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Abstract: A time-fractional substantial diffusion equation of variable order is investigated, in which
the variable-order fractional substantial derivative accommodates the memory effects and the struc-
ture change of the surroundings of the physical processes with respect to time. The existence and
uniqueness of the solutions to the proposed model are proved, based on which the weighted high-
order regularity of the solutions, in which the weight function characterizes the singularity of the
solutions, are analyzed.
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1. Introduction

Fractional problems with substantial derivatives have attracted increasing amounts
of attention due to their applications in, e.g., characterizing the functionals of anomalous
diffusion and non-Brownian motions [1,2]. There are several investigations in mathematical
analysis and numerical methods to such kinds of problems [3–9], while the corresponding
studies for the variable-order fractional substantial derivative models, in which the variable
fractional order accommodates, e.g., the structure change of the surroundings with respect
to time, are rarely found in the literature.

In some recent works, the following Caputo variable-order time-fractional diffusion
equations are investigated mathematically and numerically [10–16](

∂t + q ∂
α(·,t)
t − ∆

)
u(x, t) = f (x, t).

Here, the Caputo variable-order fractional derivative operator is defined as [17–19]

∂
α(·,t)
t g(t) :=

∫ t

0

(t− s)−α(s,t)

Γ(1− α(s, t))
∂sg(s)ds.

The Caputo (variable-order) fractional derivative is widely used in various applica-
tions that exhibit the power law type memory effects due to the power function integral
kernel. The Caputo variable-order fractional substantial derivative operator σ∂

α(·,t)
t , which

is defined in the following for some σ ≥ 0 and 0 ≤ α(s, t) < 1 [1–3]

σ∂
α(·,t)
t g(t) :=

∫ t

0

(t− s)−α(s,t)e−σ(t−s)

Γ(1− α(s, t))
(
∂s + σ

)
g(s)ds, (1)

tempers the memory effects of the Caputo fractional derivative operator by introducing the
exponential factor, such that the impacts located at s are negligible if t− s is large [1,3]. Due
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to the complicated form of the variable-order fractional substantial derivative, existing anal-
ysis techniques for investigating the Caputo variable-order fractional derivative problems
may not apply directly for problems involving (1), which motivates the current work.

In this paper, we analyze the following time-fractional diffusion equation [20–28]
equipped with variable-order fractional substantial derivative(

∂t + q σ∂
α(·,t)
t − ∆

)
u(x, t) = f (x, t), (x, t) ∈ Ω× (0, T];

u(x, 0) = u0(x), x ∈ Ω; u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T],
(2)

where q ≥ 0, T > 0, Ω is a d-dimensional domain for 1 ≤ d ≤ 3 with a smooth boundary
∂Ω. In the following two sections, we rigorously prove the well-posedness and high-order
regularity of the solutions to problem (2), respectively, which provide a theoretical basis
for this model. In particular, a weight function is introduced in the estimate of high-order
smoothing properties to characterize the initial singularity of the solutions.

In the rest of the paper, let H1(0, T) be the Hilbert space of functions with weak
derivatives up to order 1 in L2(0, T), the space of square-integrable functions on [0, T].
The corresponding norms are defined by

‖g‖L2(0,T) :=
( ∫ T

0
g2(t)dt

)1/2

,

‖g‖H1(0,T) :=
(
‖g‖2

L2(0,T) + ‖∂tg‖2
L2(0,T)

)1/2.

H1(0, T;D) for some Banach space D stands for the space of the functions in H1(0, T)
with respect to the norm of D. Q denotes a generic constant that may assume different
values at different cases.

2. Existence and Uniqueness

We prove the existence and uniqueness of the solutions to problem (2) in this section.
Throughout the paper, we assume that there exists a constant 0 < α∗ < 1, such that

0 ≤ α(s, t) ≤ α∗ for 0 ≤ s ≤ t ≤ T.

Theorem 1. If f ∈ L2(0, T; L2(Ω)) and u0 ∈ Ȟ1(Ω), problem (2) has a unique solution u ∈
H1(0, T; L2(Ω)) ∩ L2(0, T; Ȟ2(Ω)) and

‖u‖H1(0,T;L2(Ω)) + ‖u‖L2(0,T;Ȟ2(Ω)) ≤ Q
(
‖ f ‖L2(0,T;L2(Ω)) + ‖u0‖Ȟ1(Ω)

)
where Q is independent from the data and the solutions and the norm ‖ · ‖Ȟp(Ω) for p ≥ 0 is defined
in terms of the eigenpairs {λi, φi(x)}∞

i=1 of −∆ by

‖v‖2
Ȟp(Ω)

:=
∞

∑
i=1

λ
p
i (v, φi)

2.

Proof. If we expand u in terms of {φi(x)}∞
i=1 as

u(x, t) =
∞

∑
i=1

ui(t)φi(x), ui(t) = (u, φi),

then {ui(t)}∞
i=1 satisfy the following ordinary differential equation

∂tw(t) + q σ∂
α(·,t)
t w(t) + λw(t) = h(t), t ∈ (0, T]; w(0) = w0 (3)
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where w, λ, h and w0 refer to ui, λi, ( f , φi) and (u0, φi), respectively, for i ≥ 1. We consider
the fractional term as part of the right-hand side term in (3) to obtain

∂tw(t) + λw(t) = −q σ∂
α(·,t)
t w(t) + h(t).

An application of the variation-of-constants formula yields

w = e−λtw0 + e−λt ∗
(
− q σ∂

α(·,t)
t w + h

)
, (4)

where ∗ stands for the convolution on [0, t] as follows

g1(t) ∗ g2(t) :=
∫ t

0
g1(s)g2(t− s)ds.

Then, we differentiate (4) with respect to t, multiply e−κt for some κ ≥ 0 on the
resulting equation and reformulate e−κt · σ∂

α(·,t)
t as a sum of a linear operator S and a

functionH(t)

e−κt · σ∂
α(·,t)
t w :=

∫ t

0

(t− s)−α(s,t)e−(σ+κ)(t−s)

Γ(1− α(s, t))

×
(

e−κs∂sw(s) + σ
∫ s

0
e−κ(s−y)e−κy∂yw(y)dy + σe−κsw0

)
ds

=: S(e−κt∂tw) +H(t),

H(t) := σw0e−κt
∫ t

0

(t− s)−α(s,t)e−σ(t−s)

Γ(1− α(s, t))
ds

to obtain an integral equation in terms of w̃ := e−κt∂tw as follows

w̃ = −λe−(λ+κ)tw0 +
(
− qS(w̃)− qH(t) + e−κth

)
−λe−(λ+κ)t ∗

(
− qS(w̃)− qH(t) + e−κth

)
.

(5)

In order to prove the well-posedness of this integral equation in L2(0, T), it suffices
to show that the linear operator −qS + λqe−(λ+κ)t ∗ S is a contraction in L2(0, T). For v ∈
L2(0, T), we apply

|(t− s)−α(s,t)| = (t− s)−α∗(t− s)α∗−α(s,t) ≤ max{1, T}(t− s)−α∗

and Young’s convolution inequality to bound Sv by

‖Sv‖L2(0,T)

≤ Q
∥∥∥∥ ∫ t

0

e−(σ+κ)(t−s)

(t− s)α∗

(
|v(s)|+ σ

∫ s

0
e−κ(s−y)|v(y)|dy

)
ds
∥∥∥∥

L2(0,T)

≤ Q
∥∥e−(σ+κ)tt−α∗

∥∥
L1(0,T)‖v‖L2(0,T)

≤ Q(σ + κ)−(1−α∗)‖v‖L2(0,T).

The operator λe−(λ+κ)t ∗ S is then accordingly bounded by

‖λe−(λ+κ)t ∗ Sv‖L2(0,T) ≤ ‖Sv‖L2(0,T) ≤ Q(σ + κ)−(1−α∗)‖v‖L2(0,T).
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We incorporate the above two equations to conclude that for κ large enough, −qS +
λqe−(λ+κ)t ∗ S is a contraction in L2(0, T) and, thus, the integral Equation (5) has a unique
solution w̃ ∈ L2(0, T). We further apply this contractability on (5) to obtain a stability estimate

‖w̃‖L2(0,T) ≤ Q
(
λ1/2|w0|+ ‖H‖L2(0,T) + ‖h‖L2(0,T)

)
≤ Q

(
λ1/2|w0|+ ‖h‖L2(0,T)

)
.

Then, the w defined by

w :=
∫ t

0
eκsw̃(s)ds + w0 ∈ H1(0, T)

with the estimate

‖w‖H1(0,T) ≤ Q‖w̃‖L2(0,T) ≤ Q
(
λ1/2|w0|+ ‖h‖L2(0,T)

)
satisfies the differential Equation (3). The unique H1 solution to (3) follows from that of (5).

Based on the above derivations, we finally estimate the solution u to problem (2) by

‖u‖2
H1(0,T;L2(Ω)) ≤ Q

∞

∑
i=1
‖ui‖2

H1(0,T) ≤ Q
∞

∑
i=1

(
λi|(u0, φi)|2

+‖( f , φi)‖2
L2(0,T)

)
= Q

(
‖ f ‖2

L2(0,T;L2(Ω)) + ‖u0‖2
Ȟ1(Ω)

)
.

The estimate of the solutions in ‖ · ‖L2(0,T;Ȟ2(Ω)) follows from

‖u‖L2(0,T;Ȟ2(Ω)) = ‖∆u‖L2(0,T;L2(Ω))

=
∥∥∂tu + q σ∂

α(·,t)
t u− f

∥∥
L2(0,T;L2(Ω))

≤ Q
(
‖ f ‖L2(0,T;L2(Ω)) + ‖u0‖Ȟ1(Ω)

)
.

The uniqueness of the solutions to problem (2) follows from that of the differential
Equation (3).

3. Weighted Regularity

We prove the weighted regularity of the solutions to problem (2) in the following
theorem.

Theorem 2. Suppose α has bounded first-order derivatives for each coordinate, u0 ∈ Ȟs+3(Ω),
f ∈ L2(0, T; Ȟs+2(Ω)) and ∂t f ∈ L2(0, T; Ȟs(Ω)) for some s ≥ 0. Then, the following estimate
holds

‖tδ∂2
t u‖L2(0,T;Ȟs(Ω))

≤ Q
(
‖u0‖Ȟs+3(Ω) + ‖∂t f ‖L2(0,T;Ȟs(Ω)) + ‖ f ‖L2(0,T;Ȟs+2(Ω))

)
where

δ := max{α(0, 0)− 1/2 + θ, 0} with 0 < θ � 1

and Q is independent from the data and the solutions.

Proof. We differentiate (4) twice in time to obtain

∂2
t w = λ2e−λtw0 + ∂t

(
− q σ∂

α(·,t)
t w + h

)
− λ

(
− q σ∂

α(·,t)
t w + h

)
+ λ2e−λt ∗

(
− q σ∂

α(·,t)
t w + h

)
.

(6)
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The ∂t
σ∂

α(·,t)
t w could be simplified as

∣∣∂t
σ∂

α(·,t)
t w(t)

∣∣ =

∣∣∣∣∂t

∫ t

0

s−α(t−s,t)e−σs

Γ(1− α(t− s, t))
(
∂y + σ

)
w(y)

∣∣
y=t−sds

∣∣∣∣
=

∣∣∣∣ t−α(0,t)e−σt

Γ(1− α(0, t))
(
∂tw(0) + σw(0)

)
+
∫ t

0
∂t

(
s−α(t−s,t)e−σs

Γ(1− α(t− s, t))

)(
∂y + σ

)
w(y)

∣∣
y=t−sds

+
∫ t

0

s−α(t−s,t)e−σs

Γ(1− α(t− s, t))
(
∂2

y + σ∂y
)
w(y)

∣∣
y=t−sds

∣∣∣∣
≤ Qt−α(0,t)(|∂tw(0)|+ |w(0)|

)
+ Q

∫ t

0

|∂2
s u(s)|

(t− s)α(s,t)
ds.

(7)

As
t−α(0,t) = t−α(0,0)tα(0,0)−α(0,t) ≤ Qt−α(0,0),

we multiply tδ on both sides of (7) and apply

(t− s)α(s,t) ≥ Q(t− s)α(t,t)

to find ∣∣tδ∂t
σ∂

α(·,t)
t w(t)

∣∣ ≤ Qtδ−α(0,0)(|∂tw(0)|+ |w(0)|
)

+Q
∫ t

0

sδ|∂2
s u(s)|

(t− s)α∗ ds + Q
∫ t

0

(t− s)δ|∂2
s u(s)|

(t− s)α(t,t)
ds.

(8)

Since ∫ t

0

(t− s)δ|∂2
s u(s)|

(t− s)α(t,t)
ds

=
∫ t

0

(t− s)δ−α(t,t)/2

sδ

sδ|∂2
s u(s)|

(t− s)α(t,t)/2
ds

≤
( ∫ t

0

(t− s)2δ−α(t,t)

s2δ
ds
)1/2( ∫ t

0

s2δ|∂2
s u(s)|2

(t− s)α(t,t)
ds
)1/2

≤ Q
(
t1−α(t,t))1/2

( ∫ t

0

s2δ|∂2
s u(s)|2

(t− s)α(t,t)
ds
)1/2

≤ Q
( ∫ t

0

s2δ|∂2
s u(s)|2

(t− s)α∗ ds
)1/2

,

we apply ‖e−κt · ‖L2(0,T) for some κ > 0 on (8) to find

∥∥e−κttδ∂t
σ∂

α(·,t)
t w(t)

∥∥
L2(0,T) ≤ Q

(
|∂tw(0)|+ |w(0)|

)
+Q‖t−α∗ e−κt‖L1(0,T)

∥∥e−κttδ∂2
t u
∥∥

L2(0,T)

+Q
( ∫ T

0

∫ t

0

e−2κ(t−s)

(t− s)α∗
(
e−κssδ∂2

s u(s)
)2dsdt

)1/2

≤ Q
(
|∂tw(0)|+ |w(0)|

)
+ Qκ−(1−α∗)/2∥∥e−κttδ∂2

t u
∥∥

L2(0,T).

(9)

We, therefore, multiply tδ on both sides of (6), apply ‖e−κt · ‖L2(0,T) on the resulting
equation, choosing κ large enough and employ (9) and (tλ)δe−λt/2 ≤ Q, as well as similar
(and simpler) proofs as above to obtain

‖e−κttδ∂2
t w‖L2(0,T) ≤ Q

(
λ3/2|w0|+ ‖∂th‖L2(0,T) + λ‖h‖L2(0,T)

)
.
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We employ this result to obtain the estimate of ∂2
t u as

‖tδ∂2
t u‖2

L2(0,T;Ȟs(Ω))
=

∞

∑
i=1

λs
i ‖tδ∂2

t ui‖2
L2(0,T)

≤ Q
∞

∑
i=1

(
λs+3

i |(u0, φi)|2 + ‖(∂t f , φi)‖2
L2(0,T) + λ2

i ‖( f , φi)‖2
L2(0,T)

)
= Q

(
‖u0‖2

Ȟs+3(Ω)
+ ‖∂t f ‖2

L2(0,T;L2(Ω)) + ‖ f ‖2
L2(0,T;Ȟ2(Ω))

)
,

which completes the proof.

4. Conclusions

In this paper we rigorously prove the well-posedness and high-order regularity of the
solutions to the time-fractional diffusion equation equipped with variable-order fractional
substantial derivative. In particular, a weight function is introduced in the estimate of
high-order smoothing properties to characterize the initial singularity of the solutions.
Based on these theoretical estimates, we will carry out numerical analysis for the proposed
model in the near future in order to provide supports for practical implementations.
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