

Nabil Mlaiki ^{1,*}, Nihal Taş ², Salma Haque ¹ and Doaa Rizk ³

- ¹ Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia; shaque@psu.edu.sa
- ² Department of Mathematics, Balıkesir University, Balıkesir 10145, Turkey; nihaltas@balikesir.edu.tr
- ³ Department of Mathematics, Faculty of Science, College of Science and Arts, Al Qussaim University,
- Al-Asyah 52571, Saudi Arabia; d.hussien@qu.edu.sa or doaarizk82@gmail.com
 * Correspondence: nmlaiki@psu.edu.sa or nmlaiki2012@gmail.com

Abstract: In this paper, we introduce new types of general contractions for self mapping on double controlled quasi-metric type spaces, where we prove the existence and uniqueness of fixed disc and circle for such mappings.

Keywords: double controlled quasi-metric spaces; fixed disc; fixed circle

MSC: 54H25; 47H09; 47H10

1. Introduction

Lately, proving the existence of a fixed circle or a fixed disk on metric spaces or on a generalized form of a metric space has been the focus of many researchers (see [1–5]). For instance, in [1], they proved the existence of a fixed circle for the Caristi-type contraction on a regular metric spaces. Further, adopting the techniques of the Wardowski contractive mapping, the authors in [5] were able to prove some interesting fixed-circle theorems. In [2,3], the existence of a fixed-circle problem was investigated on the three dimensions of space, the so-called *S*-metric space. In [6], the authors also proved some new fixed-circle results for mappings that satisfies the modified Khan-type contraction on *S*-metric spaces. Some generalized fixed-circle results with geometric viewpoint were obtained on S_b -metric spaces and parametric N_b -metric spaces (see [7,8]). Moreover, it was an open question to study the existence of a fixed-circle results was given to discontinuous activation functions on metric spaces (see [1,4,10]).

One of the most useful tools to show that a fractional differential equation has a solution is a fixed-point theory, see [11,12]; however, the existence of a fixed point leads us to conclude that such types of equations have a solution, but in some cases a map has a fixed point but it is not necessarily unique. So, in a case where we have more than one fixed point, what can we say about the set of a fixed point? In this manuscript, we are interested in the type of mapping that the set of fixed points is a disc or a circle. Of course the shape of a circle or a disc varies from one metric space to another. For our purposes, we study the existence and uniqueness of fixed circle and disc in double controlled quasi-metric type spaces. In the next section, we present some preliminaries.

2. Preliminaries

Definition 1 ([13]). *Consider the set* $\mathbb{B} \neq \emptyset$ *. Given non-comparable functions* $\mathbb{K}, \mathbb{L} : \mathbb{B} \times \mathbb{B} \rightarrow [1, \infty)$ *. If* $\mathbb{M} : \mathbb{B} \times \mathbb{B} \rightarrow [0, \infty)$ *satisfies*

 $(\mathbb{M}1) \mathbb{M}(x,v) = 0 \Leftrightarrow x = v,$

 $(\mathbb{M}2) \mathbb{M}(x,v) \leq \mathbb{K}(x,\beta)\mathbb{M}(x,\beta) + \mathbb{L}(\beta,v)\mathbb{M}(\beta,v),$

for all $x, v, \beta \in \mathbb{B}$. Then \mathbb{M} is called a double controlled quasi-metric type with the functions \mathbb{K} , \mathbb{L} and (\mathbb{B}, \mathbb{M}) is a double controlled quasi-metric type space.

Citation: Mlaiki, N.; Taş, N.; Haque, S.; Rizk, D. Some Fixed-Disc Results in Double Controlled Quasi-Metric Type Spaces. *Fractal Fract.* **2022**, *6*, 107. https://doi.org/10.3390/ fractalfract6020107

Academic Editors: Sotiris K. Ntouyas, Bashir Ahmad and Jessada Tariboon

Received: 22 January 2022 Accepted: 8 February 2022 Published: 12 February 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Throughout the rest of this manuscript we denote double controlled quasi-metric type space by (*DCQMS*).

Example 1 ([13]). Let $\mathbb{B} = \{0, 1, 2\}$. Define $\mathbb{M} : \mathbb{B} \times \mathbb{B} \to [0, \infty)$ by $\mathbb{M}(0, 1) = 4, \mathbb{M}(0, 2) = 1,$ $\mathbb{M}(1, 0) = \mathbb{M}(1, 2) = 3,$ $\mathbb{M}(2, 0) = 0, \mathbb{M}(2, 1) = 2,$ $\mathbb{M}(0, 0) = \mathbb{M}(1, 1) = \mathbb{M}(2, 2) = 0.$

Then \mathbb{M} *is a double controlled quasi-metric type with the functions* $\mathbb{K}, \mathbb{L} : \mathbb{B} \times \mathbb{B} \to [1, \infty)$ *defined as*

$$\begin{split} \mathbb{K}(0,1) &= \mathbb{K}(1,0) = \mathbb{K}(1,2) = 1, \\ \mathbb{K}(0,2) &= \frac{5}{4}, \mathbb{K}(2,0) = \frac{10}{9}, \mathbb{K}(2,1) = \frac{20}{19}, \\ \mathbb{K}(0,0) &= \mathbb{K}(1,1) = \mathbb{K}(2,2) = 1 \end{split}$$

and

$$\begin{split} \mathbb{L}(0,1) &= \mathbb{L}(1,0) = \mathbb{L}(0,2) = \mathbb{L}(1,2) = 1, \\ \mathbb{L}(2,0) &= \frac{3}{2}, \mathbb{L}(2,1) = \frac{11}{8}, \\ \mathbb{L}(0,0) &= \mathbb{L}(1,1) = \mathbb{L}(2,2) = 1. \end{split}$$

Throughout this paper, we denote by \mathbb{R} the set of all real numbers, and \mathbb{N} represents the set of all positive integers.

Example 2. Let $\mathbb{B} = l_1$ be defined by

$$l_1 = \left\{ \{ \varpi_n \}_{n \ge 1} \subset \mathbb{R} : \sum_{n=1}^{\infty} |\varpi_n| < \infty \right\}.$$

Consider $\mathbb{M} : \mathbb{B} \times \mathbb{B} \to [0, \infty)$ *such that*

$$\mathbb{M}(\eta, \varpi) = \sum_{n=1}^{\infty} (\varpi_n - \eta_n)^+$$

where $\alpha^+ := \max\{\alpha, 0\}$ denotes the positive part of a number $\alpha \in \mathbb{R}$, and $\omega = \{\omega_n\}$ and $\eta = \{\eta_n\}$ are in \mathbb{B} . Further, let $\mathbb{K}(\omega, \eta) = \max\{\omega, \eta\} + 2$ and $\mathbb{L}(\omega, \eta) = \max\{\omega, \eta\} + 3$. Note that (\mathbb{B}, \mathbb{M}) is a (DCQMS) with control functions \mathbb{K} , \mathbb{L} .

Now, we remind the reader of the topological properties of (*DCQMS*).

Definition 2. Let (\mathbb{B}, \mathbb{M}) be a (DCQMS), $\{\omega_n\}$ be a sequence in \mathbb{B} and $\omega \in \mathbb{B}$. The sequence $\{\omega_n\}$ converges to $\omega \Leftrightarrow$

$$\lim_{n \to \infty} \mathbb{M}(\omega_n, \omega) = \lim_{n \to \infty} \mathbb{M}(\omega, \omega_n) = 0.$$
(1)

Remark 1. In a (DCQMS), (\mathbb{B} , \mathbb{M}), the limit for a convergent sequence is unique. Further, if $\omega_n \to \omega$, we have for all $\eta \in \mathbb{B}$

$$\lim_{n\to\infty} \mathbb{M}(\omega_n,\eta) = \mathbb{M}(\omega,\eta) \text{ and } \lim_{n\to\infty} \mathbb{M}(\eta,\omega_n) = \mathbb{M}(\eta,\omega).$$

In fact, $\omega_n \to \omega$ and $\eta_n \to \eta \Rightarrow \mathbb{M}(\omega_n, \eta_n) \to \mathbb{M}(\omega, \eta)$.

Definition 3 ([14]). Let (\mathbb{B}, \mathbb{M}) be a (DCQMS), and $\{\omega_n\}$ be a sequence in \mathbb{B} . We say that $\{\omega_n\}$ is right DCQ-Cauchy \Leftrightarrow for every $\varepsilon > 0$, there exists a positive integer $N = N(\varepsilon)$ such that $\mathbb{M}(\omega_n, \omega_m) < \varepsilon$ for all $n \ge m > N$.

Definition 4 ([14]). Let (\mathbb{B}, \mathbb{M}) be a (DCQMS), and $\{\omega_n\}$ be a sequence in \mathbb{B} . We say that $\{\omega_n\}$ is left DCQ-Cauchy \Leftrightarrow for every $\varepsilon > 0$, there exists a positive integer $N = N(\varepsilon)$ such that $\mathbb{M}(\omega_n, \omega_m) < \varepsilon$ for all $m \ge n > N$.

Definition 5. Let (\mathbb{B}, \mathbb{M}) be a (DCQMS), and $\{\omega_n\}$ be a sequence in \mathbb{B} . We say that $\{\omega_n\}$ is DCQ-Cauchy \Leftrightarrow for every $\varepsilon > 0$, there exists a positive integer $N = N(\varepsilon)$ such that $\mathbb{M}(\omega_n, \omega_m) < \varepsilon$ for all m, n > N.

Remark 2. A sequence $\{\omega_n\}$ in a (DCQMS), is DCQ-Cauchy \Leftrightarrow it is right DCQ-Cauchy and left DCQ-Cauchy.

Definition 6 ([15]). *Let* (\mathbb{B}, \mathbb{M}) *DCQMS*.

(1) (\mathbb{B}, \mathbb{M}) is said left-complete \Leftrightarrow each left DCQ-Cauchy sequence in \mathbb{B} is convergent.

(2) (\mathbb{B}, \mathbb{M}) is said right-complete \Leftrightarrow each right DCQ-Cauchy sequence in \mathbb{B} is convergent.

(3) (\mathbb{B}, \mathbb{M}) is said complete \Leftrightarrow each DCQ-Cauchy sequence in \mathbb{B} is convergent.

Remark 3. If \mathbb{M} is a DCQMS on \mathbb{B} , then $\overline{\mathbb{M}}(x, v) = \mathbb{M}(v, x)$ for all $x, v \in \mathbb{B}$ is another quasimetric, called the conjugate of \mathbb{M} and $\mathbb{M}^{s}(x, v) = \max{\{\mathbb{M}(x, v), \overline{\mathbb{M}}(x, v)\}}$ for all $x, v \in \mathbb{B}$ is a metric on \mathbb{B} . Moreover, we have

- 1. $\mathcal{O}_n \to_{\mathbb{M}} \mathcal{O} \iff \lim_{n \to \infty} \mathbb{M}(\mathcal{O}, \mathcal{O}_n) = 0;$
- 2. $\mathcal{O}_n \to_{\overline{\mathbb{M}}} \mathcal{O} \iff \lim_{n \to \infty} \overline{\mathbb{M}}(\mathcal{O}, \mathcal{O}_n) = 0 \iff \lim_{n \to \infty} \mathbb{M}(\mathcal{O}_n, \mathcal{O}) = 0.$

Further, note that

Hence, $\mathcal{O}_n \to_{\mathbb{M}} \mathcal{O}$ implies $\mathcal{O}_n \to_{\mathbb{M}^s} \mathcal{O}$.

Lemma 1. Let (\mathbb{B}, \mathbb{M}) be a DCQMS and $\mathbb{W} : \mathbb{B} \to \mathbb{B}$ be a self-mapping. Suppose that \mathbb{W} is continuous at $\omega \in \mathbb{B}$. Then for each sequence $\{\omega_n\}$ in \mathbb{B} such that $\omega_n \to \omega$, we have $\mathbb{W}\omega_n \to \mathbb{W}\omega$, that is,

$$\lim_{n\to\infty}\mathbb{M}(\mathbb{W}\omega_n,\mathbb{W}\omega)=\lim_{n\to\infty}\mathbb{M}(\mathbb{W}\omega,\mathbb{W}\omega_n)=0.$$

3. Main Results

One way to generalize the fixed-point results is to study the geometric properties of the set of fixed points when we do not have a unique fixed point. Let (\mathbb{B}, \mathbb{M}) be a *DCQMS*, $x_0 \in \mathbb{B}$ and r > 0. The upper closed ball of radius r centered x_0 and the lower closed ball of radius r centered x_0 are defined by,

$$\overline{B^+}(x_0,r) = \{x \in \mathbb{B} : \mathbb{M}(x,x_0) \le r\}$$

and

$$\overline{B^-}(x_0,r) = \{x \in \mathbb{B} : \mathbb{M}(x_0,x) \le r\},\$$

Next, we present the definitions of a circle and a disc on a *DCQMS* (\mathbb{B} , \mathbb{M}): Let $r \ge 0$ and $x_0 \in \mathbb{B}$. The circle $C_{x_0,r}^{\mathbb{M}}$ and the disc $D_{x_0,r}^{\mathbb{M}}$ are

$$C_{x_0,r}^{\mathbb{M}} = \{ x \in \mathbb{B} : \mathbb{M}(x_0, x) = \mathbb{M}(x, x_0) = r \}$$

and

$$D_{x_0,r}^{\mathbb{M}} = \overline{B^+}(x_0,r) \cap \overline{B^-}(x_0,r) = \{x \in \mathbb{B} : \mathbb{M}(x_0,x) \le r \text{ and } \mathbb{M}(x,x_0) \le r\}$$

Notice that the disc $D_{x_0,r}^{\mathbb{M}}$ form a closed ball with respect to the associated metric \mathbb{M}^s . That is,

$$\mathbb{M}(x_0, x) \leq r$$
 and $\mathbb{M}(x, x_0) \leq r \Leftrightarrow \max\{\mathbb{M}(x_0, x), \mathbb{M}(x, x_0)\} \leq r \Leftrightarrow \mathbb{M}^s(x, x_0) \leq r$.

Let (\mathbb{B}, \mathbb{M}) be a *DCQMS* and \mathbb{W} be a self-mapping on \mathbb{B} . Further, let

$$r = \inf\{\mathbb{M}(x, \mathbb{W}x) \mid x \in \mathbb{B}, \ \mathbb{W}x \neq x\}.$$
(2)

3.1. DCQMS- $F_{\mathbb{M}}$ -Contractions

In [16], Wardowski defined a new class of functions as follows.

Definition 7 ([16]). *Let* \mathbb{F} *be the family of all functions* $F : (0, \infty) \to \mathbb{R}$ *such that*

 (F_1) F is strictly increasing;

(*F*₂) For each sequence $\{\alpha_n\}$ in $(0, \infty)$, the following holds

$$\lim_{n\to\infty}\alpha_n=0\Leftrightarrow\lim_{n\to\infty}F(\alpha_n)=-\infty;$$

(*F*₃) *There exists* $k \in (0, 1)$ *such that* $\lim_{\alpha \to 0^+} \alpha^k F(\alpha) = 0$.

Next, we presnt the following contractive type of mappings.

Definition 8. Let (\mathbb{B}, \mathbb{M}) be a DCQMS, \mathbb{W} a self-mapping on \mathbb{B} and $F \in \mathbb{F}$. Then \mathbb{W} is said to be a DCQMS- $F_{\mathbb{M}}$ -contraction if there exist t > 0 and $x_0 \in \mathbb{B}$ such that

$$\mathbb{M}(x, \mathbb{W}x) > 0 \Rightarrow t + F(\mathbb{M}(x, \mathbb{W}x)) \le F(\mathbb{M}(x_0, x)),$$
(3)

for each $x \in \mathbb{B}$.

Denote the set of fixed-points of a map \mathbb{W} by $Fix(\mathbb{W})$.

Theorem 1. Let (\mathbb{B}, \mathbb{M}) be a DCQMS, \mathbb{W} be a DCQMS- $F_{\mathbb{M}}$ -contraction with $x_0 \in \mathbb{B}$ on \mathbb{B} and r defined as in (2). Then we have $\overline{B^-}(x_0, r) \subseteq Fix(\mathbb{W})$, in particular \mathbb{W} fixes the disc $D_{x_0,r}^{\mathbb{M}}$.

Proof. First of all, we show that x_0 is a fixed point of \mathbb{W} . Assume that $\mathbb{M}(x_0, \mathbb{W}x_0) > 0$. By the quasi- $F_{\mathbb{M}}$ -contractive property of \mathbb{W} we deduce that

$$t + F(\mathbb{M}(x_0, \mathbb{W}x_0)) \le F(\mathbb{M}(x_0, x_0)).$$

Thus, $F(\mathbb{M}(x_0, \mathbb{W}x_0)) < F(0)$, which leads to a contradiction and that is due to the fact that *F* is strictly increasing. Thus, we arrive at $\mathbb{W}x_0 = x_0$.

If r = 0 then we obtain $\overline{B^-}(x_0, r) = D_{x_0, r}^{\mathbb{M}} = \{x_0\}$ and clearly, \mathbb{W} fixes the center of the disc $D_{x_0, r}^{\mathbb{M}}$ and the whole disc $D_{x_0, r}^{\mathbb{M}}$.

Let r > 0 and $x \in \overline{B^-}(x_0, r)$ with $\mathbb{W}x \neq x$. By the definition of r, we have $r \leq \mathbb{M}(x, \mathbb{W}x)$. Hence, by the *DCQMS-F*_M-contractive property, there exist $F \in \mathbb{F}$, t > 0 and $x_0 \in \mathbb{B}$ such that

$$t + F(\mathbb{M}(x, \mathbb{W}x)) \le F(\mathbb{M}(x_0, x)) \le F(r) \le F(\mathbb{M}(x, \mathbb{W}x)),$$

for all $x \in \mathbb{B}$ which leads us to a contradiction; therefore, we deduce that $\mathbb{W}x = x$, hence $\overline{B^-}(x_0, r) \subseteq Fix(\mathbb{W})$, in particular \mathbb{W} fixes the disc $D_{x_0,r}^{\mathbb{M}}$. \Box

Now, we introduce a new rational type contractive condition.

Definition 9. Let (\mathbb{B}, \mathbb{M}) be a DCQMS, \mathbb{W} a self-mapping on \mathbb{B} and $F \in \mathbb{F}$. Then \mathbb{W} is said to be DCQMS- $F_{\mathbb{M}}$ -rational contraction if there exist t > 0 and $x_0 \in \mathbb{B}$ such that

$$\mathbb{M}(x, \mathbb{W}x) > 0 \Rightarrow t + F(\mathbb{M}(x, \mathbb{W}x)) \le F(M_R^{\mathbb{M}}(x_0, x)), \tag{4}$$

for all $x \in \mathbb{B}$, where

$$M_{R}^{\mathbb{M}}(x,v) = \max\left\{\begin{array}{c} \mathbb{M}(x,v), \mathbb{M}(x,\mathbb{W}x), \mathbb{M}(y,\mathbb{W}y),\\ \frac{\mathbb{M}(x,\mathbb{W}x)\mathbb{M}(y,\mathbb{W}y)}{1+\mathbb{M}(x,v)}, \frac{\mathbb{M}(x,\mathbb{W}x)\mathbb{M}(y,\mathbb{W}y)}{1+\mathbb{M}(\mathbb{W}x,\mathbb{W}y)}\end{array}\right\}$$

Theorem 2. Let (\mathbb{B}, \mathbb{M}) be a DCQMS, \mathbb{W} a DCQMS- $F_{\mathbb{M}}$ -rational contraction self-mapping with $x_0 \in \mathbb{B}$ on \mathbb{B} , $\mathbb{W}x_0 = x_0$ and r defined as in (2). Then we have $\overline{B^-}(x_0, r) \subseteq Fix(\mathbb{W})$, in particular \mathbb{W} fixes the disc $D_{x_0,r}^{\mathbb{M}}$.

Proof. Suppose that r = 0. So we have $\overline{B^-}(x_0, r) = D_{x_0, r}^{\mathbb{M}} = \{x_0\}$. Using the hypothesis $\mathbb{W}x_0 = x_0$, \mathbb{W} fixes the disc $D_{x_0, r}^{\mathbb{M}}$.

Let r > 0 and $x \in \overline{B^-}(x_0, r)$ with $\mathbb{W}x \neq x$. By the definition of r, we have $r \leq \mathbb{M}(x, \mathbb{W}x)$. Because of the *DCQMS-F*_M-rational contractive property, there exist $F \in \mathbb{F}$, t > 0 and $x_0 \in \mathbb{B}$ such that

$$t + F(\mathbb{M}(x, \mathbb{W}x)) \le F(M_R^{\mathbb{M}}(x_0, x)),$$

for all $x \in \mathbb{B}$. Then we obtain

$$t + F(\mathbb{M}(x, \mathbb{W}x)) \leq F(M_R^{\mathbb{M}}(x_0, x))$$

$$= F\left(\max\left\{\begin{array}{cc}\mathbb{M}(x_0, x), \mathbb{M}(x_0, \mathbb{W}x_0), \mathbb{M}(x, \mathbb{W}x), \\ \frac{\mathbb{M}(x_0, \mathbb{W}x_0)\mathbb{M}(x, \mathbb{W}x)}{1 + \mathbb{M}(x_0, x)}, \frac{\mathbb{M}(x_0, \mathbb{W}x_0)\mathbb{M}(x, \mathbb{W}x)}{1 + \mathbb{M}(\mathbb{W}x_0, \mathbb{W}x)}\end{array}\right\}\right)$$

$$\leq F(\max\{r, \mathbb{M}(x, \mathbb{W}x)\}) = F(\mathbb{M}(x, \mathbb{W}x)),$$

a contradiction. Hence it should be $\mathbb{W}x = x$. Consequently, $\overline{B^-}(x_0, r) \subseteq Fix(\mathbb{W})$, in particular \mathbb{W} fixes the disc $D_{x_0,r}^{\mathbb{M}}$. \Box

3.2. DCQMS- α - x_0 -Contractive Type Mappings

First, we present the definition of an x_0 -contractive mapping in *DCQMS*.

Definition 10. Let (\mathbb{B}, \mathbb{M}) be a DCQMS, \mathbb{W} a self-mapping on \mathbb{B} and 0 < k < 1. Then \mathbb{W} is said to be a DCQMS- x_0 -contractive mapping if there exist $x_0 \in \mathbb{B}$ such that

$$\mathbb{M}(x, \mathbb{W}x) \le k \mathbb{M}(x_0, x),\tag{5}$$

for every $x \in \mathbb{B}$.

Clearly, x_0 is always a fixed point of \mathbb{W} in Definition 10. Now, we show that if \mathbb{W} is a *DCQMS*- x_0 -contractive mapping, then $Fix(\mathbb{W})$ contains a disc.

Theorem 3. Let (\mathbb{B}, \mathbb{M}) be a DCQMS, \mathbb{W} a DCQMS- x_0 -contractive self-mapping with $x_0 \in \mathbb{B}$ on \mathbb{B} and r defined as in (2). Then we have $\overline{B^-}(x_0, r) \subseteq Fix(\mathbb{W})$, in particular \mathbb{W} fixes the disc $D_{x_0,r}^{\mathbb{M}}$.

Proof. In the case r = 0, it is clear that $\overline{B^-}(x_0, r) = D_{x_0, r}^{\mathbb{M}} = \{x_0\}$ is a fixed disc of \mathbb{W} .

Suppose that r > 0. Let $x \in \overline{B^-}(x_0, r)$ be such that $\mathbb{W}x \neq x$. By the definition of r, we have $r \leq \mathbb{M}(x, \mathbb{W}x)$. On the other hand, using the *DCQMS*- x_0 -contractive property of \mathbb{W} , we obtain

$$0 < \mathbb{M}(x, \mathbb{W}x) \le k\mathbb{M}(x_0, x) \le kr < r,$$

which leads us to a contradiction. Thus, $\mathbb{W}x = x$ for every $x \in \overline{B^-}(x_0, r)$, that is, $\overline{B^-}(x_0, r) \subseteq Fix(\mathbb{W})$. In particular, \mathbb{W} fixes the disc $D_{x_0,r}^{\mathbb{M}}$. \Box

Now, we define the concept of $DCQMS-\alpha-x_0$ -contractive self-mappings in quasi-metric spaces.

Definition 11. Let \mathbb{W} be a self mapping on a DCQMS (\mathbb{B} , \mathbb{M}). Then \mathbb{W} is said to be a DCQMS- α - x_0 -contractive self-mapping if there exist a function $\alpha : \mathbb{B} \times \mathbb{B} \to (0, \infty), 0 < k < 1 \text{ and } x_0 \in \mathbb{B}$ such that

$$\alpha(x_0, \mathbb{W}x)\mathbb{M}(x, \mathbb{W}x) \le k\mathbb{M}(x_0, x),\tag{6}$$

for all $x \in \mathbb{B}$.

We recall α - x_0 -admissible maps as follows:

Definition 12. Let \mathbb{B} be a non-empty set. Given a function $\alpha : \mathbb{B} \times \mathbb{B} \to (0, \infty)$ and $x_0 \in \mathbb{B}$. Then \mathbb{W} is said to be an α - x_0 -admissible if for every $x \in \mathbb{B}$,

$$\alpha(x_0, x) \ge 1 \implies \alpha(x_0, \mathbb{W}x) \ge 1.$$

Theorem 4. Let (\mathbb{B}, \mathbb{M}) be a DCQMS, \mathbb{W} a DCQMS- α - x_0 -contractive self-mapping with $x_0 \in \mathbb{B}$ on \mathbb{B} and r defined as in (2). Assume that \mathbb{W} is α - x_0 -admissible and $\alpha(x_0, x) \ge 1$ for all $x \in \overline{B^-}(x_0, r)$. Then we have $\overline{B^-}(x_0, r) \subseteq Fix(\mathbb{W})$, in particular \mathbb{W} fixes the disc $D_{x_0,r}^{\mathbb{M}}$.

Proof. By the definition of a $DCQMS - \alpha - x_0$ -contractive self-mapping, it is easy to see that x_0 is always a fixed point of \mathbb{W} ; therefore, if r = 0 then we have $\overline{B^-}(x_0, r) = D_{x_0, r}^{\mathbb{M}} = \{x_0\}$ and the proof follows.

Suppose that r > 0. Let $x \in \overline{B^-}(x_0, r)$ such that $\mathbb{W}x \neq x$. By the definition of r, we have $r \leq \mathbb{M}(x, \mathbb{W}x)$. On the other hand, we have $\alpha(x_0, x) \geq 1$. Using the α - x_0 -admissible property and the DCQMS- α - x_0 -contractive property of \mathbb{W} , we find

 $0 < \mathbb{M}(x, \mathbb{W}x) \le \alpha(x_0, \mathbb{W}x) \mathbb{M}(x, \mathbb{W}x) \le k \mathbb{M}(x_0, x) \le kr < r,$

which leads us to a contradiction. Thus, $\overline{B^-}(x_0, r) \subseteq Fix(\mathbb{W})$, in particular \mathbb{W} fixes the disc $D^{\mathbb{M}}_{x_0,r}$. \Box

The concept of a DCQMS- $F_{\mathbb{M}}^{\alpha}$ -contractive mapping is defined as follows.

Definition 13. Let (\mathbb{B}, \mathbb{M}) be a DCQMS, \mathbb{W} a self-mapping on \mathbb{B} and $F \in \mathbb{F}$. Then \mathbb{W} is called a DCQMS- $F^{\alpha}_{\mathbb{M}}$ -contraction if there exist t > 0, a function $\alpha : \mathbb{B} \times \mathbb{B} \to (0, \infty)$ and $x_0 \in \mathbb{B}$ such that

$$\mathbb{M}(x, \mathbb{W}x) > 0 \Rightarrow t + \alpha(x_0, \mathbb{W}x)F(\mathbb{M}(x, \mathbb{W}x)) \le F(\mathbb{M}(x_0, x)),\tag{7}$$

for all $x \in \mathbb{B}$.

Theorem 5. Let (\mathbb{B}, \mathbb{M}) be a DCQMS, \mathbb{W} a DCQMS- $F_{\mathbb{M}}^{\alpha}$ -contractive self-mapping with $x_0 \in \mathbb{B}$ and r defined as in (2). Suppose that \mathbb{W} is α - x_0 -admissible and $\alpha(x_0, x) \ge 1$ for all $x \in \overline{B^-}(x_0, r)$. Then we have $\overline{B^-}(x_0, r) \subseteq Fix(\mathbb{W})$, in particular \mathbb{W} fixes the disc $D_{x_0,r}^{\mathbb{M}}$.

Proof. At first, using the DCQMS- $F_{\mathbb{M}}^{\alpha}$ -contractive property, one can easily deduce that $\mathbb{W}x_0 = x_0$. Hence we have $\overline{B^-}(x_0, r) = D_{x_0, r}^{\mathbb{M}} = \{x_0\}$ if r = 0. Clearly, \mathbb{W} fixes the disc $D_{x_0, r}^{\mathbb{M}}$.

Assume that r > 0. Let $x \in \overline{B^-}(x_0, r)$ where $\mathbb{W}x \neq x$; therefore, by the definition of r, we have $r \leq \mathbb{M}(x, \mathbb{W}x)$. On the other hand, we have $\alpha(x_0, x) \geq 1$ and \mathbb{W} is α - x_0 -admissible. So, using the DCQMS- $F_{\mathbb{M}}^{\alpha}$ -contractive property of \mathbb{W} , we deduce

$$F(\mathbb{M}(x,\mathbb{W}x)) < t + \alpha(x_0,\mathbb{W}x)F(\mathbb{M}(x,\mathbb{W}x)) \le F(\mathbb{M}(x_0,x)) \le F(r) \le F(\mathbb{M}(x,\mathbb{W}x))$$

Thus, by the fact that *F* is strictly increasing and t > 0 we come to a contradiction. Hence, we have $\overline{B^-}(x_0, r) \subseteq Fix(T)$, in particular \mathbb{W} fixes the disc $D_{x_0,r}^{\mathbb{M}}$. \Box

Definition 14. Let (\mathbb{B}, \mathbb{M}) be a DCQMS, \mathbb{W} a self-mapping on \mathbb{B} and $F \in \mathbb{F}$. Then \mathbb{W} is called a *Ćirić-type DCQMS-F*_M-contraction if there exist t > 0 and $x_0 \in \mathbb{B}$ such that

$$\mathbb{M}(x, \mathbb{W}x) > 0 \Longrightarrow t + \alpha(x_0, \mathbb{W}x)F(\mathbb{M}(x, \mathbb{W}x)) \le F(M_C^{\mathbb{M}}(x_0, x)), \tag{8}$$

for all $x \in \mathbb{B}$, where

$$M_C^{\mathbb{M}}(x,v) = \max\left\{\mathbb{M}(x,v), \mathbb{M}(x,\mathbb{W}x), \mathbb{M}(y,\mathbb{W}y), \frac{\mathbb{M}(x,\mathbb{W}y) + \mathbb{M}(y,\mathbb{W}x)}{2}\right\}.$$
 (9)

Proposition 1. Let (\mathbb{B}, \mathbb{M}) be a DCQMS. If \mathbb{W} is a Ciric-type DCQMS- $F_{\mathbb{M}}$ -contraction with $x_0 \in \mathbb{B}$ such that $\alpha(x_0, \mathbb{W}x_0) \ge 1$, then we have $\mathbb{W}x_0 = x_0$.

Proof. Assume that $\mathbb{W}x_0 \neq x_0$. From the definition of a Ćirić-type DCQMS- $F_{\mathbb{M}}$ -contraction, we obtain

$$\begin{split} \mathbb{M}(x_0, \mathbb{W}x_0) &> 0 \Longrightarrow t + \alpha(x_0, \mathbb{W}x_0) F(\mathbb{M}(x_0, \mathbb{W}x_0)) \leq F(M_C^{\mathbb{M}}(x_0, x_0)) \\ &= F\left(\max\left\{\begin{array}{c} \mathbb{M}(x_0, x_0), \mathbb{M}(x_0, \mathbb{W}x_0), \mathbb{M}(x_0, \mathbb{W}x_0), \\ \frac{\mathbb{M}(x_0, \mathbb{W}x_0) + \mathbb{M}(x_0, \mathbb{W}x_0)}{2} \end{array}\right\}\right) \\ &= F(\mathbb{M}(x_0, \mathbb{W}x_0)), \end{split}$$

which is a contradiction since t > 0. Then we have $\mathbb{W}x_0 = x_0$. \Box

Theorem 6. Let (\mathbb{B}, \mathbb{M}) be a DCQMS, \mathbb{W} a Ciric-type DCQMS- $F_{\mathbb{M}}$ -contraction with $x_0 \in \mathbb{B}$ and r defined as in (2). Assume that \mathbb{W} is $\alpha \cdot x_0$ -admissible and if for every $x \in D_{x_0,r}^{\mathbb{M}}$, we have $\mathbb{M}(x_0, \mathbb{W}x) \leq r$. Then \mathbb{W} fixes the disc $D_{x_0,r}^{\mathbb{M}}$.

Proof. If r = 0, clearly $D_{x_0,r}^{\mathbb{M}} = \{x_0\}$ is a fixed-disc (point) by Proposition 1.

Assume that r > 0. Let $x \in D_{x_0,r}^{\mathbb{M}}$. By the definition of r, we have $\mathbb{M}(x, \mathbb{W}x) \ge r$. So using the Ćirić-type DCQMS- $F_{\mathbb{M}}$ -contractive property and the fact that \mathbb{W} is α - x_0 -admissible and F is increasing, we obtain

$$F(\mathbb{M}(x,\mathbb{W}x)) \leq \alpha(x_0,\mathbb{W}x)F(\mathbb{M}(x,\mathbb{W}x)) + t \leq F(M_C^{\mathbb{M}}(x_0,x))$$

= $F\left(\max\left\{\mathbb{M}(x_0,x),\mathbb{M}(x_0,\mathbb{W}x_0),\mathbb{M}(x,\mathbb{W}x),\frac{\mathbb{M}(x_0,\mathbb{W}x)+\mathbb{M}(x,\mathbb{W}x_0)}{2}\right\}\right)$
 $\leq F(\max\{r,\mathbb{M}(x,\mathbb{W}x),0,r\}) \leq F(\mathbb{M}(x,\mathbb{W}x)),$

which leads to a contradiction. Therefore, $\mathbb{M}(x, \mathbb{W}x) = 0$ and so $\mathbb{W}x = x$. Hence, \mathbb{W} fixes the disc $D_{x_0,r}^{\mathbb{M}}$. \Box

3.3. DCQMS- α - φ - x_0 -Contractive Type Mappings

At first, we recall the notion of (c)-comparison functions [17] (see also [18]).

Definition 15 ([17]). A function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is called a (c)-comparison function if $(i)_{\varphi} \varphi$ is increasing;

 $(ii)_{\varphi}$ There exist $k_0 \in \mathbb{N}$, $a \in (0,1)$ and a convergent series of nonnegative terms $\sum_{k=1}^{\infty} v_k$ such that

 $\varphi^{k+1}(t) \le a\varphi^k(t) + v_k,$

for $k \ge k_0$ *and any* $t \in \mathbb{R}_+$ *.*

The class of (*c*)-comparison functions will be denoted by Ψ_c .

Lemma 2 ([17]). If $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a (c)-comparison function, then the followings hold: (i) φ is a comparison function;

(*ii*) $\varphi(t) < t$ for any $t \in \mathbb{R}_+$;

- (*iii*) φ *is continuous at* 0;
- (iv) the series $\sum_{k=0}^{\infty} \varphi^k(t)$ converges for any $t \in \mathbb{R}_+$.

Next, we introduce two new contractions and obtain two new fixed-disc theorems as follows:

Definition 16. Let (\mathbb{B}, \mathbb{M}) be a DCQMS and \mathbb{W} a self-mapping on \mathbb{B} . Then \mathbb{W} is said to be a DCQMS- α - φ - x_0 -contraction if there exist $\alpha : \mathbb{B} \times \mathbb{B} \to (0, \infty)$, $\varphi \in \Psi_c$ and $x_0 \in \mathbb{B}$ such that

$$\mathbb{M}(x,\mathbb{W}x)>0 \Longrightarrow \alpha(x_0,\mathbb{W}x)\mathbb{M}(x,\mathbb{W}x) \le \varphi(\mathbb{M}(x_0,\mathbb{W}x)),$$

for each $x \in \mathbb{B}$.

Theorem 7. Let (\mathbb{B}, \mathbb{M}) be a DCQMS, \mathbb{W} a DCQMS- α - φ - x_0 -contractive self-mapping with $x_0 \in \mathbb{B}$ and r defined as in (2). Assume that \mathbb{W} is α - x_0 -admissible. If $\alpha(x_0, x) \ge 1$ for $x \in \overline{B^-}(x_0, r)$ and $0 < \mathbb{M}(x_0, \mathbb{W}x) \le r$ for $x \in \overline{B^-}(x_0, r) - \{x_0\}$, then we have $\overline{B^-}(x_0, r) \subseteq Fix(\mathbb{W})$, in particular \mathbb{W} fixes the disc $D_{x_0,r}^{\mathbb{M}}$.

Proof. Using the *DCQMS*- α - φ - x_0 -contractive property, we have $\mathbb{W}x_0 = x_0$. Indeed, we assume $\mathbb{W}x_0 \neq x_0$, that is, $\mathbb{M}(x_0, \mathbb{W}x_0) > 0$. Then using the condition (*ii*) in Lemma 2 and α - x_0 -admissibility, we obtain

$$\alpha(x_0, \mathbb{W}x_0)\mathbb{M}(x_0, \mathbb{W}x_0) \leq \varphi(\mathbb{M}(x_0, \mathbb{W}x_0)) < \mathbb{M}(x_0, \mathbb{W}x_0),$$

a contradiction. Thus, $\mathbb{W}x_0 = x_0$.

Suppose that r = 0. In this case, $\overline{B^-}(x_0, r) = D_{x_0, r}^{\mathbb{M}} = \{x_0\}$ and the proof follows.

Now we suppose that r > 0 and $x \in \overline{B^-}(x_0, r) - \{x_0\}$ such that $x \neq \mathbb{W}x$. Using the definition of r, we have $r \leq \mathbb{M}(x, \mathbb{W}x)$. By the hypothesis, we known $\alpha(x_0, x) \geq 1$. From the *DCQMS*- α - φ - x_0 -contractive property and α - x_0 -admissibility, we obtain

$$\alpha(x_0, \mathbb{W}x)\mathbb{M}(x, \mathbb{W}x) \le \varphi(\mathbb{M}(x_0, \mathbb{W}x)) < \mathbb{M}(x_0, \mathbb{W}x) \le r,$$

a contradiction. Therefore, $\mathbb{W}x = x$, that is, $\overline{B^-}(x_0, r) \subseteq Fix(\mathbb{W})$, in particular \mathbb{W} fixes the disc $D_{x_0,r}^{\mathbb{M}}$. \Box

Next, we define the following new contraction.

Definition 17. Let (\mathbb{B}, \mathbb{M}) be a DCQMS and \mathbb{W} a self-mapping on \mathbb{B} . Then \mathbb{W} is said to be a *Ćirić-type DCQMS-* α - φ - x_0 -contraction if there exist $\alpha : \mathbb{B} \times \mathbb{B} \to (0, \infty)$, $\varphi \in \Psi_c$ and $x_0 \in \mathbb{B}$ such that

$$\mathbb{M}(x,\mathbb{W}x)>0 \Longrightarrow \alpha(x_0,\mathbb{W}x)\mathbb{M}(x,\mathbb{W}x) \le \varphi(M_C^{\mathbb{M}}(x_0,x)),$$

for each $x \in \mathbb{B}$.

Theorem 8. Let (\mathbb{B}, \mathbb{M}) be a DCQMS, \mathbb{W} a Ciric-type DCQMS- α - φ - x_0 -contractive self-mapping with $x_0 \in \mathbb{B}$ and r defined as in (2). Assume that \mathbb{W} is $\alpha - x_0$ -admissible. If $\alpha(x_0, x) \geq 1$ and $\mathbb{M}(x_0, \mathbb{W}x) \leq r$ for $x \in D_{x_0,r}^{\mathbb{M}}$, then \mathbb{W} fixes the disc $D_{x_0,r}^{\mathbb{M}}$.

Proof. Using the hypothesis, we have $\mathbb{W}x_0 = x_0$. Indeed, we assume $\mathbb{W}x_0 \neq x_0$, that is, $\mathbb{M}(x_0, \mathbb{W}x_0) > 0$. Then using the condition (*ii*) in Lemma 2 and α - x_0 -admissibility, we obtain

$$M_{\mathcal{C}}^{\mathbb{M}}(x_0, x_0) = \max\left\{\begin{array}{c}\mathbb{M}(x_0, x_0), \mathbb{M}(x_0, \mathbb{W}x_0), \mathbb{M}(x_0, \mathbb{W}x_0), \\ \frac{\mathbb{M}(x_0, \mathbb{W}x_0) + \mathbb{M}(x_0, \mathbb{W}x_0)}{2}\end{array}\right\} = \mathbb{M}(x_0, \mathbb{W}x_0)$$

and

$$\pi(x_0, \mathbb{W}x_0)\mathbb{M}(x_0, \mathbb{W}x_0) \leq \varphi\Big(M_C^{\mathbb{M}}(x_0, x_0)\Big) < \mathbb{M}(x_0, \mathbb{W}x_0),$$

a contradiction. It should be $\mathbb{W}x_0 = x_0$. Let r = 0. In this case, we have $D_{x_0,r}^{\mathbb{M}} = \{x_0\}$.

Now we suppose that r > 0 and $x \in D_{x_0,r}^{\mathbb{M}} - \{x_0\}$ such that $x \neq \mathbb{W}x$. Using the definition of *r*, we have $r \leq \mathbb{M}(x, \mathbb{W}x)$. By the hypothesis, we known $\alpha(x_0, x) \geq 1$. By the Cirić-type DCQMS- α - φ - x_0 -contractive property and α - x_0 -admissibility, we obtain

$$M_{C}^{\mathbb{M}}(x_{0}, x) = \max\left\{\begin{array}{c}\mathbb{M}(x_{0}, x), \mathbb{M}(x_{0}, \mathbb{W}x_{0}), \mathbb{M}(x, \mathbb{W}x),\\ \frac{\mathbb{M}(x_{0}, \mathbb{W}x) + \mathbb{M}(x, \mathbb{W}x_{0})}{2}\end{array}\right\} \leq \mathbb{M}(x, \mathbb{W}x)$$

and

$$\alpha(x_0, \mathbb{W}x)\mathbb{M}(x, \mathbb{W}x) \leq \varphi\Big(M_C^{\mathbb{M}}(x, x_0)\Big) < \mathbb{M}(x, \mathbb{W}x),$$

a contradiction. Therefore, $\mathbb{W}x = x$, that is, $D_{x_0,r}^{\mathbb{M}}$ is a fixed disc of \mathbb{W} . \Box

3.4. DCQMS- α - ψ - φ - x_0 -Contractive Type Mappings

We recall the notion of an altering distance function.

Definition 18 ([19]). A function $\psi : [0, \infty) \to [0, \infty)$ is called an altering distance function if the followings hold:

(*i*) ψ is continuous and nondecreasing;

(*ii*) $\psi(t) = 0 \Leftrightarrow t = 0$.

Using this definition, we present two new contractive conditions and two new fixeddisc results.

Definition 19. Let (\mathbb{B}, \mathbb{M}) be a DCQMS and \mathbb{W} a self-mapping on \mathbb{B} . Then \mathbb{W} is said to be a DCQMS- α - ψ - φ - x_0 -contraction if there exist α : $\mathbb{B} \times \mathbb{B} \to (0, \infty)$, two altering distance functions ψ , φ and $x_0 \in \mathbb{B}$ such that

$$\mathbb{M}(x,\mathbb{W}x)>0 \Longrightarrow \alpha(x_0,\mathbb{W}x)\psi(\mathbb{M}(x,\mathbb{W}x)) \le \psi(\mathbb{M}(x_0,x)) - \varphi(\mathbb{M}(x_0,x)),$$

for each $x \in \mathbb{B}$.

Theorem 9. Let (\mathbb{B}, \mathbb{M}) be a DCQMS, \mathbb{W} a DCQMS- α - ψ - φ - x_0 -contractive self-mapping with $x_0 \in \mathbb{B}$ and r defined as in (2). Assume that \mathbb{W} is α -x₀-admissible. If $\alpha(x_0, x) \geq 1$ for $x \in \mathbb{R}$ $\overline{B^{-}}(x_0,r)$, then we have $\overline{B^{-}}(x_0,r) \subseteq Fix(\mathbb{W})$, in particular \mathbb{W} fixes the disc $D^{\mathbb{M}}_{x_0,r}$.

Proof. Using the $DCQMS \cdot \alpha \cdot \psi \cdot \varphi \cdot x_0$ -contractive property, we have $Wx_0 = x_0$. Indeed, we assume $\mathbb{W}x_0 \neq x_0$, that is, $\mathbb{M}(x_0, \mathbb{W}x_0) > 0$. Then using the condition (*ii*) in Definition 18 and α - x_0 -admissibility, we obtain

$$\begin{aligned} \alpha(x_0, \mathbb{W}x_0)\psi(\mathbb{M}(x_0, \mathbb{W}x_0)) &\leq \quad \psi(\mathbb{M}(x_0, x_0)) - \varphi(\mathbb{M}(x_0, x_0)) \\ &= \quad \psi(0) - \varphi(0) = 0, \end{aligned}$$

a contradiction. It should be $\mathbb{W}x_0 = x_0$.

Suppose that r = 0. In this case, we obtain $\overline{B^-}(x_0, r) = D_{x_0, r}^{\mathbb{M}} = \{x_0\}$.

Now, we suppose that r > 0 and $x \in \overline{B^-}(x_0, r) - \{x_0\}$ such that $x \neq \mathbb{W}x$. Using the definition of *r*, we have $r \leq \mathbb{M}(x, \mathbb{W}x)$. By the hypothesis, we know $\alpha(x_0, x) \geq 1$. By the $DCQMS - \alpha - \psi - \varphi - x_0$ -contractive property and $\alpha - x_0$ -admissibility, we obtain

$$\begin{aligned} \alpha(x_0, \mathbb{W}x)\psi(\mathbb{M}(x, \mathbb{W}x)) &\leq & \psi(\mathbb{M}(x_0, x)) - \varphi(\mathbb{M}(x_0, x)) \\ &= & \psi(r) - \varphi(r) < \psi(r), \end{aligned}$$

a contradiction. Therefore $\mathbb{W}x = x$, that is, $\overline{B^-}(x_0, r) \subseteq Fix(\mathbb{W})$. In particular, \mathbb{W} fixes the disc $D_{x_0,r}^{\mathbb{M}}$. \Box

Definition 20. Let (\mathbb{B}, \mathbb{M}) be a DCQMS and \mathbb{W} a self-mapping on \mathbb{B} . Then \mathbb{W} is said to be a *Ćirić-type* DCQMS-α-ψ- φ -x₀-contraction if there exist $\alpha : \mathbb{B} \times \mathbb{B} \to (0, \infty)$, two altering distance functions ψ , φ and $x_0 \in \mathbb{B}$ such that

$$\mathbb{M}(x,\mathbb{W}x)>0 \Longrightarrow \alpha(x_0,\mathbb{W}x)\psi(\mathbb{M}(x,\mathbb{W}x)) \le \psi\Big(M_C^{\mathbb{M}}(x_0,x)\Big) - \varphi\Big(M_C^{\mathbb{M}}(x_0,x)\Big),$$

for each $x \in \mathbb{B}$.

Theorem 10. Let (\mathbb{B},\mathbb{M}) be a DCQMS, \mathbb{W} a Cirić-type DCQMS- α - ψ - φ - x_0 -contractive selfmapping with $x_0 \in \mathbb{B}$ and r defined as in (2). Assume that \mathbb{W} is α - x_0 -admissible. If $\alpha(x_0, x) \geq 1$ and $\mathbb{M}(x_0, \mathbb{W}x) \leq r$ for $x \in D_{x_0,r}^{\mathbb{M}}$, then \mathbb{W} fixes the disc $D_{x_0,r}^{\mathbb{M}}$.

Proof. Using the hypothesis, we have $\mathbb{W}x_0 = x_0$. Indeed, we assume $\mathbb{W}x_0 \neq x_0$, that is, $\mathbb{M}(x_0, \mathbb{W}x_0) > 0$ and we obtain

$$\begin{aligned} \alpha(x_0, \mathbb{W}x_0)\psi(\mathbb{M}(x_0, \mathbb{W}x_0)) &\leq & \psi\Big(M_C^{\mathbb{M}}(x_0, x_0)\Big) - \varphi\Big(M_C^{\mathbb{M}}(x_0, x_0)\Big) \\ &= & \psi(\mathbb{M}(x_0, \mathbb{W}x_0)) - \varphi(\mathbb{M}(x_0, \mathbb{W}x_0)) \\ &< & \psi(\mathbb{M}(x_0, \mathbb{W}x_0)), \end{aligned}$$

a contradiction. It should be $\mathbb{W}x_0 = x_0$. Let r = 0. In this case, we have $D_{x_0,r}^{\mathbb{M}} = \{x_0\}$ and the proof follows.

Now, we suppose that r > 0 and $x \in D_{x_0,r}^{\mathbb{M}} - \{x_0\}$ such that $x \neq \mathbb{W}x$. Using the definition of *r*, we have $r \leq \mathbb{M}(x, \mathbb{W}x)$. By the hypothesis, we know that $\alpha(x_0, x) \geq 1$. From the Cirić-type $DCQMS - \alpha - \psi - \varphi - x_0$ -contractive property and $\alpha - x_0$ -admissibility, we obtain

$$\begin{aligned} \alpha(x_0, \mathbb{W}x)\psi(\mathbb{M}(x, \mathbb{W}x)) &\leq \psi\Big(M_C^{\mathbb{M}}(x_0, x)\Big) - \varphi\Big(M_C^{\mathbb{M}}(x_0, x)\Big) \\ &< \psi(\mathbb{M}(x, \mathbb{W}x)), \end{aligned}$$

a contradiction; therefore, $\mathbb{W}x = x$, that is, $D_{x_0,r}^{\mathbb{M}}$ is a fixed disc of \mathbb{W} . \Box

4. An Application: A Common Fixed-Disc Theorem

Let (\mathbb{B}, \mathbb{M}) be a *DCQMS*, $\mathbb{W}, S : \mathbb{B} \to \mathbb{B}$ be two self-mappings and $D_{x_0, r}^{\mathbb{M}}$ be a disc on \mathbb{B} . If $\mathbb{W}x = Sx = x$ for all $x \in D_{x_0,r}^{\mathbb{M}}$, then the disc $D_{x_0,r}^{\mathbb{M}}$ is called the common fixed disc of the pair (\mathbb{W}, S) .

Following [20,21], we present the following.

$$M_{\mathbb{W},S}^{\mathbb{M}}(x,v) = \max\left\{\mathbb{M}(\mathbb{W}x,Sy),\mathbb{M}(\mathbb{W}x,Sx),\mathbb{M}(\mathbb{W}y,Sy),\frac{\mathbb{M}(\mathbb{W}x,Sy)+\mathbb{M}(\mathbb{W}y,Sx)}{2}\right\}$$

To obtain a common fixed-disc theorem, we define the following number:

$$\mu^{\mathbb{M}} = \inf\{\mathbb{M}(\mathbb{W}x, Sx) : x \in \mathbb{B}, \mathbb{W}x \neq Sx\}$$

In the following theorem, we use the numbers $M_{\mathbb{W},S}^{\mathbb{M}}(x,v)$, r which is defined in (2), $\mu^{\mathbb{M}}$ and ρ defined by

$$\rho = \min\{r, \mu^{\mathbb{M}}\}.$$

Theorem 11. Let (\mathbb{B}, \mathbb{M}) be a DCQMS, $\mathbb{W}, S : \mathbb{B} \to \mathbb{B}$ two self-mappings and \mathbb{W} an α - x_0 -admissible map. Assume that there exist $F \in \mathbb{F}$, t > 0 and $x_0 \in \mathbb{B}$ such that

$$\mathbb{M}(\mathbb{W}x, Sx) > 0 \Longrightarrow t + \alpha(x_0, \mathbb{W}x)F(\mathbb{M}(\mathbb{W}x, Sx)) \le F(M^{\mathbb{M}}_{\mathbb{W},S}(x, x_0)),$$

for each $x \in \mathbb{B}$ *and*

$$\alpha(x_0, x) \ge 1, \mathbb{M}(\mathbb{W}x, x_0) \le \rho, \mathbb{M}(x_0, Sx) \le \rho,$$

for each $x \in D_{x_0,\rho}^{\mathbb{M}}$. If \mathbb{W} is a DCQMS- $F_{\mathbb{M}}$ -contraction with $x_0 \in \mathbb{B}$ and r and S is an $\mathbb{M}-F_{\mathbb{M}}$ -contraction with $x_0 \in \mathbb{B}$ and r), then $D_{x_0,\rho}^{\mathbb{M}}$ is a common fixed disc of the pair (\mathbb{W}, S) in \mathbb{B} .

Proof. Let $x = x_0$. If $\mathbb{M}(\mathbb{W}x_0, Sx_0) > 0$ then we have

$$M_{\mathbb{W},S}^{\mathbb{M}}(x_0,x_0) = \max\left\{\begin{array}{c}\mathbb{M}(\mathbb{W}x_0,Sx_0),\mathbb{M}(\mathbb{W}x_0,Sx_0),\mathbb{M}(\mathbb{W}x_0,Sx_0),\\\frac{\mathbb{M}(\mathbb{W}x_0,Sx_0)+\mathbb{M}(\mathbb{W}x_0,Sx_0)}{2}\end{array}\right\} = \mathbb{M}(\mathbb{W}x_0,Sx_0)$$

and

$$t + \alpha(x_0, \mathbb{W}x_0)F(\mathbb{M}(\mathbb{W}x_0, Sx_0)) \leq F(M^{\mathbb{M}}_{\mathbb{W},S}(x_0, x_0)) = F(\mathbb{M}(\mathbb{W}x_0, Sx_0))$$

$$\implies t \leq (1 - \alpha(x_0, \mathbb{W}x_0))F(\mathbb{M}(\mathbb{W}x_0, Sx_0)),$$

a contradiction with t > 0; therefore $\mathbb{W}x_0 = Sx_0$, that is, x_0 is a coincidence point of the pair (\mathbb{W}, S) . If \mathbb{W} is a $\mathbb{M}-F_{\mathbb{M}}$ -contraction (or S is a $\mathbb{M}-F_{\mathbb{M}}$ -contraction) then using Theorem 1, we have $\mathbb{W}x_0 = x_0$ (or $Sx_0 = x_0$) and hence $\mathbb{W}x_0 = Sx_0 = x_0$.

Now if $\rho = 0$, then clearly $D_{x_0,\rho}^{\mathbb{M}} = \{x_0\}$ and this disc is a common fixed disc of the pair (\mathbb{W}, S) .

Let $\rho > 0$ and $x \in D_{x_0,\rho}^{\mathbb{M}}$. Assume that $\mathbb{W}x \neq Sx$, that is, $\mathbb{M}(\mathbb{W}x, Sx) > 0$. Using the hypothesis, α - x_0 -admissibility of \mathbb{W} and the definition of ρ , we obtain

$$M_{\mathbb{W},S}^{\mathbb{M}}(x,x_{0}) = \max\left\{\mathbb{M}(\mathbb{W}x,Sx_{0}),\mathbb{M}(\mathbb{W}x,Sx),\mathbb{M}(\mathbb{W}x_{0},Sx_{0}),\frac{\mathbb{M}(\mathbb{W}x,Sx_{0})+\mathbb{M}(\mathbb{W}x_{0},Sx)}{2}\right\}$$
$$= \max\left\{\mathbb{M}(\mathbb{W}x,x_{0}),\mathbb{M}(\mathbb{W}x,Sx),\frac{\mathbb{M}(\mathbb{W}x,x_{0})+\mathbb{M}(x_{0},Sx)}{2}\right\}$$
$$\leq \mathbb{M}(\mathbb{W}x,Sx)$$

and so

$$t + \alpha(x_0, \mathbb{W}x)F(\mathbb{M}(\mathbb{W}x, Sx)) \leq F(M^{\mathbb{M}}_{\mathbb{W},S}(x, x_0)) \leq F(\mathbb{M}(\mathbb{W}x, Sx))$$

$$\implies t \leq (1 - \alpha(x_0, \mathbb{W}x))F(\mathbb{M}(\mathbb{W}x, Sx)),$$

a contradiction with t > 0. We have found that x is a coincidence point of the pair (\mathbb{W}, S) , that is, $\mathbb{W}x = Sx$. If \mathbb{W} (or S) is a $\mathbb{M} - F_{\mathbb{M}}$ -contraction, then by Theorem 1, we have $\mathbb{W}x = x$ (or Sx = x) and hence $\mathbb{W}x = Sx = x$. Consequently, $D_{x_0,\rho}^{\mathbb{M}}$ is a common fixed disc of the pair (\mathbb{W}, S) . \Box

12 of 13

We give an illustrative example.

Example 3. Let $\mathbb{B} = (-\infty, \infty)$ and for all $x, y \in \mathbb{B}$ let $\mathbb{M}(x, y) = |x - y|$ if $x \in (0, 1)$ and $\mathbb{M}(0, 1) = 1$, $\mathbb{M}(1, 0) = 2$. Next, let $\mathbb{K}(x, y) = \max\{x, y\} + 2$ and $\mathbb{L}(x, y) = \max\{x, y\} + 3$. It is not difficult to see that (\mathbb{B}, \mathbb{M}) is a DCQMS. Now, define the self-mappings $\mathbb{W} : \mathbb{B} \to \mathbb{B}$ and $S : \mathbb{B} \to \mathbb{B}$ as

$$\mathbb{W}x = \begin{cases} \frac{1}{x^2} & \text{if} \quad x \in \{-1,1\}\\ x & \text{if} \quad x \in (-1,1)\\ x+2 & \text{otherwise} \end{cases}$$

and

$$Sx = \begin{cases} \frac{1}{|x|} & if & x \in \{-1,1\} \\ x & if & x \in (-1,1) \\ x+1 & otherwise \end{cases}$$

for all $x \in \mathbb{B}$. Define $\alpha(x, y) = e^{|x-y|}$. First of all, note that both mappings \mathbb{W} , S are α -0-admissible. Moreover, the pair of the self-mappings (\mathbb{W}, S) satisfy the following condition

 $\mathbb{M}(\mathbb{W}x, Sx) > 0 \Longrightarrow t + \alpha(0, \mathbb{W}x)F(\mathbb{M}(\mathbb{W}x, Sx)) \le F(M^{\mathbb{M}}_{\mathbb{W},S}(x, 0)),$

with $F = \ln x$, $t = \ln \frac{3}{2}$ and $x_0 = 0$. Now, it is not difficult to see that all the hypothesis of Theorem 11, are satisfied. Hence, $D_{0,1}^{\mathbb{M}}$ is a common fixed disk of the pair of mappings (\mathbb{W} , S) as required.

5. Conclusions

We have proved the existence of a fixed disk for self mappings in *DCQMS* that satisfy different types of contractions. We provided an application of our result on common fixed disk for two self mapping on *DCQMS*. In closing, we would like to bring to the readers attention the following question:

Question 1. Under what conditions these types of mappings in DCQMS have a unique fixed disk?

Author Contributions: N.M.: conceptualization, supervision, writing—original draft; N.T.: investigation, writing—review and editing; S.H.: writing—original draft, methodology; D.R.: writing—original draft. All authors read and approved the final manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The first and the third authors would like to thank Prince Sultan University for paying the publication fees for this work through TAS LAB.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Özgür, N.Y.; Taş, N. Some fixed-circle theorems on metric spaces. Bull. Malays. Math. Sci. Soc. 2017, 42, 1433–1449. [CrossRef]
- 2. Özgür, N.Y.; Taş, N.; Çelik, U. New fixed-circle results on S-metric spaces. Bull. Math. Anal. Appl. 2017, 9, 10–23.
- 3. Özgür, N.Y.; Taş, N. Fixed-circle problem on *S*-metric spaces with a geometric viewpoint. *arXiv* **2017**, arXiv:1704.08838.
- 4. Özgür, N.Y.; Taş, N. Some fixed-circle theorems and discontinuity at fixed circle. AIP Conf. Proc. 2018, 1926, 020048.
- 5. Taş, N.; Özgür, N.Y.; Mlaiki, N. New types of *F_c*-contractions and the fixed-circle problem. *Mathematics* **2018**, *6*, 188. [CrossRef]
- 6. Taş, N. Various types of fixed-point theorems on *S* -metric spaces. *J. BAUN Inst. Sci. Technol.* **2018**, 20, 211–223. [CrossRef]
- Özgür, N.Y.; Taş, N. Generalizations of metric spaces: from the fixed-point theory to the fixed-circle theory. In *Applications of Nonlinear Analysis*; Springer Optimization and Its Applications; Rassias, T., Ed.; Springer: Cham, Switzerland, 2018; Volume 134.
- 8. Taş, N.; Özgür, N.Y. Some fixed-point results on parametric N_b-metric spaces. *Commun. Korean Math. Soc.* **2018**, 33, 943–960.
- 9. Mlaiki, N.; Özgür, N.Y.; Mukheimer, A.; Ta ş, N. A new extension of the *M*_b-metric spaces. *J. Math. Anal.* **2018**, *9*, 118–133.
- 10. Taş, N.; Özgür, N.Y. A new contribution to discontinuity at fixed point. *arXiv* 2017, arXiv:1705.03699.

- 11. Dhage, B.C. Existence and attractivity theorems for nonlinear hybrid fractional differential equations with anticipation and retardation. *J. Nonlinear Funct. Anal.* **2020**, 2020, 47.
- 12. Kamenskii, M.; Petrosyan, G.; Wen, C.F. An existence result for a periodic boundary value problem of fractional semilinear differential equations in a Banach space. *J. Nonlinear Var. Anal.* **2021**, *5*, 155–177.
- Shoaib, A.; Kumam, P.; Alshoraify, S.S.; Arshad, M. Fixed point results in double controlled quasi metric type spaces. *AIMS Math.* 2021, *6*, 1851–1864. [CrossRef]
- Reilly, I.L.; Subrahmanyam, P.V.; Vamanamurthy, M.K. Cauchy sequences in quasi-pseudo-metric spaces. *Monatsh. Math.* 1982, 93, 127–140. [CrossRef]
- 15. Smyth, M.B. Completeness of quasi-uniform and syntopological spaces. J. Lond. Math. Soc. 1994, 49, 385–400. [CrossRef]
- 16. Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. *Fixed Point Theory Appl.* **2012**, 2012, 94. [CrossRef]
- 17. Berinde, V. Contracții Generalizate și Aplicații; Editura Cub Press: Baia Mare, Romania, 1997; Volume 22.
- 18. Nar, E.K.; Czerwik, S.; Aydi, H. (α , ψ) -Meir-Keeler contraction mappings in generalized b-metric spaces. *J. Funct. Spaces* **2018**, 2018, 3264620.
- 19. Khan, M.; Swaleh, M.; Sessa, S. Fixed point theorems by altering distances between the points. *Bull. Aust. Math. Soc.* **1984**, *30*, 1–9. [CrossRef]
- 20. Özgür, N.Y. Fixed-disc results via simulation functions. arXiv 2019, arXiv:1901.02623.
- Tomar, A.; Sharma, R. Some coincidence and common fixed point theorems concerning *F*-contraction and applications. *J. Int. Math. Virtual Inst.* 2018, *8*, 181–198.