) =pv. | dy,
along any ¢ € C3°(Q)), where p.v. is considered in the principal value sense.
Let

= inf _p(xy) < sup  plxy)=p.
(X,]/)EQXQ (X,y)GQXQ

g~ :=minq(x) < q(x) < q" :=maxq(x).
xeQ) xeQ

A model of K proposed by Kirchhoff is of the form K(t) = a + bt*=1 ab>0,a+b>
0,t >0and a € (1,400)if b > 0,a = 1if b = 0. When K(#) > 0 for all ¢ > 0, Kirchhoff
problems are said to be nondegenerate and this happens, for example, if 2 > 0 and b > 0
in the model case (1), see for instance [20,32,33]. Otherwise, if K(0) = 0 and K(f) > 0 for
all t > 0, the Kirchhoff problems are called degenerate and this occurs in the model case
(1) whena = 0 and b > 0, see also [34,35]. An interesting point regarding this problem
is the involvement of comes from the fact that logx is sign changing and behaving at the
origin similar to the power function —t* for « < 0 with a slow growth. In addition, the
logarithmic function is not invariant by scaling, which does not hold for the power function.
Furthermore, the presence of the variable exponent makes the problem more significant.

To study our main result, we need to make further assumptions.

0 2<q <q(x) <qg"<p <plx)<p" <(p")’ <op <op(x) <Op* < pi(x),
p(x,y) is symmetric for all (x,y) € Q x Q.

(i) K:R"™ — Ris a continuous function that satisfies the condition: there exists 1 <
a3 < ag with a2(p™)? < 0 such that azt? < cK(t) < K(£)t < 1K' (£)t? < aqt®, where

c1 € (pt,0),c0 € (% 1 ) and K(t) = fot K(t)dr.

p)2ay’ pray
An example that satisfies our hypothesis could be K(x,u) = |u|?~2u.
A function u € Xo = Wy (x) (Q) is a weak solution to the problem (1), if
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y) P2 (u(x) — u(y)) (p(x) — dxdy / (x)u[ PO~ uande_ﬁ/ |12y pdx = 0

|x _ ‘N+sp(x,y)

forany ¢ € Wg’p(x’y)(ﬂ) where 7, = [ Jgon ¢dxdy.

p(xy)|x— y|N+sp (x.y)
We are ready to state the main result of this paper

Theorem 1. Let |[u|| > 1. Assume that the assumptions (i) and (ii) hold. Then, there exists
B** > 0 such that for any p € (0, B**), problem (1) has at least two nontrivial weak solutions.

2. Functional Analytic Setup

In this section, first of all, we review some basic properties about the variable exponent
Lebesgue spaces as well as the fractional Sobolev spaces with variable exponents.
Set

C+(Q) = {p €C(Q):1< p(x) forall x e Q}.

For any p € C4(Q)), we define the variable exponent Lebesgue space as
LP0(Q) = {u : O — R is measurable, /Q u(x)[PPdx < oo},

and the Luxemburg norm defined on this space as,

| p(x) =inf{y >0:/Q‘u§f)‘p(x)dx§ 1}.

Clearly, (LP®¥) (), | - |p(x)) is a separable reflexive Banach space, see [36] (Theorem 2.5
and Corollaries 2.7 and 2.12).

Lemma 1 Holder’s inequality [14]: Let LP'(*) (Q)) denote the conjugate space of LP(*) (Q)), where
p(x) + ,( y=1 and p'(x) = (p(x)/(p(x) = 1)). Ifu € LPY(Q) and v € LV'¥)(Q) then the
following Holder-type inequality holds:

1
‘/ uv dx| < (+ p’)'u”(" 9] 1 ()

A modular of the space LP(¥)(Q) is defined by

Qp(x) : Lp(x)(Q) — R

U= Qp(x) / |Ll |p
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Assume that u € LP®)(Q) and {u;} € LP¥)(Q). Then the following assertions hold

(see [2]):
(a) [ulpxy < 1(resp, =1,>1) < 0p(y) (1) < L(resp., =1,>1),
(b) Tulye) < 1= [’y < @pioy (0) < 1l
(©) [uly > 1= [ul? ) < 0y () < [ul’f,,
() Jim [ug] ) = 0(60) & Jim @, (1c) = 0(c0),
() Hm fuye —ulyr) =0 < lim gy (g —u) =0.

k—oc0

Let us set the fractional modular function Q;} BE Xo— Ras

jo(x) — v(y) [P
QP( //RZN ‘x_y|N+sp (xy) dXdy'

Then the following assertions hold (see [2]):

Proposition 1. Assume that u € Xo and {u;}; C Xo, then

1) ullx, <1(resp, =1,>1) & Q;(.)(u) < 1(resp., =1,> 1),
@ ullx, <1 = ullf < a5, @) < llullk,,

Gl > 1=l < a5, () < Jullf,

@) lim Jjuyl|x, = 0(c0) & lim 7, (k) = 0(0),

(5)  lim [jux —ufx, =0 lUim o \(ux —u) =0.

Forany m € C4(Q)), the fractional Sobolev space with variable exponent, is denoted by

sm(x),p(xy) () — ) (0 / / lu(x) —u(y) Py
W (Q) {M eL 0 Mp ) = [N xy) dxdy < +o0, for some yu > 0

with the norm [[u||; yu(2), p(x,y) = ||M\|Lm(x)(0) + [u]¥P¥) (Q)), where

[]Sp(xy) infd u>0: // )| dxdy <1
eri(xy|xf |N+Sny) -

Readers may refer to [13,16] for more information related to this space. Define X =
W) p(xy) (Q) over T = R2N \ (QF x Q°) as the space

_ (xy)
. N . m(x) / |u(x) u(]/)|p
{u RY = R:ulg € L"Y(Q), T PG |x — y N dxdy < +oo, for some u > 0

and our solution space X is defined as the space {u € X : u =0 a.e. in RN\ Q}, whichis
a convex, reflexive and separable Banach space (see [13]) with respect to the norm

ju(x) = u(y) [P

T APCY) |y — y\N%p(x,y)

||u||X0:inf{)\>0: dxdygl}.

We will denote [|u||x, = |lu|| in all the upcoming results.
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Theorem 2. [14] Let O C RN(N > 2) denotes a smooth bounded domain and s € (0,1).
Let m(x), p(x,y) be continuous variable exponents with sp(x,y) < N for (x,y) € Q x Q and
m(x) > p(x,x) for x € Q). Assume that r : QO — (1,00) is a continuous function such that
pi(x) > r(x) >r~ > 1, for x € Q. Then there exists a constant C = C(N, s, p,q,1, Q) such that

||fHU(‘)(Q) < C||f||ws,m(‘),p(w)(0)/ for any f € Ws'm(')'p("')(Q)-

Thus, the space WS ()P()(Q)) is continuously embedded in L") (Q) for any r € (1, pZ). Fur-
thermore, this embedding is compact and the result also holds for the space Xy = W0 m()p () (Q).

3. The Proof of Result

The functional corresponding to the problem (1) is defined as

N u|1(x) () |u|fP3) In |u h(x)|u|fP()
I(u) :K(’Yp(x,y)(u)) - B N |q|(x) dx—/Q ( )|9|p(x) | |dx+/0((9)p|(l))2 dx,

which is well defined and of class C! on Xj. Next, we show the necessity of considering
the Nehari manifold.

Lemma 2. The functional I is not bounded below over Xy.

Proof. Let u(# 0) € Xo.

(%) 67 (x) 97 (
I(ru) = R(Yp(xy) (1)) — /3/ ruf? alx—/Q h()lrul ™ l”|r”| +/ h(x |W| Pl

q(x) op(x
as 1 >
< ('Yp(xy ) — £ / |ru|9(¥ dx—erﬁ/ (x)|ru|97’x ln\ru\dx—i—w/ﬂh(xﬂmﬁp(x)
0p(%) ||y || 0P q(x - op(x) -
< agrP) |[u || :3" / | 700 lnr/ h(x)|u|fPX) dx — ! - / h(x) || P 1| u|dx
ca(p™) 0 op™ Ja
79?(7‘) _
+ 77/ h(x)|u|97’(x)dx
(6p~)* Ja
Assumption (i) implies that, g(x) < 6p(x). Therefore, on passing the limit r — co we
conclude that the functional I is not bounded below over Xy. O
Hence, we will seek weak solutions over the Nehari manifold. Define the Nehari
manifold as N' = {u € Xp\0 : (I'(u),u) = 0}. In particular, u € N if and only if
Bg(u) = (I'(u),u) = 0.
Lemma 3. The functional I is coercive and bounded below over N.
Proof. Since, u € N so (I'(u),u) = 0. This implies that
|” )|P x) g(x) 6p(x) _
K () [ [ yw g dxdy =B [ (ul7@dx — [ n(x)[ulPWnju] = 0. @

Now using above equation, we obtain



Fractal Fract. 2022, 6, 106 6 of 16

A~ 1 -
1) 2 ROy () = £ [ Jultt mrw [ ) P

q
1 |u(x y)|Poy) g(x
+9Pi K’YPXy //RzN |N+spxy ddy+ﬁ/| | ]
. a(x y)|Py)
K(’Yp xy —Ba / |Ll| dx_? (YP xy //RZN |x_y|N+sp xY)
i/ 9(x) L/ op(x)
+ i Q\u| dx + @) Qh(x)|u| dx
A |P xy) alx
> R0y ) ~ Kty ) [ [ sty (= o) [
Now using assumption (ii) and the Theorem 2, we obtain
100> 2 (1) (10)° = P43y (1))~ ( -5=) / )
= < - P+€l4> ,)/p(xy < - > / |u|q
+ Op~ 1
2y ) = B( = - = Jer
- 1 +
> (22 oyt Op~ _ - qr
> <c2 pras )l ﬁ(q 35 ) Cliul
Since, az > 1, % > ptagand Op~ > g, hence we can conclude that the functional I is
coercive and bounded below. [
Now we will divide the Nehari manifold into three sets
t={ueN: (Bé;(u),u> >0},
N ={ueN: (Bg(u),u) =0},
~={ue N:(Bg(u),u) <0},
where,
/ !/ |p xy q
(B (), 1) = K (70 //RZN Wsp = - B[ atlu
nylu x) —u(y) [P o7 ( ®)
+ K(V () (1 / o = y N y) dxdy — 9/ B(x) [P || dx
— | h(x)|u|P¥) dx.
[ hlul
Lemma 4. There exists B such that for 0 < B < B, the set N is empty .
Proof. Let u(# 0) € N°. We will prove the result by contradiction.
0= <B//S(u)ru> > (pi)zK/('Yp(x,y)(u))(')’p(x,y)<u))2 +p*K(7p(x,y)( ))(7;7 xy :Bq / |u|q

—0p™" / \u|9P l”|”|dx*/0h(x)|u\9ﬂx)dx
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Since u € N C N, so (I'(u),u) = 0. Using this fact, Theorem 2 and Lemma 1, we
obtain

-)2 -
02 BT (0 (0) 49 ampw( ~pa" [ ultax - / () 7

a1
|u |pxy g(x
Klytan) @) | [ Sty 6 [l

2 B oy 0004 D05y (00) — B P (03 (1)) g () — [ B0l P

+9p

1
+B(op* / Ju[ 10
> u3(f1 2 ) 0)° + 0053 (10)° — 0 Py 00))° — [ Gl
+Bop* / |ul 1) dx
S a(p)?

> a3(p”)*

> [ e - o G
(

1

L

c - 40 0
Zg)ilunep —[c+4 (p)? ]n s

() (p)°
This implies that
1
0] CRa .
C+—""1u P ul|? . 4)
o+ S 1 > 2l
This further implies that
A\ G
> (5)"" >0 ©
(&) 240(p" 2
where, A = ) andB—[C—i— L }
Again,
! |pxj 0p(
0 = (Bj(u), u) = K'(7p(xy) (u //Rm ‘x_ |N+pry 9/ ) |u PP I | dx

X, p(xy)
/ Bl 7 dx—ﬁ/ 0)lul dx+K’yPXy /RZNP = |)N+sPEx;l dxdy.
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Using (I'(u), u) = 0 and assumption (ii), we obtain
+2

OSM(Z(v;a(x,y)(u))"+a4(p+)2(7p<xy>( )+ BOp™ - / 7

‘ny
_GP K’YPXy //sz |X— |N+spxy) dXdy'

Since, ¢; > p* so

a 2
0< 4(5:) (')’p(x,y)(u))e+u4(P+)2(7p(x,y)< )) +ﬁ Op~ — / |u|q dx—a?ﬂ(p )(’Yp(x,y)(u))e
- [4“’1*) + a2 = 300 | (1 ()" + O™ —7) / uf")dx
< (20" o = 3300 ] ey (00)° + Bl6p™ =) [ [ulo®

Since, coefficient of (7, (x ) (u))? is negative as 6 > a4(p™*)? so using Theorem 2 and
Proposition 1

)
(p*)°
e — .
[0as(p ) = 208" | i < BOPT = Doy ()

[0a3(p™)% = 204(p")?] <oy —q7) [ "z

7
(r*)°
By —a )Ci(p*)' ] T
N

(005 (p ) — 2a4(p* 2] < BOp~ —q )Cuul*

_ _ 1 1
Choosing 8 small enough, say j, so that {%} T < (%) 0t —0p~ we

obtain a contradiction to (5) for € (0, B). Hence, the set NV is empty. [

Since, N? = ¢, so N' = NT UN~ by Lemma 4. Define it = inf I(u) and i~ =

ueN+
inf I(u).
ueN -
Lemma 5. If0 < B < B8, then we have
i) it <0
(i) i~ >0.
Proof. (i) Letu € N'".
_p _ 7™ h(x )\Ml"’” lﬂlul Iule”(x)
I(u) —K('yp(x,y)(u)) ‘B/Q e dx /Q dx +/
%4 1 D(x 1 X X
gK(v,,(w)(u))—eF/ (x) || P )ln|u|dx+W/Qh(x)|u|97’( dx—ﬁ/ 11|79 dx ©)
A 1 ] B
<R E— P | u|d 0p() gy — 9(x
< R(Wptx () = g Jo Ol P tnluldx+ [l — 2 [t

Since, u € N so (Bg(u), u) > 0 which implies that
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, I\’ 2ol _u(o) P)
K (’Yp(xy //RZN ‘N+sp (xy) dx | +K( 717 xy / R2N |N+Sp ) dxdy
—,B/Q x)|u|7 dx—@/ (x)|u] PP ln|u|dx—/0h(x)|u|9px dx > 0.
This further implies
2
|u(x) — uy) [P (x, y |u u(y)|P=y)
r)/lf’ XV (/ /R2N ‘N-&-sp xY) dx +K IYF”W //RZN |N+sp xY) dXdy (7)
—Bg [ [u"d —9—/71 P nfuldx — [ (o[l > 0.
B~ [ 1ul"@dx = 0p~ [ n(x)lul W injuldx— [ n()|ulax
Furthermore,
(I'(u),u) =
u pxy) - 8)
K(7p(ay) (1 //RZN st yN+sp|xy xdy — ﬁ/ Jul 1 dx—/ h(x) [u| P9 In|u|dx = 0.
Multiplying (8) by (—6p~) and adding to (7), we obtain
2
|u(x) — uy) [P Pl y)|u(x) — u(y)[P™Y)
r)/Px}’ (//RZN ‘N+sp (xy) dx +K7ny / R2N |x_ |N+sp (xy) dXdy
- _g q(x) op(x y) [P
—q )/Q|u] dx—/ h(x)|ul dx—Gp K(Yp(x,y) (1 //sz |x—y\N+Sny) dxdy > 0.
This implies that
| |P xy) 2
[l < K oy ) [ [ [ dx) +pop~ —q7) [ JulTWdx
Q p(x R2N ‘N—&-sp xY) Q
nylu x) —u(y) [P 9
K(Tp(ay)( / . dxdy ©)

|x _ |N+sp (xy)

|1 (x) — u(y) [P
—op K'Yny //RzN ‘x_ |N+spxy) dxdy'

Using (9) in (6), we obtain

1) < R(7p(xy /W“ / () |ul PO In|uldx + p(6p~ — /\uW

2
I” ) (2, )| (x) — u(y) [P
K (7p(a g (u (/ /RZN ‘x_y|N+sp ) K ( //sz |x_y|N+SP w A

u )|Pey)

= 0P K(Vp(xy) (1 //RZN‘ |N+5ny) dxdy

< R(1p(ayy () + (p* )? K/(7p(x,y)( ))(WP(x,y)(”))sz(P+)2K(7p(xy)( 1)) (Y () (1))
_g(p)ZK(MW(u))(yp(w)(u))+/3(6p—q —) / Jul 1)

+)2
< |2 B a2 = a0 R gy 0+ B (87 =7 = 5 ) [

C2 C1
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Now using assumptions on c; and ¢, from (ii), we obtain
_ | '
1) < 303012 = 03000 ] Crppagy (0)° 4 B(0p =07 = 5 ) itz
_ 1
< [30 02 = 020 ] a0+ B (07 =07 = 5 )y

Since, 6 > a2(p*)? from assumption (ii) so coefficient of (Yp(xy) (u))? is negative
which along with using Theorem 2 further implies that

1) < 332 = axtr 7]l + B (09 4 = = ) Clulr
For 8 say in the range of (0, 8*), we obtain I(#) < 0 and hence i* = inf I(u) < 0.

ueN+
(i) Let u € N'~. Then, (Bj(u),u) < 0. This implies that

2
: O Pl uty )Irs)
K (’yP(XV (/ /RZN y‘N—&-sp xY) dx) + K ,Yp xy //RZN y|N+SP xy) dxdy

—,8/ x)|ul1 dx—G/ (x)|u) PP ln|u|dx—/ h(x)|u|P®dx < 0.
o)

This further implies that

2
[u(x) — uy) [P p(x, y u(x) — u(y)[P*Y)
rYP x]/) (/ /I.{zw y‘N+sp (xy) dx + K ’YP xy / R2N y|N+sp ) dXdy

(10)
— Bg* /|u|q dx—@p/ (x)|u PP ln\u|dx—/h(x)\u|6pxdx<0.
Q
Multiplying (I'(u), u) by —(8p™)? and adding from (10) we obtain,
plying y —{op g
2
(y)|P) p(xy)|u(x) — u(y) [Py
’YP X]/ <//RZN |x_ |N+spxy) dx +K7V"y /RZN |x_ |N+sp(xy) dXdy
—ﬁq+/0|u|‘7(x)dx—/ h(x)|u|9pxdx—9p+/0h(x)|u|9ﬁ(x)ln|u\dx
u )P _
= (69" [K(rp(ay ) [ /Rm' N+S,,'xy xdy—p [ fu"@ax— | <x>|u9r'<x>1n|u|dx] <o.
This implies
2
/ () ]P0 dx > K/ // ‘pxydx —opt [ h(x)[u|PDIn|u|dx
Q 'VP(Xy) R2N |x_y|N+spxy) P Q
(x, J/ )i (x) — u(y) [P
—pa* /|u|@ dx + K(7p(xy) (1 //sz |N+Spw) dxdy (11)
(09" Ky ) [ [ "”” avdy — [ Jul?@ax — [ n()|ul P nfulax
P(xy R2N |X* |N+spxy) Q Q '

Using (11) and Proposition 1, we obtain
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1 0p(x) : 1 6p(x)
epf/ﬂh(x)|u| In|udx qﬁ/ L dx+(9p )Z/Qh(x)|u\ dx

2 L o7(x) _ﬁ ()
Ry () = g [ WOl PO — = |t

2
1 Wy 2t 9(x)
Rt [ V(a0 (//Rm |x_y|N+pry) ) +B((0p*)7 4 )/Q|u| dx

K( () —u WP | otk Jux Wydd
P /YP xy //RZN |N+sp(xy) xay — ( P ,YPXJ //RzN |N+sp xXY) xay

+((ep7)? —(9P+))/Qh(x)|u|9”xln|u|dx}

I(”) 2 K('Vp(x,y)(u)) -

) . Y|P
> K(Yp(ay) (1)) + (6p7)? Ky (v //RZN |x—y|N+5pxy iy

1 y) [P ; 2 y) [P e
+(9p+)2 (Vi) (1 //]RZN |x7 |N+sp(xy) X K(7p () ( //sz |x7 ‘N—&-pry) xay
2

+p((6r 2 - = L) [ Ialax

> Ry () + oK (e (9) ey (0 = 17 (1= sy ) Ky 00) (e )
a a3(p~)? 1

> %(7p(x,y)( ))9 + Cf((ep}ﬁ))z(r)'p(x,y)(u))g - ﬂ4p+ (1 - (eer)z) (r)'p(x,y) (u))G

c
a
> [0304P+ + W - ﬂ4p+} ('Yp(x,y)(”))g
(p

Thus, I(u) > 0, and hence, i~ = inf I(u) >0. O
ueN-

Lemma 6. If0 < B < By, where B; = min{B*, B} then the functional I has a minimizer ug in
Nt and I(ug) =it

Proof. Since I is bounded below on A and so on V', there exists a minimizing sequence

(u,}) € Nt such that Lim I(u*) = inf I(u) =i" < 0 from Lemma 5. Furthermore, I is
ueN+
coercive so i, is bounded in AV from Lemma 3 and hence u,} — uj in ' C Xpuptoa

subsequence. By compact embedding, u;; Hiuar in L9(%) i(Q) for g € (1, p¥) (Theorem 2).
Since 0p* < p} from assumption (i), so |u;[ |7 — |uf %" by compact embedding. Thus,

as h(x) € C(Q)), we obtain Jlim f h(x) | |7 In|ust |dx = Jo h(x)|ug |07~ In|ug |dx and
+10p™* — op*
lim Jo h(x)[u;F 197" dx = [ h(x)|ug |97 dx (refer [26]).

Now, we need to show that u;} — u§ in X. We will prove it by contradiction. Let
uy - ug in Xo then

|ug (x) — ug (y)[P&Y) Juyy (x) = ) (y)[POY)
//RZN ey < Tim mf// gy (12

Furthermore, (I'(u;}), (u;})) = 0. Hence,
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X 1 -
> K(/Yp(xy) - 7/ |M dx - Gpi/ (x)|u;‘9P(X)ln|u:{|dx
1

- +(x) — (. p y)
TN 0[] W y (y)|
+ @p7)2 /Qh(x)‘un | dx 6p— ’YP xy) R2N |N+sp(xy) axdy

_ +19(x) 4 _/ h +16P(x); +d}
B [ w1z — [ nlus 7 n |

N 1 |u+ ) —u;t (y )|Py)
+
> K(fyp(x’y)(u” )) o 9}7 ’YP xy / /RZN y|N+sp (xy) dXdy
1 +19(x)

- Bl —— — d

5(‘1 >/ | *
> K( (uy)) = i —K( (1)) () =Bl =~ 5= N |70
= BV play) (Hn op— " Tpxy) Tp(xy)

a3 o aapt 0 1 1
> C*Z(r)/p(x,y)(u:{)) 9}7 (r)/p(xy)( +)) - :B<q_ - gp_> / |u;|ﬂi %)

- KZ) - {1945_} (’)’p(x,y)(u;zr))g - ﬁ(ql — ) / 109 .

Since ¢z < - + and a3 > 1 from assumption (ii), we obtain

1) > ayp* [as - 9;] Ot ) = B( 2 = = ) [ 1

(] ) (&) i

where, C; = ayp [ag - W} Now taking limit infimum both sides and using (11) and

Theorem 2, we obtain
0
s Jug (x) — ug (y) [P (L1 / +19(x)
<//sz N ) dxdy B P Q|un| dx

CZ””O HGP ( 1 > +

> V7 - Q(x)d

- p_;’_ ﬁ q_ Gp_ /(_) ‘ui’l| X
Collug [P 1 1

Z 2|| 0 H _ﬁ( >pq()( +)

pt q-  Op~
Collug |I°P” (1 1 )
2 - v P C u+ q+
= p P [lu ||
> 0.

This is a contradiction to iT < 0 for B small enough. Hence, uf = ua“ in Xy and
I(uf) = lim I(u;}) = inf I(u). Thus, u7 is a minimizer for [on N'*. O
0 n—eo M ueN+ 0

Lemma 7. If0 < B < B then the functional I has a minimizer uy in N~ and I(uy ) =i

Proof. Since I is bounded below on N and so on N ~, there exists a minimizing sequence
(u,;) € N~ such that nlgn I(u,) = mf I(u) =i~ > 0 from Lemma 5. Furthermore, I
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is coercive so u,, is bounded in N from Lemma 3, and hence, u,, — Uy in N~ C Xy
up to a subsequence By compact embedding, u, — u, in L1 (Q). Furthermore,
Lim fn X)|ug 07 Inju;, |dx = Jo i (x)|uy 07" Injuy |dx and Lim fQ x)|u 07 dx=

fQ x)|ug |9” dx.

Moreover, there exists a constant ¢ > 0 such that tu; € N . This can be verified as

follows:

- _ty- (xy)
R R T ydwy) B [ ol e

(x,y) [tug (x) — tug (y)|PY)
+K7P (xy) tuo /‘/RZN |x_ |N+sp (x,y) dXdy

—9/ x)[tug |73 n | tug \dx—/ﬂ (x) [ tug 0P

For, tu; € N we have (I'(tuy ), (tu, ) = 0) i.e.

[tuy (x) — tuy (v )|Pey) _ iy B
K(7p(xy) (tug ) //RZN |x— Worp(ey) dxdy—/%/n |tug |q(x)dx—/0h(x)|tu0 | p(x)ln|tu0 |dx = 0.

Now,
(Bp(tug ), (b)) = (By(tuy), (g ) — Op*I'(bug ), (1)
(*) "V p ) (B80)) (Vi) (Biig ) 4+ (P 2K (Y () (B )) (V) (F1tg )
+Blop / g 10 = 09 p K () (153)) (Tptey) ()

s (p)2 ) . ) )
< 4<f1 ! (Vo) (1)) + s (P2 (V) (b1 ))® = a30p™ p™ (7 p(a ) (F1)°

opt —q7) [ |tug |1 dx.
+BOp* =) [ Ity 11ax

Using ¢; > p™ from assumption (i) and 6 > a3(p™)? from assumption (ii), we obtain
(B (g ), (1)) < [aap ™+ as(p)2 = 0309 p | gy () + B0 —7) [l |19
There arises two casest < 1and t > 1. When 0 < t < 1, we obtain
(By(tug ), (tug)) < [asp™ +aa(pt)? — asbp™ p~ |17 (3,0 () + BOP™ —47) /Q t |y 90
< [aw* +ay(pt) - ugep*if} P () (14g))° + BOP™ — ) py (1)
< [aap™ + as(p*)? — asp*p | © ug |7 + B(Op™ — 47 ) Cllug 4

Choosing  small enough, say B3, we obtain (B/’g(tuo_), (tuy )) <O0.
Lett > 1, then

(By(tug ), (1)) < [aap™ +as(p™)2 = a0 p | €7 (30 (5))° + BOp™ — ) [ 17 g 19
< [aap™ +an(pt)? = as0p TP |7 (1,04 () + BOPT — 7)) ()
< [aap™ +as(p™)? = asbp™p | €7 g | + CBBp™ — ) iy 7.

Choosing B small enough, say B4, we obtain (B/’g(tua ), (tug ) <O0.
Hence, tu; € N~ for B = min{Bs, B4}
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Now, we will prove that u,, — u; in Xp. Since u,, — u; in Xg so tu,, — tu, in Xg
and tu, - tu, in Xo. Hence, I%('yp(x y) (g ) < lim inf K(yp(x,y)(tu;)). Therefore,

1(ti) = R (e <tuo>) B 1 g [ Mg 7
(//RZN |tu; y > tu;|157+)5|lﬂp(xx: ) / |tuo Iq /Q h(x )tu09|;: )zntuo .
u= |8P(x

()l g 70 zmwm ()t 709
—/Q e dx—i—/n(gp(x))zdx]

|tu;, |p xY) |tu;|q(x)
dxdy | — —r 4
<//RZNPWX— sG] Y Plo g0 ™

()t 709 | ()t P79
—/Q ) dx—i—/Q(gp(x))zdx]

= lim I(tu;,).

n—o00

+

< lim inf | K
n—oo

< lim

n—o0

Furthermore, since u,, — u;, and (1, ) C N'~, by using continuity of the function K,
we obtain

_ lug (x) — ug (y)[P) )
(), 4) = Ky ) [ [ 2 2 STy = [ g 1
—/Qh(x)|u5|9ﬂ Injug |dx
o luy, (x) — uy, (y)|PY) o
< tim inf K(7,0) () | [, |x_ Noaagr—xdy =B [ iz 7

— [ 1l (P ]
— (I ), (1)) =0,

which is a contradiction to u, € N~ and hence t # 1. Furthermore, observe that the
function I(fu,,; ) attains its maximum at ¢t = 1. Thus, we have

I(tuy ) < lim I(tu, ) < im I(u, ) = inf I(u) =i,

n—oo n—o0 ue‘/\/'*

which is absurd. Hence, u;, — u, in Xy and therefore I(u,) = nlgn I(u,) = ir}\ﬁ I(u).
o ueN~
Thus, u, is a minimizer for I on N—. O

Proof of Theorem 1. By Lemmas 6 and 7, we conclude that there exist ua“ e NT and
uy € N~ such that I(ug) = ir/l\%l(u) <Oand I(uy ) = ir/l\ﬁ I(u) > 0. Hence, we obtain
ue. ue/N -

at least two distinct nontrivial weak solutions of the considered problem for g € (0, **),
where §** = min {B1, B2}
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4. Conclusions

In this article, we address the multiplicity of the solutions of an elliptic problem
with variable exponents involving logarithmic nonlinearity and a nonlocal term using the
analysis of the fibering map and Nehari manifold. The Nehari manifold technique via
the fibering map applied for the variable exponents problem is interesting because of the
non-homogeneity that arises from the variable exponents. It is likewise well worth citing
that due to the presence of the variable exponents, most of the estimates are not maintained
straight away, unlike inside the regular exponent set-up. Hence, to overcome this problem,
some rigorous analysis has been performed.
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