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Abstract: The present paper presents a study on a problem with a fractional integro-differentiation
operator in the boundary condition for an equation with a partial Riemann-Liouville fractional
derivative. The unique solvability of the problem is proved. In the hyperbolic part of the considered
domain, the functional equation is solved by the iteration method. The problem is reduced to solving
the Volterra integro-differential equation.
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1. Introduction and Formulation of a Problem

Boundary value problems for the mixed-type equations of fractional order were in-
vestigated in [1–4]. In [5], the unique solvability was investigated for the problem of
an equation with the partial fractional derivative of Riemann-Liouville and a boundary
condition that contains the generalized operator of fractional integro-differentiation. A
problem, in which the boundary condition contains a linear combination of generalized
fractional operators with a Gauss hypergeometric function for a mixed-type equation with a
Riemann-Liouville partial fractional derivative, was studied in [6]. The nonlocal boundary
value problem for mixed-type equations with singular coefficients was considered in [7].
The Gellerstedt-type problem, with nonlocal boundary and integral gluing conditions for
the parabolic-hyperbolic-type equation, with nonlinear terms and Gerasimov-Caputo oper-
ator of differentiation, was studied in [8]. The work [9] is devoted to study the boundary
value problems for a mixed type fractional differential equation with Caputo operator.
A nonlocal boundary value problem for weak nonlinear partial differential equations of
mixed type, with a fractional Hilfer operator, was solved in [10]. The work [11] is con-
cerned with the existence and uniqueness of solutions for a Hilfer-Hadamard fractional
differential equation.

Let D be a finite domain bounded by segments AA0, BB0, and A0B0 of lines x = 0,
x = 1, and y = 1, respectively, lying in the half-plane y > 0, and characteristics AC =

{(x, y) : x − 2
m+2 (−y)

m+2
2 = 0}, BC = {(x, y) : x + 2

m+2 (−y)
m+2

2 = 1} of the following
equation: 

uxx − Dγ
0,yu = 0, γ ∈ (0, 1), y > 0,

−(−y)muxx + uyy +
α0

(−y)1−m
2

ux +
β0

y
uy = 0, y < 0,

(1)

in the half-plane, y < 0, and the interval, AB, of the straight line, y = 0. In (1) m > 0,
|α0| < (m + 2)/2, 1 < β0 < (m + 4)/2. Here, Dγ

0,y is the partial fractional Riemann-
Liouville derivative [3]

(Dγ
0,yu)(x, y) =

∂

∂y
1

Γ(1− γ)

y∫
0

u(x, t)dt
(y− t)γ

, (0 < γ < 1, y > 0).
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Let D+ = D ∩ (y > 0), D− = D ∩ (y < 0).

Problem 1. Find a solution u = u(x, y) of Equation (1) in the domain D, satisfying the following
boundary conditions:

u(0, y) = ϕ1(y), u(1, y) = ϕ2(y), 0 ≤ y ≤ 1, (2)

xᾱD1−β̄
0,x x1−ᾱ−β̄u[θ0(x)] + (1− x)β̄ρ(x)D1−ᾱ

x,1 (1− x)1−ᾱ−β̄u[θk(x)]

= µ1D1−ᾱ−β̄
0,x τ(x)− µ2D1−ᾱ−β̄

x,1 τ(x) + f (x), x ∈ [0, 1]
(3)

and the following conjugation conditions:

lim
y→+0

y1−γu(x, y) = lim
y→−0

(−y)β0−1u(x, y), x ∈ [0, 1],

lim
y→+0

y1−γ(y1−γu(x, y))y = lim
y→−0

(−y)2−β0((−y)β0−1u(x, y))y, x ∈ I = (0, 1). (4)

Here, ᾱ = m+2(2−β0+α0)
2(m+2) , β̄ = m+2(2−β0−α0)

2(m+2) , τ(x) = lim
y→−0

(−y)β0−1u(x, y), ϕ1(y), ϕ2(y),

ρ(x), f (x) are given functions; moreover, y1−γ ϕ1(y), y1−γ ϕ2(y) ∈ C([0, 1]), ϕ1(0) = ϕ2(0) =
0, f (0) = 0, µ1 and µ2 are constants; θ0(x0) =

(
x0
2 ,−(m+2

4 x0)
2/(m+2)

)
is a point of in-

tersection of characteristics of Equation (1), outgoing from the point (x0, 0) (x0 ∈ I), with
the characteristic AC; θk(x0) =

(
x0+k
1+k ,−( (m+2)(1−x0)

2(1+k) )
2

m+2

)
is the intersection point of the

curve x − 2k
m+2 (−y)

m+2
2 = x0, k = const > 1, with the characteristic BC, D1−ᾱ

x,1 f (x) =

− d
dx D−ᾱ

x,1 f (x) = − d
dx

1
Γ(ᾱ)

1∫
x

f (t)dt
(t−x)1−ᾱ . We are looking for a solution, u(x, y), of the problem

in the class of twice differentiable functions in the domain D, such that y1−γu ∈ C(D̄+), u(x, y) ∈
C(D̄− \OB), y1−γ(y1−γu)y ∈ C(D+ ∪ {(x, y) : 0 < x < 1, y = 0}), uxx ∈ C(D+ ∪ D−),
uyy ∈ C(D−).

Note that from Equation (1), at m = 2, β0 = 0, we obtain the moisture transfer
Equation [12], and at α0 = 0, β0 = 0, Equation (1) passes to the Gellerstedt equation, which
finds application in the problem of determining the shape of the dam slot.

In this article, we study a problem with a shift for Equation (1), in which some part of
the characteristic BC is freed from nonlocal boundary conditions.

2. Main Results

We denote that lim
y→+0

y1−γu(x, y) = τ(x), lim
y→+0

y1−γ(y1−γu(x, y))y = ν(x). The solu-

tion of Equation (1) in the domain D+, satisfying condition (2) and condition lim
y→+0

y1−γ

u(x, y) = τ(x), x ∈ Ī, has the following form [13]:

u(x, y) =

y∫
0

∂G
∂ξ
|ξ=0 ϕ1(η)dη −

y∫
0

∂G
∂ξ
|ξ=1 ϕ2(η)dη −

1∫
0

G(x, y; ξ, 0)τ(ξ)dξ,

where

G(x, y; ξ, η) =
Γ(γ)

2
(y− η)δ−1

∞

∑
n=−∞

[
e1,δ

1,δ

(
−|x− ξ + 2n|

(y− η)δ

)
− e1,δ

1,δ

(
−|x + ξ + 2n|

(y− η)δ

)]
,

ep,q
b,c (z) =

∞

∑
k=0

zk

Γ(p + kb)Γ(q− kc)
, b > c, b > 0, z ∈ C, δ =

γ

2
, γ > 0,
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e1,δ
1,δ(z) =

∞

∑
k=0

zk

Γ(δ− kδ)k!
, δ < 1.

The functional relation between τ = τ(x) and ν = ν(x), transferred from the parabolic
part, D+, to the line, y = 0, has the following form [1]:

ν(x) = 1/(Γ(1 + γ))τ′′(x). (5)

Applying the Darboux formula, given in the domain D−, the solution of the modified
Cauchy problem with the initial data lim

y→0−
(−y)β0−1u(x, y) = τ(x),

lim
y→−0

(−y)2−β0((−y)β0−1u(x, y))y = ν(x), x ∈ I, has the following form:

u(x, y) = γ̄1(−y)1−β0
1∫

0
τ
(

x + 2
m+2 (2t− 1)(−y)

m+2
2

)
tβ̄−1(1− t)ᾱ−1dt

+γ̄2

1∫
0

ν
(

x + 2
m+2 (2t− 1)(−y)

m+2
2

)
t−ᾱ(1− t)−β̄dt,

(6)

where γ̄1 = Γ(ᾱ+β̄)
Γ(ᾱ)Γ(β̄)

, γ̄2 = − Γ(2−ᾱ−β̄)
(β0−1)Γ(1−ᾱ)Γ(1−β̄)

.
From (6) we have the following:

u[θ0(x)] = γ̄1

(
m + 2

4

)ᾱ+β̄−1
Γ(ᾱ)D−ᾱ

0,x xβ̄−1τ(x) + γ̄2xᾱ+β̄−1Γ(1− β̄)Dβ̄−1
0,x x−̄αν(x). (7)

Multiplying both sides of (7) by x1−ᾱ−β̄, we have the following:

x1−ᾱ−β̄u[θ0(x)] = γ̄1Γ(ᾱ)
(m+2

4
)ᾱ+β̄−1x1−ᾱ−β̄D−ᾱ

0,x xβ̄−1τ(x)

+Γ(1− β̄)γ̄2Dβ̄−1
0,x x−̄αν(x).

(8)

Applying the operator D1−β̄
0,x to both sides of relation (8) we obtain the following:

D1−β̄
0,x x1−ᾱ−β̄u[θ0(x)] = γ̄1((m + 2)/4)ᾱ+β̄−1Γ(ᾱ)D1−β̄

0,x x1−ᾱ−β̄D−ᾱ
0,x xβ̄−1τ(x)

+Γ(1− β̄)γ̄2D1−β̄
0,x Dβ̄−1

0,x x−̄αν(x).
(9)

Equalities are true, as follows:

D1−β̄
0,x x1−ᾱ−β̄D−ᾱ

0,x xβ̄−1τ(x) = x−ᾱD1−ᾱ−β̄
0,x τ(x) (10)

D1−β̄
0,x Dβ̄−1

0,x x−̄αν(x) = x−̄αν(x). (11)

Let us show Relation (10).
Denoting the left-hand side of Equality(10) by g1(x), we obtain the following:

g1(x) = D1−β̄
0,x x1−ᾱ−β̄D−ᾱ

0,x xβ̄−1τ(x) =
d

dx
D−β̄

0,x x1−ᾱ−β̄D−ᾱ
0,x xβ̄−1τ(x)

=
1

Γ(β̄)Γ(ᾱ)
d

dx

x∫
0

ξ1−ᾱ−β̄dξ

(x− ξ)1−β̄

ξ∫
0

tβ̄−1τ(t)dt
(ξ − t)1−ᾱ

.

Changing the order of integration, we obtain the following:

g1(x) =
1

Γ(β̄)Γ(ᾱ)
d

dx

x∫
0

τ(t)tβ̄−1dt
x∫

t

ξ1−ᾱ−β̄(x− ξ)β̄−1(ξ − t)ᾱ−1dξ.
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Setting in the inner integral, ξ = t + (x− t)σ, we have the following:

g1(x) =
1

Γ(β̄)Γ(ᾱ)
d

dx

x∫
0

τ(t)t−ᾱ(x− t)ᾱ+β̄−1dt
1∫

0

σᾱ−1(1− σ)β̄−1

×
(

1− t− x
t

σ

)1−ᾱ−β̄

dσ.

Using the Euler hypergeometric integral [14], as follows:

1∫
0

tµ−1(1− t)k−µ−1(1− zt)−λdt =
Γ(µ)Γ(k− µ)

Γ(k)
F(µ, λ, k; z), 0 < µ < k,

we obtain the following:

g1(x) =
1

Γ(β̄)Γ(ᾱ)
d

dx

x∫
0

τ(t)t−ᾱ(x− t)ᾱ+β̄−1 Γ(ᾱ)Γ(β̄)

Γ(ᾱ + β̄)
F
(

ᾱ, ᾱ + β̄− 1, ᾱ + β̄;
t− x

t

)
dt.

From here, taking into account [14], as follows:

F(µ, λ, k; z) = (1− z)−λF
(

k− µ, λ, k;
z

z− 1

)
we have the following:

g1(x) = 1/(Γ(ᾱ + β̄))
d

dx

x∫
0

τ(t)tβ̄−1
(

x− t
x

)ᾱ+β̄−1
F
(

β̄, ᾱ + β̄− 1, ᾱ + β̄;
x− t

x

)
dt.

Consider the following function:

gε(x) = 1/(Γ(ᾱ + β̄))
d

dx

x−ε∫
0

τ(t)tβ̄−1
(

x− t
x

)ᾱ+β̄−1
F
(

β̄, ᾱ + β̄− 1, ᾱ + β̄;
x− t

x

)
dt.

Differentiating the right-hand side of this equality and using the formulas from [14],
as follows:

d
dz

[zµF(µ, λ, k; z)] = µzµ−1F(µ + 1, λ, k; z), F(µ, λ, λ; z) = (1− z)−µ,

we obtain the following:

gε(x) =
1

Γ(ᾱ + β̄)
(x− ε)β̄−1

( ε

x

)ᾱ+β̄−1
F
(

β̄, ᾱ + β̄− 1, ᾱ + β̄;
ε

x

)
τ(x− ε)

+
ᾱ + β̄− 1
Γ(ᾱ + β̄)

x−ᾱ

x−ε∫
0

(x− t)ᾱ+β̄−2τ(t)dt.

Now, taking into account that

(ᾱ + β̄− 1)
x−ε∫
0

(x− t)ᾱ+β̄−2τ(t)dt =
d

dx

x−ε∫
0

(x− t)ᾱ+β̄−1τ(t)dt− εᾱ+β̄−1τ(x− ε),
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we find the following:

gε(x) =
εᾱ+β̄−1

Γ(ᾱ + β̄)
x−ᾱ

[(
x

x− ε

)1−β̄

F
(

β̄, ᾱ + β̄− 1, ᾱ + β̄;
ε

x

)
− 1

]
τ(x− ε)

+
x−ᾱ

Γ(ᾱ + β̄)

d
dx

x−ε∫
0

(x− t)ᾱ+β̄−1τ(t)dt.

Passing in this equality to limit as ε → 0, by virtue of the formula F(µ, λ, k; 0) = 1
we obtain the following:

g1(x) = gε(x) =
x−ᾱ

Γ(ᾱ + β̄)

d
dx

x∫
0

τ(t)dt
(x− t)1−ᾱ+β̄

= x−ᾱ d
dx

D−ᾱ−β̄τ(x) = x−ᾱD1−ᾱ−β̄τ(x).

Thus, let us be convinced of the validity of Equality (10).
By virtue of (10) and (11), Equality (9) can be written in the following form:

D1−β̄
0,x x1−ᾱ−β̄u[θ0(x)] = γ̄1((m + 2)/4)ᾱ+β̄−1Γ(ᾱ)x−ᾱD1−ᾱ−β̄

0,x τ(x)
+Γ(1− β̄)γ̄2x−̄αν(x).

(12)

Now, from (6) we obtain the following:

u[θk(x)] = a1−ᾱ−β̄γ̄1

(
m+2

2(1+k)

)ᾱ+β̄−1
Γ(β̄)D−β̄

ax+b,1(1− x)ᾱ−1τ(x)

+Γ(1− ᾱ)γ̄2aᾱ+β̄−1(1− x)ᾱ+β̄−1Dᾱ−1
ax+b,1(1− x)−̄βν(x).

(13)

Multiplying both sides of (13) by (1 − x)1−ᾱ−β̄ and applying the operator D1−ᾱ
x,1

we obtain the following:

D1−ᾱ
x,1 (1− x)1−ᾱ−β̄u[θk(x)] = Γ(β̄)γ̄1

(
m+2

2(1+k)

)ᾱ+β̄−1
a1−ᾱ−β̄D1−ᾱ

x,1 (1− x)1−ᾱ−β̄

×D−β̄
ax+b,1(1− x)ᾱ−1τ(x) + γ̄2aᾱ+β̄−1Γ(1− ᾱ)D1−ᾱ

x,1 Dᾱ−1
ax+b,1(1− x)−β̄ν(x).

(14)

It is easy to show the following:

D1−ᾱ
x,1 (1− x)1−ᾱ−β̄D−β̄

ax+b,1(1− x)ᾱ−1τ(x) = (1− x)−βD1−ᾱ−β̄
ax+b,1 τ(x),

D1−ᾱ
x,1 Dᾱ−1

ax+b,1(1− x)−β̄ν(x) = a1−ᾱ−β̄ν(ax + b)(1− x)−β̄.

Then, from (14) we obtain the following:

D1−ᾱ
x,1 (1− x)1−ᾱ−β̄u[θk(x)] = a1−ᾱ−β̄γ̄1

(
m+2

2(1+k)

)ᾱ+β̄−1
Γ(β̄)

×(1− x)−β̄D1−ᾱ−β̄
ax+b,1 τ(x) + γ̄2Γ(1− ᾱ)ν(ax + b)(1− x)−β̄.

(15)

Now, substituting (12) and (15) into (3), we obtain the following:

γ̄1((m + 2)/4)ᾱ+β̄−1Γ(ᾱ)D1−ᾱ−β̄
0,x τ(x) + Γ(1− β̄)γ̄2ν(x)

+a1−ᾱ−β̄
(

m+2
2(1+k)

)ᾱ+β̄−1
Γ(β̄)γ̄1ρ(x)D1−ᾱ−β̄

ax+b,1 τ(x)

+γ̄2Γ(1− ᾱ)ρ(x)ν(ax + b) = µ1D1−ᾱ−β̄
0,x τ(x)− µ2D1−ᾱ−β̄

x,1 τ(x) + f (x),
x ∈ [0, 1].

(16)
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Let µ1 = Γ(ᾱ+β̄)
Γ(β̄)

(m+2
4
)ᾱ+β̄−1

. Then, from (16) we obtain the following:

γ̄2Γ(1− β̄)ν(x) +
(

m+2
2(1+k)

)ᾱ+β̄−1
a1−ᾱ−β̄γ̄1Γ(β̄)ρ(x)D1−ᾱ−β̄

ax+b,1 τ(x)

+ρ(x)γ̄2Γ(1− ᾱ)ν(ax + b) + µ2D1−ᾱ−β̄
x,1 τ(x) = f (x), x ∈ [0, 1].

(17)

Dividing both sides of (17) by γ̄2Γ(1− β̄), by virtue of a = 2
1+k , we obtain the following:

ν(x) + Γ(ᾱ+β̄)
γ̄2Γ(1−β̄)Γ(ᾱ)

(m+2
4
)ᾱ+β̄−1

ρ(x)D1−ᾱ−β̄
ax+b,1 τ(x)

+ Γ(1−ᾱ)
Γ(1−β̄)

ρ(x)ν(ax + b) +
µ2D1−ᾱ−β̄

x,1 τ(x)
γ̄2Γ(1−β̄)

= f (x)
γ̄2Γ(1−β̄)

.
(18)

We write Equality (18) in the following form:

ν(x) + µ2
γ̄2Γ(1−β̄)

D1−ᾱ−β̄
x,1 τ(x) = − Γ(1−ᾱ)

Γ(1−β̄)
ρ(x)

×
[

ν(ax + b) + ( 4
m+2 )

1−ᾱ−β̄

γ̄2Γ(1−β̄)
Γ(ᾱ+β̄)Γ(1−β̄)

Γ(ᾱ)Γ(1−ᾱ)
D1−ᾱ−β̄

ax+b,1 τ(x)

]
+ f (x)γ̄0,

(19)

where γ̄0 = 1
γ̄2Γ(1−β̄)

.

Let µ2 =
(

4
m+2

)1−ᾱ−β̄
(Γ(ᾱ + β̄)Γ(1− β̄))/(Γ(ᾱ)Γ(1− ᾱ)).

We introduce the following notation:

Φ(x) := ν(x) +
Γ(ᾱ + β̄)Γ(1− β̄)

Γ(ᾱ)Γ(1− ᾱ)

(
4

m + 2

)1−ᾱ−β̄

γ̄0D1−ᾱ−β̄
x,1 τ(x). (20)

Then, from (19), we obtain the following functional equation:

Φ(x) = Φ(ax + b)ω(x) + f1(x), (21)

where ω(x) = − Γ(1−ᾱ)
Γ(1−β̄)

ρ(x), f1(x) = γ̄0 f (x).
Applying the iteration method to (21), after simple calculations, we obtain the following:

Φ(x) = ω(x)An−1(x)Φ(anx + 1− an)

+ω(x)∑n−1
j=1 f1(ajx + 1− aj)Aj−1(x) + f1(x), (22)

where

Aj−1(x) = ω(ax + 1− a)ω(a2x + 1− a2) · · ·ω(aj−1x + 1− aj−1), A0 = 1.

By |ω(x)| ≤ 1, for x ∈ [1 − ε, 1], here, ε is a sufficiently small positive number;
therefore, we obtain the following:

|Aj−1(x)| ≤ Mn0
0 , (23)

where M0 = max
[1−ε,1]

ω(x), and n0 = [loga(aε)]. We seek a solution of Equation (21), in the

class of functions bounded at the point x = 1.
After passing to the limit, n→ ∞, in (22), and considering that, by virtue of ρ(x), f (x) ∈

C( Ī) ∩ C2(I) and (23), the series on the right-hand side of (22) is uniformly converging on
the interval [0, 1], we obtain the following:

Φ(x) = P(x), (24)
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P(x) = ω(x)
∞

∑
j=1

f1(ajx + 1− aj)Aj−1(x) + f1(x).

Thus, according to (20) from (24), we have

ν(x) + γ̄0(Γ(ᾱ + β̄)Γ(1− β̄))/(Γ(ᾱ)Γ(1− ᾱ))

(
4

m + 2

)1−ᾱ−β̄

D1−ᾱ−β̄
x,1 τ(x) = P(x). (25)

Thus, we obtained the functional relation between the functions τ = τ(x) and ν =
ν(x), on I, from the domain D−.

By virtue of (4), substituting (5) into (25) we obtain the following:

1/(Γ(1 + γ))τ′′(x) + γ̄3D1−ᾱ−β̄
x,1 τ(x) = P(x), (26)

where γ̄3 = γ̄0(4/(m + 2))1−ᾱ−β̄(Γ(ᾱ + β̄)Γ(1− β̄)
)
/(Γ(ᾱ)Γ(1− ᾱ)).

Equation (26) can be written as follows:

1/(Γ(1 + γ))τ′′(x)− γ̄3/(Γ(ᾱ + β̄))
d

dx

1∫
x

τ(t)dt
(t− x)1−ᾱ−β̄

= P(x).

We have obtained the Volterra integro-differential equation, which is uniquely solvable,
see [15].

3. Discussion

The properties of solutions of Equation (1) at y < 0 essentially depend on the co-
efficients α0 and β0, at the lowest terms of Equation (1). If β0 < 1, then the solution
of Equation (1) on the parabolic degeneration line is bounded. In this case, a problem
for an elliptic-hyperbolic-type equation with singular coefficients was studied in [7]. If
β0 = 1, then the solution to Equation (1) on the parabolic degeneracy line has a logarithmic
singularity. β0 = m+4

2 is the limiting case. In these cases, boundary value problems for
Equation (1) are studied with different conditions.

Author Contributions: Conceptualization, M.R. and R.Z.; investigation, M.R. and R.Z.; methodol-
ogy, M.R. and R.Z.; validation, M.R. and R.Z.; writing—original draft preparation, M.R. and R.Z.;
writing—review and editing, M.R. and R.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Authors would like to thank anonymous referees.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gekkieva, S.K. Analogue of Tricomi problem for mixed-type equation with a fractional derivative. Rep. Adyg. Inter. Acad. Sci.

2001, 5, 18–22.
2. Gekkieva, S.K. The Cauchy problem for the generalized transport equation with a fractional time derivative. Rep. Adyg. Inter.

Acad. Sci. 2000, 5, 16–19.
3. Repin, O.A. Boundary-value problem with Saigo operators for mixed type equation with fractional derivative. Russ. Math. 2018,

62, 70–75. [CrossRef]
4. Pskhu, A.V. Solution of the first boundary value problem for a fractional-order diffusion equation. Diff. Equ. 2003, 39, 1359–1363.

[CrossRef]

http://doi.org/10.3103/S1066369X18010103
http://dx.doi.org/10.1023/B:DIEQ.0000012703.45373.aa


Fractal Fract. 2022, 6, 110 8 of 8

5. Tarasenko, A.V.; Egorova, I.P. On nonlocal problem with fractional Riemann-Lioville derivatives for a mixed-type equation.
J. Samara State Tech. Univ. Ser. Phys. Math. Sci. 2017, 21, 112–121.

6. Repin, O.A. On a problem for mixed-type equation with fractional derivative. Russ. Math. 2018, 62, 38–42. [CrossRef]
7. Ruziev, M.K. A problem with conditions given on inner characteristics and on the line of degeneracy for a mixed-type equation

with singular coefficients. Bound. Value Probl. 2013, 2013, 210 . [CrossRef]
8. Yuldashev T.K.; Abdullaev O.K. Unique solvability of a boundary value problem for a loaded fractional parabolic-hyperbolic

equation with nonlinear terms. Lobachevskii J. Math. 2021, 42, 1113–1123. 008283. [CrossRef]
9. Yuldashev T.K.; Islomov B.I.; Ubaydullaev, H. On boundary value problems for a mixed type fractional differential equation with

Caputo operator. Bull. Karaganda Univ. Math. Ser. 2021, 47, 127–137. [CrossRef]
10. Yuldashev T.K.; Kadirkulov B.J. Boundary value problem for weak nonlinear partial differential equations of mixed type with

fractional Hilfer operator. Axioms 2020, 9, 68. [CrossRef]
11. Ahmad B.; Ntouyas S.K. Hilfer-Hadamard fractional boundary value problems with nonlocal mixed boundary conditions. Fractal

Fract. 2021, 5, 195. [CrossRef]
12. Lykov, A.V. Application of the methods of thermodynamics of irreversible processes to the investigation of heat and mass transfer.

J. Eng. Phys. 1965, 9, 189–202. [CrossRef]
13. Pskhu, A.V. Partial Differential Equations of Fractional Order; Nauka: Moscow, Russia, 2005; 199p.
14. Samko S.G.; Kilbas A.A.; Marichev O.I. Fractal Integrals and Derivatives: Theory and Applications; Gordon and Breach Science

Publishers: Basel, Switzerland, 1993; 688p.
15. Kilbas, A.A. Integral Equations: A Course of Lectures; BSU: Minsk, Belarus, 2005; 143p.

http://dx.doi.org/10.3103/S1066369X18080066
http://dx.doi.org/10.1186/1687-2770-2013-210
http://dx.doi.org/10.1134/S1995080221050218
http://dx.doi.org/10.31489/2021M1/127-137
http://dx.doi.org/10.3390/axioms9020068
http://dx.doi.org/10.3390/fractalfract5040195
http://dx.doi.org/10.1007/BF00828333

	Introduction and Formulation of a Problem
	Main Results
	Discussion
	References

