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Abstract: High-dimensional fractional equations research is a cutting-edge field with significant prac-
tical and theoretical implications in mathematics, physics, biological fluid mechanics, and other fields.
Firstly, in this paper, the (4 + 1)-dimensional time-fractional Fokas equation in a higher-dimensional
integrable system is studied by using semi-inverse and fractional variational theory. Then, the Lie
symmetry analysis and conservation law analysis are carried out for the higher dimensional fractional
order model with the symmetry of fractional order. Finally, the fractional-order equation is solved
using the bilinear approach to produce the rogue wave and multi-soliton solutions, and the fractional
equation is numerically solved using the Radial Basis Functions (RBFs) method.

Keywords: (4 + 1)-dimensional time-fractional Fokas equation; Lie symmetry analysis; conservation
laws; numerical solution; radial basis functions method

1. Introduction

Fractional calculus [1,2] is a new research field in science and engineering, and it is
widely used in physical mathematics, medicine, signal processing, liquid and gas fluctu-
ation, and other fields. The concept of fractional order calculus [3,4] dates back to 1695,
and the half-derivative was first mentioned in Leibniz’s letter to L’'Hospital. Then, in 1730,
Euler suggested that the non-integer p-order derivative % of x” was meaningful. In 1822,
Fourier proposed the following formula:
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Compared with integer calculus, fractional calculus are non-local, and compared
with classical calculus, fractional calculus has the properties of memory, long-distance
interaction and inheritance, which are the main advantages of fractional calculus. The
conceptual theory of fractional derivatives [5] is more suitable for modeling, which has
allowed fractional differential equations to be gradually applied to all fields of research,
and its practicability and accuracy are becoming stronger and stronger. In this paper, the
high-dimensional Fokas equation is transformed into the high-dimensional time-fractional
Fokas equation.

The creation of accurate solutions to high-dimensional nonlinear PDE equations [6-8]
is crucial for comprehending some things that cannot be noted firsthand. However, it is
generally difficult to gain control over high-dimensional nonlinear dynamical systems. In
this paper, we will research the high-dimensional Fokas equation. Fokas [9] extended the
integrable Kadomtsev—Petviashvili (KP) and Davey-Stewartson (DS) equations to present
anew (4 + 1)-dimensional non-linear wave equation which is presented as
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It is a generalization of DS equation [10,11], (2 + 1)-dimensional KdV equation and KP
equation [12], and it contains 4-dimensional space scale and 1-dimensional time scale. DS
equation and KP equation have been widely used in mathematical physics, so the (4 + 1)-
dimensional Fokas equation can be used to describe wave problems [13,14] in physics, such
as surface waves and internal waves [15,16].

In recent years, many methods have been used to construct exact solutions of nonlinear
problems, such as homotopy perturbation method [17], Exp-function method [18], hyper-
bolic tangent method, variational iterative method [19], and so on. Some scholars have
studied the exact solution of the (4 + 1)-dimensional Fokas equation. Demiray et al. [20] ob-
tained the hyperbolic function solution and dark soliton solution of the (4 + 1)-dimensional
Fokas equation by using the improved exp(—Q(¢))-expansion function method. Using
the extended f expansion method and its deformation, He [21] obtained some new exact
solutions of the (4 + 1)-dimensional Fokas equation expressed by Jacobi elliptic function,
weerstrass elliptic function, hyperbolic function and trigonometric function. Lee et al. [22]
obtained the exact traveling wave solution by symbolic calculation, and obtained the dou-
bly periodic wave solution by using the generalized Jacobi elliptic function method. It is
also worth paying attention to Wazwaz [23] who used Hirota bilinear method to solve the
multi-soliton solution of KP equation; Tian et al. [24] used the Hirota bilinear method to
solve the lump-type solution, interaction solution and periodic wave solution of KdV equa-
tion, Tajiri [25] discusses the stability of solitons of the DS equation by Hirota method. In
this paper, we extend the bilinear method [26,27] to the (4 + 1)-dimensional time-fractional
Fokas equation, and obtain the rogue wave solutions and n-soliton solutions [28,29].

Rogue waves [30,31] have a large amplitude, sharp waveform and short duration.
Rogue waves show a local structure in time and space, which can gather huge energy in
a short time, which gives them strong destructive power. At present, there is no unified
definition of rogue waves. Most scholars believe that rogue wave refers to a wave whose
peak is at least twice as high as a plane wave, appears for a very short time and has strong
destructive power. As rogue waves have these characteristics different from other nonlinear
waves, rogue waves have become a research hotspot in the fields of ocean atmosphere,
plasma and Bose-Einstein condensation in recent years. The research results obtained in
this paper hope to enrich the dynamic behavior of high-dimensional nonlinear evolution
equations [32], such as the (4 + 1)-dimensional nonlinear wave field.

In addition, we not only obtain the exact solution of the equation, but also study
its numerical solution. By reviewing the literature, we found that the finite difference
method of finite element method and grid method can be used to solve partial differential
equations. However, in practical application, we find that the accuracy of the solution
obtained by this method is low. Therefore, we need to use meshless technology [33] to
obtain higher precision solutions. The numerical solution of the time-fractional Fokas
equation is obtained using the Radial Basis Function (RBF) method [34] in this work.

For differential equation modeling, symmetry and conservation rules [35] are ex-
tremely important. Lie symmetry [36-38] is a systematic and effective method to study
partial differential equations. It was first proposed by the Norwegian mathematician
Lie [39] at the end of the 19th century. Lie symmetry analysis provides an effective and
powerful tool for determining boundary value problems, initial value problems and conser-
vation laws of differential equations [40]. At the beginning of the 21st century, Gazizov et al.
studied the symmetry of time-fractional ordinary differential equations and the symmetry
of time-fractional ordinary differential equations [41]. In recent years, many scholars have
studied time-fractional partial differential equations by lie symmetry, but there are few
studies in high-dimensional high-order partial differential systems. In this paper, Lie sym-
metry analysis is conducted for the high-dimensional and high-order time-fractional order
Fokas equation. Conservation laws are of great significance for analyzing the integrability
and internal properties of differential equations and proving the existence and uniqueness
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of solutions. The symmetry and conservation laws of differential equations are connected
by Noether’s theorem, and the relationship between them leads to the further development
of conservation laws.

The structure of this paper is designed as follows. In Section 2, by using the semi-
inverse method and the fractional variational principle [42,43], we derive the (4 + 1)-
dimensional time-fractional Fokas equation. Using the Lie symmetry analysis method,
we discuss the conservation laws of the time-fractional Fokas equation in Section 3. In
Section 4, we use the simplified bilinear method to obtain the rogue wave solution and
soliton solution of (4 + 1)-dimensional time-fractional order Fokas. Finally, in Section 5, the
numerical solution of the (4 + 1)-dimensional time-fractional Fokas equation is obtained by
using the RBF method, and an examination of absolute inaccuracy under various scenarios
is provided.

2. Derivation of (4 + 1)-Dimensional Time Fraction Fokas Equation

The integer order equation is extended to the fractional order form using the semi-
inverse method and the fractional variational principle based on the definition of Riemann-—
Liouville fractional derivative, and the (4 + 1)-dimension time-fractional order Fokas
equation is obtained.

The (4 + 1)-dimensional Fokas equation is written as follows:

Qg — Uyxxy + Uxyyy + 12051y + 12Uy — 6Uzy = 0. 1)

Definition 1. The w Riemann—Liouville fractional derivative of the function u; is defined as
follows [44,45]:

DY =

ail
i w=mn,n€N,
{at (2)

T(n—w) aTn fo ymely(x,t)dt, n—1<w<n.
Definition 2. Fractional integration by parts is defined as
d d
/C @0 FODFg() =T+ |sf @l - [[@rsoniso) o

wheref (dt)7f(t 'yf dr(t—1)", f(t),8(t) € [c,d].

Assuming that u(x,y,z,w,t) = vx(x,y,z,w,t), vx(x,y,z,w,t) is the potential function,
then the potential equation of the (4 + 1)-dimensional time-fractional Fokas equation is

40yt — Vxxxxy + Uxayyy + 12(vaxy)x — 6Uxzy = 0. 4)

Next, the semi-inverse method is used to derive the Lagrange form of Equation (1).
The functional form of Equation (1) can be expressed as

:/dx/dy/dz/dt/dw
R Y Z T w

©)
{U [4clvxxt — C2Uxxxxy T C30Vxxyyy + 6C4((Ux)2)xy - 60503(27,0} }/

where ¢;(i =1,2,3,4,5,6) are the Lagrange multiplier [46].
Using the integration by parts method, assuming vy|r = vyly = v:|z = vu|lw =
v¢|r = 0, according to Equation (5), we obtain

:/Rdx/ydy/Zdz/Tdt /W dw[—4c10xVxt + C2VxVxxay ©)

2
— C3UxVxyyy — 1204 (0x)“Vxy + 6C50x0V20),

In order to obtain the optimal result, the Lagrange multiplier ¢;(i = 1,2,3,4,5,6) can
be determined by the variation of Equation (6). We use the variational optimal conditions
to integrate term by term, and achieve the following relationship.
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F (x/ Y, t,2,W, Ux, Uxt, Vzw, Uxy, Vxxxy, nyyy)
_9F 9 ‘LF)_ 0? (aF)_ 0? aF)
~9v  Ox Jvx’  0xdy Jvx,”  Oxdf Jvy -

¥ oF ¥ oF _a4(aP
0Z0W * 0V 0x30Y " 0Vxxxy 0x9Y3 " 0vxyyy

=8c10xxt — 2620xxxxy + 2C3Uxxyyy + 24C4(U§>xy — 12¢5052¢ = 0.

Obviously, Equation (7) is equivalent to Equation (4). Therefore, the Lagrange multi-

plier is as follows:

1
C1:C2:C3:C4:C5:§

We obtain the Lagrange form of the Fokas equation of integer order as follows:

L(v,vy, 01, Oy, Oxx, Oxy, Uzw, Uxxxy, nyyy)

1 1 ) ®)
= —204Uyx + vavxxxy — vavxwy — 60y Uxy + 304020,

Similarly, the Lagrange form of the fractional Fokas equation is as follows:

F(U/ Ox, D;XU/ Oy, Oxxr Oxy, Ozw, Uxxxy, nyyy)
)

1 1 5
= —2D{vvyy + vavxxxy — vavxyyy — 603Uxy + 300z,

The functional form of the (4 + 1)-dimensional time-fractional Fokas equation is:

J(v) = /Rdx/ydy/zdz /W dw/T(dt)“F(v,vx, D{v, vy, Uxx, Uxy, Vzws Vxxxys Uxyyy),  (10)

in which
| a0 = [ v -nys(e). ay

According to Definition 2, the Euler-Lagrange equation of the time-fractional Fokas
equation is as follows:

dF JoF JoF N dF oF
(%)U + (R)Ux + (m)DtU-f— (E)Uy + (m)vxx
oF oF oF oF

= )Uxy + (57— )0z + (57— ) Vxaxy +
avxy) g4 (avzw) = (avxxxy) i (

(12)

+( )Oxyyy =0,

Iy

Substituting Equation (9) into Equation (12), and according to the definition of frac-

tional potential function, we use the formula DE v(x,y,z,w,t) = u(x,y,z,w,t), then we
obtain:

4Df iy — Uyxxy + Unyyy + 12051y + 12Uty — 6Uizy = 0. (13)

Compared with the integer order model, the Equation (13) is more general and has

potential value for the study of some properties in practical problems.

3. Conservation Laws and Lie Symmetry Analysis of (4 + 1)-Dimensional
Time-Fractional Order Fokas Equations

3.1. Lie Symmetry Analysis
Definition 3. The broad definition of Leibniz’s rule is as follows [47],

DY (E(t)o(t)) = i( “ )Df”E(t)Dfa(t),a > 0.

n=0 n

where DY is the total fractional derivative operator, and
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( o ) (-1 leT(n—o0)

n) T(1-o0)l(n+1)
Definition 4. The generalized chain rule is defined as follows [48],

TR 3§ ) lvor i [ ] T

0r=0

The time-fractional Fokas equation here has five independent variables
F(x, Y,2,w,t,0,0x, o vy, Oy, Oxx, Oxy, Uzw, Uxxxy, nyyy) =0,0>0, (14)

where the subscript represents the partial derivative. The infinitesimal transformation is
defined as
xf=x+e(x,y,z,wt,u)+ 0(62),
v =y+eb(x,y,z,w,tu)+o(e?),
z* =z 4 el3(x,y,z,w,t,u) +o(e?),
w* =w+ely(x,y,z,w,t,u)+o0 6‘2),
' =t+et(x,y,z,wtu)+ 0(62),

u*=u+en(xyzwtu) —|—0(€2),

a *

% = az +en(x,y,z,w,t,u) +o(€?),

u* 9

a;l* N a; +en(x,y,z,w,t,u) +o(e?),
o%u* o%u

o _ v xy 2
vy axdy +en™(x,y,z,w,t,u) +o(e%),

our P u zZw 2
dz*ow*  9zow +en™(x,y,z,w,t,u) +o(e7),
a4u* 841/[ XxXx
= y 2
o*u *u

xXyyy
ax*ay*3 Sz +en™W (x,y,z,w,t,u) +o(e )

%uy  9%uy

otT  ote
where € < 1is the parameter, {1, C2, C3, G4, T, 17 are the subfunction, and #*, ¥, n*¥, #**, 5V,
7Y%, 7%, Furthermore, the extended infinitesimal 7%, ¥, ™V, n*, ™, y*¥¥¥, 1" have
the forms:

7" = Dx(17) — uxDx(81) — uyDx(82) — utDx () — uzDx(83) — uwDx(G4),
1Y = Dy (1) — “yDy(gz) - “ny(gl) - utDy(T) - usz(§3) - UwDy(C4)r
(1) — uxxDy(G1) — uxyDy(82) — uxtDy(T) — ux2Dy(&3) — tixw Dy (Ga),
- uZwa(Cl) - uZwa(CZ) - uztDw(T) - Mzsz(Cg,) - uzwa(€4)/
Uxxxy = Dy(’?xxx) - uxxxny(‘:l) - uxxxyDy(gz) - ”xxxtDy(T) - ”xxxsz(§3) - uxxway(géL)/
nyyy — Dx(ﬂyy ) — uyynyx(él) — uyynyx (62) — uyyyth(T) — Myyysz(§3) - Uyywax(gél)/
Ui 7t = D?(W )+ ng?(gluxx) - D?(gluxx) + §zD§T(uxy) - D?(‘:Zuxy)
+ 83Df (uxz) — DY (G3uxz) + EaDf (uxw) — D (Catixw) + Df (De(T)1ux)
— DY (tuy) + D (uy),

+ eﬂ”t(x,y, z,w,t,u)+ 0(62),
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where DY is the total fractional derivative operator, and the total derivative Dy, Dy, Dy, Dy,
D, are defined as

0 0 d 0 d
D; = =5 +Mta +Mtta +Mtxa +utyay+ Ty
0 0 ]
Dy a +uxa +uxxa +uxta +uxyau +,
d d dJ KB J
D, a+ua+ua+ua+ua+--
a za zza zxa ztaut ’
D i%—u a+u J +u i%—u i—i—
w Jw wa wwa Uz wx aux wt aut
With the generalized Leibnitz rule and the chain rule of composite functions, we can
obtain:
97 07u 27 (o _
e = g0+ (=001 (&) 37— - 2( » )or (e oy
n=
(16)
= o\ 9y o _
Rz () Yoo
n=
where

w-E BB () () (5 ) b o

17x =1y + Uxtfy — UxG1yx — uiglu - uy‘f-Zx - Myux§2u — UC3x — UzUxC3y
— UpTy — Uty Ty — UppGax — UnUxGau,
1Y =1y + tyty — uyGay — tyGou — txGry — txtyGry — UzGay — UzllyGau
— UpTy — Uplly Ty — UwGay — UwllyGay,
772 =1z + Uzly — Uz83; — ”§§3u — UxG1z — UxUzG1y — ”yé’Zz - ”y”z€2u
— Ty — Uty Ty — UwGaz — UwlzCay,
ny = Dy(ﬂx) - uxny@l) - MxyDy@Z) - MxtDy(T) - szDy(gg.) - ”way(gzi)
= Ny + Uylxu + 2ty lu + Uxtuy + tytxtuy — 2Uxy 81y — UxGlry — UyUxGlru
— Ay tyyCry — ugcé’luy - uy”?cgluu — 2uyyGox — UyGoxy — u;§2ux — 2uyyuxGoy
— Bty by Gou — Uyt Couy — Uy thGouy — 2UzyGax — UzG3xy — UylizC3ux
- zuzyux‘:&t - zuzuxyg?)u - uzuxg?auy - uzuxuy‘:Suu - zutyTx — UtTyy
— UyUpTyy — 2Upy Uy Ty — 2Uplyy Ty — Uty Tyy — Upllx Uy Tyy — 2UgpyCax
- uwgélxy - uyuwgélux - 2uwyux§4u - zuwuxy‘:élu - uwuxgéluy - uwuxuy§4uu
— UxxG1y — UxxUyG1y — UayCoy — UntTy — UnxtlyTy — UxzG3y — UxzUyG3y

- uxwé4y - ”xwuy€4u/
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7" = Duy(11*) — uzx Dy (81) — uzyDzv(‘:Z) — Uzt Dy (T) — 22D (83) — Uz D (Ga)

= Nzw + Uwlzu + 2Uzwly + Uzuw + Uz uy — 2u7083z — UzG37w — UnUzC3uz
— 44Uz Uz 83y — u%‘:?auw - uy”g‘i’)uu — 2UywG1z — UxGlzw — UxlwCluz
— 2UypUzG1y — UxlzwG1y — UxUzCluw — UxUzUnwCluy — 2”yw§22 - ”y(:Zzw
- uy“wéZuz - 2uywuz§2u - 2”yuzw§2u - uyuzCZuw - uy”z”zuCZuu — 2Upy Ty
— UpTo — Ul Tuz — 2UppUz Ty — 2Uplzp Ty — Uty Ty — Utz U Tyy
— 2UypwCaz — UwGizw — u%u€4uz — Utz Cay — 2UnUzwCay — UwlzCauw
- 2“%}”2‘:4;111 — UzxG1o — UzxlwG1u — UzyGow — UzyUwCoy — Uzt Ty — Uzt Uz Tu
— Uzz830w — UzzUwC3u — UzwCaw — UzwUwGau,

ﬂxxxy = Dx(ﬂxxy) - ”xxxny(gl) - uxxnyx((—:Z) - uxxyth(T) - uxxysz(C3)

- uxxwax<§4)

= Nxxxy + 3ux’7uxxy + 6uxx77uxy + 3u?c77uuxy + 12uxxy77ux
+ 6uxy77uxx + 12uxuxy77uux + UyTuxxx + 3uxuy77uuxx + 4uxxuy77uux
+ 3“325uy77uuux + 8Mxxxy77u + 12quxxy77uu + Suxxuxyﬁuu + 6u,251/lxy77uuu (17)
+ 4uyxxTuy + OUx U uuy + uinuuy + 4u§yquu + vy Uy Nuu + 2UyUxyuux
+ 6uxuyuxy’7uuu + uyu?ﬂuuuu - 11uxxxy§lx - 9uxxyglxx - 30uxuxxy§lux
- zuxyglxxx - 12uxuxygluxx - 27uxxuxy€1ux - 18u3cuxy‘:luux - Suxxx‘:lxy
— BllxaCiyay +

nyyy = D]/(nyy) — uxxnyy(gl) — uX]/]/]/D]/(CZ) - MxyytDy(T) - uxyysz(é?,) - uxyway(gzl)/

= xyyy + ity usyy + 6yytuxy + 3y Huuxy -+ Sityyyux
+ 6uyUyy Nyux + Mirluuux + Buuyyyu + 121y uy + 12Uy Uy
+ 6ty Huyy + 1200y by uuy + 120y Uy T + 64Uy T + U uyyy
-+ Bttty fuuyy + Gty uuy + Sttty uuuy ~+ Syt un + 6lhxthylhyy
+ 3uxu;77uuuu — BuxyyyC1x — 120y C1ay — 120y ayy C1ux — OUxyC1xyy
— 12uy vy Gruxy — 12uyytixyCrux — 6u§uxy§1uux — UxC1xyyy — SUxUyCluxyy
- 6“x”yy§luxy +eey

7= (%) + [(%),, — oDe(T)]0f u — ud] (1), +

ﬁi[( = (e
i( > (197" (11xy) —i( ; )Df(gz)agfn(uxy)
-2 () pr@E ) - () DrEar )

The infinitesimal generator X is obtained by Lie symmetry theory:

X:gl(x,y,z,w,t,u)i

d d
ax +€2(x/ylzrw/ t/u)@ + C3(x/yrzlw/ t/u)i

5 0z (18)
+1(x,y,z,w t,u)= +1(x,y,z,w,tu)

d
+C4(x/yzz/w/t/u)* at

0z ou
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According to the infinitesimal invariance, Equation (14) is possible to write as

Priwx (A = =12,
' (&) A=0 =0 n= 3 (19)
A =4D]u, — Uxxxy + Uxyyy + 12uxuy + 12uuxy 6Uzyp.
From Equations (16) and (19), we obtain the following operator
2] o] 0 0 d a7
priX =X+n'——+n'=—+n¥-—0 + Y + 77 +oe (20)

oy T o, T auy T dixery | DYy

and from Equation (18), we can get
4Tt 4 1(12uxyy) + 1 (12uy) + 1Y (12uy) + ¥ (12u) — 65 — ™ + 7™ =0.  (21)
Substituting Equation (17) into Equation (21), the following equations can be obtained:

Cluy = C3uz = CluyG3xy = Caxy = Coux = Ty = Gouuuy = G3w = G4z =0,
Nuxy — Graxy = 0, 38axxy — Cayyy = 0, 3C1uuxy — Nuuuy =0,

Gaxxx — 3C3xyy = 0, — Buxx + Crxwx + Nuxy — Goyyy +1217 =0,

683z + Caxxxy — Gxyyy = 0, 684z + Caxxxy — Gaxyyy = 0,

— 1281y + 3C1uxxy — Nuuxy = 0, — 1282 — 3Couryy — Nuuxy = 0,

382x + G2y — 381y — C1x = 0, Coxax + 3Muyy — 3oxyy =0,

= 3uxy + 381xxy — Ciyyy = 0, Muy — C1xy — Coyy + Coxx = 0,

61z + 681w + 38axxy — Cayyy = 0, 3Tuxy — Tyyy =0,

Txxx — 3Txyy = 0, 6C2z + 6021w + Caxxx — 3Caxyy =0,

Mu — Gaw — 383z — Cow = 0, Tz + Tw=0, Nux — 3G2xy =0, 22
121y = 3Nuxxy + C1xxxy — Clxyyy + 681200 = 0,
121 + 3uxyy — Gaxyyy + Goxxxy + 62200 = 0,
6Tz + Texxy — Tryyy = 0, 3C2uuxy — Nuuux =0,
=383y —G3x =0, 3t + Ty =0, 84z + G4 = O,
3Cax + Gay = 0, 3Cay + Gax =0, — Huy + 381y =0,
Gaxx — Cayy = 0, Tex — Tyy = 0, Caux — Gayy = 0,
6Czux — 6G1uy =0, — 1y +3¢1x +G1y =0,
Mu — 3G2y — Gox = 0, 383y + &3y = 0, e — 31, = 0.
The solution of the above system is obtained
n(x,y,z,w,t,u) =0,
&y z,wtu)=A1(z—w)+Cy,
Sy z,w, tu) = Ay(z—w)+Cy, 3)
&a(x,y,z,w,t,u) = Asz + Biu + Cs,
Ca(x,y,z,w,t,u) = Bou + Cy,

T(x,y,z,w,t,u) = Agt + Bsu + Cs,

where A1, Ay, A3, A4, B1, By, B3 and C;(i = 1,2,3,4,5) are arbitrary constants.
Therefore, the Lie algebra of a series of point symmetry of Equation (13) can be
rewritten as follows

— 0 — 0 + 90
{ Xi=25,X=245,X; = zaZ,X4 U, Xs =2,
9

Xe=(—w+1)2 + (—w+ 1) +u+1)2 + 4 @)

O+ (u+1)2.
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3.2. Conservation Laws

In this part, based on the Lie symmetry analysis method, the conservation laws
of the (4 + 1)-dimensional time-fractional Fokas equation is further discussed, and the
conservation vector of the equation is constructed.

First, the conservation law of Equation (13) satisfies the following equation:

Dy(C") + Dx(C*) + Dy(CY) + D2(C*) 4+ Du(C") =0, (25)

where C!, 0 = t,x, Y, z,w are conservative vectors.
The Lagrange equation of Equation (13) is expressed as follows:

L =0(x,y,zt,w)(4D] 1y — Uxxxy + Uxyyy + 12ux1y + 120ty — 61iz,) =0,  (26)

where v(x,y,z,t,w) is a new dependent variable. According to the above equation, the
integral of action can be defined as

T
/0 /Q L (x/ ]// Z/ w/ tr 'U, UX/ a?uX/ uyl uXXr uxy/ uZZU/ ”xxxy/ uxyyy) . (27)

The Euler-Lagrange operator is defined as

1) 0 0 0 0 d

— =— + (D) Dy=—+—— Dy=— — Dy=— + Dyy=——
ou  ou + (D) an;’ux Y Ouy y8uy + "Vauxy
(28)
4 D2 + Disrys— + Dayyy
zZw EITE xxxy auxxxy xyyy auxyyy .
where (DY) is the adjoint operator of DY, which is defined as follows:
(Df)" = (-1)"I;~7(D}) = £ DY, (29)

where I1177 is the right fractional differential operator, £ DY is the right Caputo fractional
differential operator, and

S = g ! )/tT( 72 . (30)

n—o T — f)lto—n
The adjoint equation of Equation (13) can be written as
F* = (DY)*vx + 12u0xy — Uxxxy + Vxyyy — 60z = 0. (31)
The Lie characteristic function W is shown as follows:
W =1 — Cquyx — Sotby — 83tz — Gallyy — Tl (32)

According to Equation (24), the following Lie characteristic function components can
be obtained:
{ Wi = —zuy, Wy = —z1ty, W3 = —z11;, Wy = —uitiyy, W5 = —tuy,

We = (w — Duy — (w — Vuy — (1 + 1)uz — gy — (u+1)uy. (33)

According to the Riemann-Liouville fractional derivative, the t-components of con-
served vectors can be obtained from

ct= Tﬁ—l—:;l](—l)kD‘[1k(W)Df(a(%§u)) - (—1)”]<W,D?<a(la)§u))>. (34)

where J(-) is defined as
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J(f,g) = / /Pfxs drds (35)

T’—S

C' can be expressed as follows:

oL oL oL
§l£+Wﬁ 5 —D; 5 + D;Dy —5 | =
ou; au auijk

oL oL oL
+D]-(Wﬁ) —ﬁ—Dk 5 R —i—D]-Dk(Wﬁ) —5 T+
auij E)ul]k aui].k

(36)

where n = [o] + 1.
Taking Ws as an example, by substituting W5 into Equations (35) and (36), The con-
served vector’s x, y,z, w, t components can be derived as follows:

oL oL
Ca’t =1L + fol(W6) BD‘T + ](W6r Dt aDU >
= 40D 1 [(w — 1)y — (w — Duy — (w4 1)y — up — (u+1)uy]

+J((w =Dy — (w — Dy — (u+1)uy — ugp — (u+1)ug, v4),

oL oL 5 oL 5, oL
=& L+ Wé[a Dy(m) - Dny(m) — Dy Ditxyyy
oL oL oL
+ Dy (W, + D? + D2
VW5 + DR )+ D)
JL oL oL
+ D3 (We) + D} (We) + D} (We)
Ol xxxy Ol xyyy Ol xyyy

=G L+ [(w—1uy — (w—1)uy — (u+1)uy — up — (u+1)uy] - [24ouy
— 12041 — Vxxy — Vyyy] + [(W — D)ty — (w0 — Vuy — (u+ 1)z — uy
— (u+ D]y - [12u0 + vy + vy ] + 0[(w — D1y — (w — Duy — (u+1)u,
— Uy — (U + D)ttg]xx + 0 - [12u0 + 02y + vy ] + 0[(w — 1)uy — (w — 1)uy
— (u+1Duy —uy — (u+Duly + v - [1200 4 vy + vyy| + 0[(w — 1) uy,
—(w—=1)uy — (u+ 1)y — uy — (1 + 1)ug]yyy,
oL JL
duy — Dl
oL
Ollyy
JdL
ou Uxyyy
=CL+ [(w—1uy — (w—1)uy — (u+1)uz — up — (u+1)uy] - [2401,
— 12031 — Vxxx — Vxyy] + [(w — D1ty — (w — D)y — (u+1)uz — g
— (4 Dugly - [12u0 + vy + vy ] + 0 - [(w = 11y — (w — 1)uy
—(u+ 1)y —up — (u+ Duglyy +o- [(w—1)ue — (w—1)uy
— (M + 1)112 — Uy — (u + l)ut]xx +0- [(w - 1)ux - (ZU - 1)uy
— (u+ D)y — uy — (4 1)y,
JL
iz, iz,
=&L — vy[(w — Vuy — (w — Duy — (u+ D)1z — 1y — (u+ 1)uy
+o[(w—1Duy — (w—V)uy — (u+ 1)z — g — (1 + 1) tut]w,

- D32k

aMxxxy

oL
)+ Dz( i3,
xyyy

CY =GL + We[=—

_ 2
auxy ) Dny(

oL
a“xxxy

+ Dy(We)[5— + D3( )]

oL
auxxxy

oL
auxxxy

+ Dy (We) 5—— + D3 (W) + D3 (We)

C* =3L+ Ws[—Dy + Dy (We)|
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€ = E4L+ Wel~D 52—+ D(We) 5
=L — v [(w—1uy — (w —Duy — (u+1)uz — up — (1 + 1)uy]

+o[(w — Dux — (w — Dy — (u+ D)tz — ugp — (1 + V)uyglz.

4. The Exact Solutions of the Time-Fractional Fokas Equation
4.1. Rogue Wave Solutions of the (4 + 1)-Dimensional Time-Fractional Fokas Equation

First, let us introduce Hirota bilinear methods. The Hirota bilinear method’s main goal
is to convert the equation into a bilinear form by using variable transformation and bilinear
derivative to generate an auxiliary function, which can then be solved. Using fractional
transformation and the bilinear approach, we investigate the rogue wave solution of the
(4 + 1)-dimensional Fokas equation.

Definition 5. The Hirota bilinear operator (d-operator) is defined as follows

" (0 o\" 0"
D!(a,b) = (ax _ ay) a(x)b(y) e ayna(ery)b(x - ) v -
D{"D¥(a,b) = pwrl —ayna(t+s,x+y)b(t —5,x y)J .
s=0y=

According to the definition of Hirota bilinear operator, we can obtain
2
D%(f f) =2fxxf —2(fx)

DxDi(f - f) = 2fxtf — 2fxfe (38)
Di(f - f) = 2fxxexf — 8fuxxfr + 6(fxx)2

For the (4 + 1)-dimensional time-fractional Fokas equation:
4D{ Uy — tyxxy + tyyy + 12uxtty 4+ 12Uty — 6z = 0. (39)
At the same time, we perform fractional transformation:

mt?

T=—F——
Irl+o)’

where m is a constant. It can be obtained from the above equation

u_ o
ot T oT’
Equation (39) can be written as
AuTy — Uyxxy + Uxyyy + 120510y + 120Uty — 61z, = 0. (40)

First, we take the following transformation:

¢ =uax+ By, 41)

where « and f are undetermined constants. Then, Equation (40) becomes

|:MT + i‘[&(ﬁz — 0(2) ugrr + ;ﬁ(uz)é} : — %”zw =0. (42)

We introduce the following variable transformation

A=R(nf);, R=p*—a’ (43)
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Equation (39) can be transformed into bilinear form as follows:
D Dt+1ﬁ(ﬁ2—zx2)D4—iDsz f-f=o. (44)
Ty ¢ 2a

According to Definition 5, the bilinear form Equation (44) can be expanded as

;D + 3B(F —02) D = 2 DeDuf - £

= forf — fofr + 3B — &) fuzeef — Yzzeks —3%) — 5 (Fouf = o) =0

Let us assume that

f=0m(Gzw )+ (n(gzwT)>+ (G zwT))>+bis,
m(g,z, w, T) = D10+ byz + bsw + by T,

n(f,z,w,T) = bs{ + bz + byw + bg T,

1(¢,z,w,T) = by + bioz + by1w + b12T,

where b;(i = 1,2, --,13) are real parameters to be determined.
Through calculation, we obtain the solution of the following parameters:

_ =34 _ 3dy _ 3dj
b4 - 2(Xd4 ’b8 - 21Xd4’b12 - 20(!14’

by — bs (b3b1o—bebo ) +-b11 (b1bs—brbs)
7= b1b1g—babg ’

— ”‘ﬁ(ﬁz_"‘z)(b%"‘bg"‘b%)S(ﬂlblo—hz%)
2(blbll*b3b9) [(b]blo7b2b9)2+(b5b]07b6b9)2+(b]b67b2b5)2] ’

b1z

where i
d1 =bs | (babg — bybyg) (b1ba + bob1g) — bybZbg — bab2big + 2b2b5b6b9]

+ b1y [(1711010 — babo)® + (bibs — bzb5)2} ,

dy =bs :(b5b10 — bebo) (bobig + bsbg) + b2bsbo + b2bebig — 2b1b2b6b9}

by [b2b6 (b% - bg) + bybs (bg - b%o) + 2b1b6b9b10],

ds =bs [ (b1b1o — babo)® + (bsbo — bsbio)?| + by [bybo (6%, — 03 — b2)
+bobro (87 — 0% — B3 ) + 2b1bsbebro

dy = (b% +BR+ bg) (b1big — babo).

Given the particularity of f, we find the following conditions:

aB (B> — a?) (bybyg — babo) S
(b1b11 — b3bo) ’

with
ajayq — azag #= 0.

(45)

(46)

(47)

By importing the calculated parameters into Equation (43), the solution of Equation (39)

is obtained

2(B? — a?)[(b? + b2 + b2) (m? + n? + 12 + byz) — 2(bym + bsn + bol)?]

= (m2 +n2+12+b13)2

7

when T = r(m

150) , we obtain the fractional solution of the equation.

(48)
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Based on the solution Equation (48) of the (4 + 1)-dimensional fractional Fokas equation
obtained by the bilinear method, the phenomenon of rogue waves in higher dimensional
higher-order Fokas model is studied.

By selecting appropriate parameters, the image of the (4 + 1)-dimensional time-
fractional order Fokas equation when the order of the fractional order is equal to 1 is
drawn, see Figure 1a,b. Rogue waves have the property of appearing in a particular space
and time, taking on a local structure in time. It is also easy to see from the image that they
have significant features: large amplitude, sharp crest, short duration.

In order to study the rogue wave phenomenon in the fractional model, we select
parameters ¢ = 0.75 and ¢ = 0.5 to obtain the rogue wave image of the (4 + 1)-dimensional
temporal fractional Fokas equation, as presented in Figures 2a,b and 3a,b. We can clearly
observe the rogue wave similar to that in Figure 1 in Figures 2 and 3. From the three sets of
images, we find that when the value of ¢ is reduced, the rogue wave’s fluctuation range is
enlarged and its amplitude remains unchanged.

- - !25

- 2

- 15
1
05
o

50 0 -50
t
(b)

Figure 1. Evolution plots of Equation (48) by choosing & = 2,8 = —4,a; = 1,40 = —1,a3 = 2,a5 =
1,06 =0,a9 =1,a10=1,a11 =1. (@Jc =1, (b)c = 1.

25
' - !2
R 15
1
05
0
50 0 -50
t
(b)

Figure 2. Evolution plots of Equation (48) by choosing &« =2, = —4,a; = 1,40 = —1,a3 = 2,a5 =
1,46 =0,a9 = 1,a19 = 1,411 = 1. (a) 0 = 0.75; (b) 0 = 0.75.

7 “ !2 5

- 2

R 15
1
05
0

50 0 50
t
(b)

Figure 3. Evolution plots of Equation (48) by choosinga =2, = —4,41 = 1,a0 = —1,a3 = 2,45 =
1,(16 = 0,&19 = 1,1110 = 1,5!11 =1 (a) o =0.5; (b) o =0.5.

e e S —

0 -5050
w t
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0 -50
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4.2. Multiple Soliton Solutions of the (4 + 1)-Dimensional Time-Fractional Fokas Equation

Based on the Hirota bilinear transformation introduced above, the multiple solution
of Equation (39) is constructed by using Equation (44). First, we can suppose that there is a
single soliton solution of Equation (39). Its form is

u(,z,w,T) = R(In f)77, R = B* —a?, (49)

where the auxiliary function f({,z, w, T) is calculated by

(Czw,T) n {”“’f’l“fnw— [%ﬁ(ﬁZ—aZV%r;_?}l@ } T}
f(Gzw,T) =140 =1+ , (50)

and ¢y, p1, 41 are constant.
Thus, the soliton solution of the (4 + 1)-dimensional Fokas equation is

1
W@ 2w T) = (B = o) I+ )] = (8 - ey, )
where
1 3
1 =n{ad+ prz+ - [16(8 - ad)ctrt - L] 7,

Then, the soliton solution of the (4 + 1)-dimensional time-fractional Fokas equation is:

u(@zzz w, t) = ('Bz - 042) {11’1(1 + epl):| a4

v (52)
r {015 +piz+qw— [%ﬁ(ﬁz —a?)eqr} — 32]27” r(1t+a) }

2

1
= Zr%(ﬁz — a?)sech?
Assuming ¢ = 3x + 5y, Figure 4a—c obtain isolated wave motion images with different
T values under integer solutions. In order to study the soliton solution in the fractional
model, we assume that c = 0.2,0 = 0.5,0 = 0.8 at t = 2 to obtain the motion of the bell
soliton in Figure 5.

()

Figure 4. In the case of integer order solution, evolution plots of single soliton solution created by
choosingc; =1,11=1,a=3,=5p1=2,41=32z2=0w=0@T=1LMmBT=0(T=-1.
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(@ (b)

Figure 5. In the case of fractional solution,evolution plots of single soliton solution by choosing
aq=1rn=La=3=5p=291=3z2=0w=0.@t=20c=02(0b)t=20=0.5(c)
t=2,0=08.

We can see from the figure that the bell solitary wave is moving in the negative
direction of the x-axis. Figure 5 illustrates the solution of the (4 + 1)-dimensional time-
fractional Fokas model with similar wave form of integer order form. As ¢ increases, the
bell wave moves along the negative X-axis. For the double-soliton solution, we suppose

f(Z,z,w,T) =1+ et 4 ef2 4 eP1 12t An2, (53)
According to Definition 5, we can obtain /12 in the above equation as:

oAz _ aB (B —a?)(ra— 1)’ +2(p2— p1) (92 — 1)
aB(B? —a?)(ry+11)* +2(p2 — p1) (92 — 41)

Substitute Equation (53) into

u=(p*—a?)(Inf)g (54)

We obtain the two-soliton solution of (4 + 1)-dimensions Fokas as follows

u=(B*—a®)[In(1+ e + ef2 + 12ty -, (55)

where

1 3piq; )
pi(6z w0, T) = ri{ei + piz + g+ [~ B2 — )it + DT} i =12 (56)

Then we obtain the two-soliton solution of the (4 + 1)-dimensional time-fractional
Fokas equation.

u=(B*—a®)[In(1 + et + ef2 + eP11P2TA12)]
pi = Vi{CzC + piz +qiw (57)

10 o a0 3pigi]  mt? .
+{ 4ﬁ([3 “>Ciri+2¢xci}l"(1+a) =12
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Next, we find the three-soliton solution. Assuming that

f=1+et +e2 {ef3 + eP1to2t A | op1te3+Ars

58
4 ef2tp3tAn | o1 He2tp3tAnt Az A, 8

Substituting into Equation (54), the three-soliton solution of the (4 + 1)-dimensional
time-fractional Fokas equation is obtained.

u= (52 _ ,,(2) [111(1 LePl 1 eP2 1 o3 1 eP1HP2tAL | o103t AL

(59)
4ebpatpatA | eP1+P2+P3+A12+A13+A23)] ,
44
where
1 3piqi1 mt’ .
pi = Vi{ci€+ piz +giw + [— ;Lﬁ(ﬁz —a?)cir? + ﬁcj W}'l =1,2.
and )
oAy WB(B? = 0?) (rj—ri)” +2(p; — pi) (4 — )
= 5 .
ap(B? —a2)(rj+1:)" +2(p; — pi) (a7 — ;)
Similarly, we assume:
fo= Z eLliz1 Hibit A <iq #i#inj’ (60)

u=0,1

We can obtain the formula of n-soliton solution of the (4 + 1)-dimensional time-
fractional Fokas equation:

u= (ﬁz — ocz) [m( Yy el mbitATici ”fP‘/AfJ‘)] , (61)
=01 a4
wherei, j=1,2,...,n.

5. The Numerical Solutions of the Time-Fractional Fokas Equation

Definition 6 ([49]). The Riemann—Liouville fractional integral operator of order o > 0 for a
function &(x) is defined as

DUE(x) = r(la) /Ox(x g (Bdb o > 0,x > 0, 62)

and some properties are given as follows:

DUPUE(x) = PUBIE(x),
OUPUE(x) = BVHE(),

oy F(y+1) o4s )
OxT = mx .
Lemma 1. Ifu(t) € C2[0, T],
- k-1
I3 u(tkn) — I p(te) = m[ﬂ(tm) + ];)(wm — wWj)p(ti—j)l + Rig, ~ (64)

in which
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Reo| < Cwgt'*,
l=wy>w>...>@0 >0, (65)
(,’0] = (] + 1)‘7 — ja.

Additionally, I, u(ty) is referred to as the Riemann—Liouville fractional integral of order o.

5.1. Time Discretization
The time-fractional Fokas equation is regarded as

4D?ux - Mxxxy+uxyyy + 12uxuy + 12uuxy — 6uzw = 0,

66
0<t<T, (xy) €Q. (66)
After dimensionality reduction, the equation becomes
1 3 3
Dfug + 1,3(,32 — Déz)ugggg + 7'3(1/12)@ — ﬂuzw =0, (67)
with the boundary condition being extracted from the exact solution given in Equation (52)
as follows:
(é; zZ,w, t) = h(C/ zZ,w, t)
(1 — _3mamy 7 (68)
1 ri(ad + piz + qw) = (3B(B* — a?)cirg )
_ 71’%(182 . aZ)SechZ( 4 11 2cia /T (1+40) )’

4 2

and the initial condition

(G2 0,0) = 15, 2,0) = 1rA(p - ad)secrt(LAETPEZ O]y g
According to Lemma 5.1, Equation (66) becomes
T ou(,z,w ty1) 1 ou(g,z,w, ty)
0+ Ix 0+ ox
1 2 2 a4u(€rzrw/ tk+1) 84u(§,z,w,tk)
+ BB —a -
PP O WL o)
%[azuz(g,z,w, 1) 0%u?(Z,z,w, tk)]
2 90 Cle4
B i[azu(g,z,w,tkﬂ) _ azu(é,z,w,tk)] _0
2w 0zow 0zow '
Then, we have
T P Y R
ox u4 a9l 2 ¢l 20 9z0w
. 71
_1[1 F— ) ohuk %az(uk)z—iazuk],i()\, 7)\.)8147"—1 (71)
T PP 0Ll 2 AL 2adzw R T
in which
- v )\-—(‘—0—1)0—“7 (72)
PoTaro)yV ™Y I

5.2. Radial Basis Function Meshless Method
In R?, we assume that Q) is an arbitrary domain. The following are approximate
expansion of u(x;, y;, tn):

C”@(T’ij), (73)

”(éi/zir wi, tn) = ]

M=
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in which

() =V (@) + (i -5) + (i —w) + 2= V24 2, (74)
We denote
(7 zw) =/ (-4 + (-2)+ (0-w) += [P+, (75)

in which r; is the Euclidean norm given by r; =[| { = {; | + [[z—z; | + || w — w; || and ¢
is the shape parameter. According to Equation (70), for k = 0, we can obtain

out 11, oot 389%(u')? 3 o%ul
o T alaP P ) Y 2 o 2womow) -
11,5 5 0t0 3802(u%)? 3 %0
= P )5 Y 5 ot T anazow”
and for1 < k < N — 1, we have
auk+1 1.1 ) ) a4uk+1 3[3 aZ(ukJrl)Z 3 aZuk+l
ox P ) o Y o T 2a zow -
11, o ootk 3B0%(uf)? 3 otF L L L ouk
- ﬁ[iﬁ(ﬁ ) T2 et mazow) —;WH ~ M)y

Now, substituting Equation (73) into Equations (76) and (77), we can obtain the
following matrix in the following format:

Qcktl —pktl —0,1,...,N+1, (78)
where
D(r11) D(r12) e D(r1,n41) e S(rn) ]
D(r1) D(r22) e D(r2,041) e d(r2,N)
q>(7n,1) (D(rn,Z) ce cD(rn,n-i-l) s CD(rn,N) ’ (79)
L(P(rpt11)) L(P(rnt12)) - L(@(rut1n+1)) -+ L(P(rn+1n))
L L(@(rna))  L(@(rn2)) -0 L(P(rnp+1)) - L(P(ran))
oD (¢, zi, w; a4q>. L2 Wi
£(@(ry)) = 2 g g2 2065
aC u4 aC (80)
%az(dbj(g],z],w]))z B iaz¢](§],z],w])]|
2 (2 2 dzow (G zw)=(Ljzi/wi)’
n+1<i<N, 1<j<N-1,
T
RS [C1{+1,C§+1,"_,C11<\]+1] PR — MH, pﬁﬂ,...,p’f\,ﬂ],
in which

le = W(gr Z w)|(§,z,zu):(éi,z,v,zu,v)/n +1<i<N,

and also
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*®(r;)) 3% P(r;}))? 3 02P(r 90D (r;
- O PTG ST 000

n+1<i<N, 1<k<N-1,

b§(+1 = h(g,Z, w)|(§,zlw):(§i/2i/wi)’ 1 S 1 S n, 1 S k S N —1.

5.3. Discussion of the Solutions

We use the numerical solution obtained by the RBF method and the exact solution
obtained by the bilinear method. Next, we will discuss the absolute error of the two
solutions. To ensure the method’s correctness, we took the absolute errors when o = 0.75,
o = 0.5and ¢ = 1 respectively, as shown in Tables 1-3. When ¢ = 1, it indicates that it is in
the integer order. The numerical results of the time-fractional Fokas equation determined
using the RBF approach are correct, as shown in the table.

Table 1. The absolute errors obtained by the radial basis function method with regard to exact solution
obtained by the bilinear method for (4 + 1)-dimensional Fokas equation given in Equation (13) at
different points of { and f takingc = 0.75;a =1, =211 =2;c1 =L,py =1L, =2,7=1/80;c = 1.

Il #rBE(MQ) — Exact ||
4 t=0.1 t=02 t=03 t=04 t=0.5 t=0.6 t=0.7 t=0.8 t=09 t=1

01 417 x1072 1.11x107! 151 x 107! 163 x 107" 150 x 107! 1.16 x 107! 6.65 x 1072 1.01 x 1072 4.48 x 1072 8.95 x 1072
02 175x1072 693x1072 1.06x 107" 128x 107" 140x 107" 143 x 107" 140x 107" 134x 107! 131x10°! 134 x 107!
03 650x1073 307x1072 453x1072 537x1072 596 x 1072 6.65x1072 781 x1072 978 x 1072 129x 10! 173 x 107!
04 950x107% 1.60x 1072 151x 1072 1.03x 1072 513x 1073 3.65x10% 101 x102 287 x1072 6.36x 1072 118 x 107!
05 860x1073 1.04x1072 58 x10°% 244x103 117 x1072 1.87x1072 197x1072 1.02x 1072 143 x1072 582 x 1072
0.6 740x1073 219x107% 216 x10% 3.05x10*% 574x10° 121 x1072 165x 1072 150 x 1072 3.06 x 1073 243 x 1072
0.7 422x1072 215x1072 635x 1072 296 x 102 649 x 107> 506 x 107> 645 x 10°* 341 x 107> 263 x 1073 812 x 1073
08 953x1072 573x1072 257 x1072 199x 103 124 x1072 1.74x 1072 141 x 1072 546 x 107> 4.00 x 1072 8.87 x 1073
09 1.64x107" 1.08x107! 592x1072 213x1072 329x107° 136 x 1072 1.05x 1072 339 x 107> 233 x 1072 4.34 x 1072
1 247 x1070 173 x 107" 1.09 x 107! 593 x 1072 270 x 1072 138 x 1072 191 x 1072 399 x 1072 7.14 x 1072 1.07 x 10!

Table 2. The absolute errors obtained by the radial basis function method with regard to exact solution
obtained by the bilinear method for (4 + 1)-dimensional Fokas equation given in Equation (13) at
different points of { and t takingc = 0.5;0a =1, =211 =2;c1 =L,p1 = 1,91 =2,71=1/80;c = 1.

Il #rBF(MQ) — #Exact ||
4 t=0.1 t=02 t=03 t=04 t=05 t=0.6 t=0.7 t=0.8 t=09 t=1

01 218x1071 149 x107! 979 x 1072 620x 1072 385x 1072 242x 1072 158x 1072 9.66 x 1073 237 x 1073 943 x 1073
02 1.86x107" 158 x107! 143 x 107! 137x10°' 136 x10"" 1.34x 1071 126 x 107" 1.08x10°' 754 x 1072 257 x 1072
03 113x107' 1.09x107! 116 x 107! 130x 107" 147 x107' 1.62x 107! 168 x10°1 1.62x10"" 138 x 107! 923 x 1072
04 537x1072 594 x1072 744x1072 952x1072 118 x 107! 139 x 107! 153 x 1071 157 x 107" 144 x 107! 1.11 x 107!
05 239x1072 287 x1072 4.09x 1072 580 x 1072 776 x1072 967 x 1072 112x 107" 119 x 107" 1.4 x 107! 927 x 1072
0.6 243x1072 203x1072 224x1072 292x 1072 397 x 1072 521 x1072 639 %1072 721x1072 727 %1072 6.14 x 1072
0.7 506x1072 326x1072 199 x 1072 129x102 1.15x1072 1.54x 1072 228x 1072 3.13x 1072 370 x 1072 3.56 x 102
08 9.69x1072 619x1072 326x107%2 107 x10°2 257 x107° 674 x 1073 266 x 1073 730x 107> 194 x 1072 2.89 x 1072
09 157x107' 1.05x107! 593 x 1072 236 x 1072 256 x107% 9.63 x 107> 649 x 1073 735 x 107> 279 x 1072 5.00 x 1072
1 228x10°1 159x107" 990 x1072 524 x 1072 221 x 1072 984 x 1073 152x 1072 358x 1072 672x 1072 1.03 x 107!

Table 3. The absolute errors obtained by radial basis function method with regard to exact solution
obtained by the bilinear method for (4 + 1)-dimensional Fokas equation given in Equation (13) at
different points of { and t takingc =L,a =1, =211 =2, =Lp1 =1,1 =2,7=1/80;c = 1.

Il #rBF(MQ) — #Exact ||
4 t=0.1 t=02 t=03 t=04 t=05 t=0.6 t=0.7 t=0.8 t=09 t=1

01 386x1072 885x1072 1.09x 107! 1.05x10°" 804 x1072 448x 1072 9.08x10% 142x10°2 121 x1072 278 x 1072
02 536x1072 970x1072 1.19x 10! 122x10°' 1.08x10"' 830x 1072 552x 102 347 x 1072 3.30 x 1072 6.20 x 1072
03 275x1072 540x1072 682 x1072 722x102 687 x1072 616 x 1072 562x 1072 595x 1072 794 x102 125x 107!
04 843x107% 170x1072 1.75x 1072 131x10°2 759 %1073 524x 1073 114x10°2 320x10°2 735x1072 142x 107!
05 602x107% 682x107° 113x10* 116x10°2 240 x 1072 322x 1072 305x10°2 118 x 1072 3.11x102 1.05x 107!
0.6 423x107% 116 x1072 9.64 x 1073 515x 107* 1.30 x 1072 2.66 x 1072 344 x 1072 290 x 1072 2.03 x 1073 549 x 1072
0.7 200x1072 626x107% 212x 1072 252x 1072 196 x 1072 7.32x10% 644 x 103 145x 1072 814 x 1073 221 x 1072
0.8 874x1072 340x1072 572x 1073 3.05x 1072 4.00x 1072 359 x 1072 221 x 1072 528 x 107> 584 x 1073 1.40 x 1073
09 214x107" 130x107! 614x 1072 122x102 1.62x1072 241 x1072 146x 1072 612x 107> 297 x 1072 4.60 x 102
1 411x1077 296x107" 199 x 107! 1.25x 107! 776 x 1072 565 x 1072 594 x 1072 810x 1072 113 x10°" 1.44 x 107!
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By comparing the absolute errors of two solutions generated by the RBF method and
the bilinear method, the accuracy of the RBF method may be determined. Furthermore,
the numerical findings show that the RBF method suggested above yields a high-precision
numerical solution to the fractional differential Fokas problem.

The accuracy of the RBF approach can be measured by comparing the absolute errors
of two solutions given by the RBF method and the bilinear method. Furthermore, the
numerical results demonstrate that the RBF method proposed above offers a high-precision
numerical solution to the fractional differential Fokas issue.

6. Conclusions

In this paper, we first derived the (4 + 1)-dimensional time-fractional Fokas equation
by using the semi-inverse method and fractional variational principle, and discussed the
conservation law of the time-fractional Fokas equation by using the Lie symmetry analysis
method. Then the rogue wave solutions and soliton solutions of (4 + 1)-dimensional
time-fractional Fokas equation were obtained by using bilinear approach. Finally, the
numerical solution of the (4 + 1)-dimensional time-fractional order Fokas equation was
obtained by using the Radial Basis Function (RBF) meshless method, and the absolute
error analysis under different conditions was given. The work in this paper promotes the
research of high-dimensional integrable systems. The precise numerical solutions of the
high-dimensional fractional model we have obtained are of great significance to the study
of physical phenomena in real life.
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