
����������
�������

Citation: Hioual, A.; Ouannas, A.;

Oussaeif, T.-E.; Grassi, G.; Batiha,

I.M.; Momani, S. On Variable-Order

Fractional Discrete Neural Networks:

Solvability and Stability. Fractal Fract.

2022, 6, 119. https://doi.org/

10.3390/fractalfract6020119

Academic Editors: Xiangcheng

Zheng, Hongguang Sun, Hong Wang

and Yong Zhang

Received: 18 January 2022

Accepted: 14 February 2022

Published: 18 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

On Variable-Order Fractional Discrete Neural Networks:
Solvability and Stability

Amel Hioual 1 , Adel Ouannas 1,2 , Taki-Eddine Oussaeif 1, Giuseppe Grassi 3, Iqbal M. Batiha 2,4,*
and Shaher Momani 2,5

1 Department of Mathematics and Computer Science, University of Larbi Ben M’hidi,
Oum El Bouaghi 04000, Algeria; amel.hioual@univ-oeb.dz (A.H.); ouannas.adel@univ-oeb.dz (A.O.);
takieddine.oussaeif@gmail.com (T.-E.O.)

2 Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman 20550, United Arab Emirates;
s.momani@ju.edu.jo

3 Dipartimento Ingegneria Innovazione, Universita del Salento, 73100 Lecce, Italy;
giuseppe.grassi@unisalento.it

4 Department of Mathematics, Faculty of Science and Technology, Irbid National University, Irbid 2600, Jordan
5 Department of Mathematics, Faculty of Science, University of Jordan, Amman 11942, Jordan
* Correspondence: ibatiha@inu.edu.jo

Abstract: Few papers have been published to date regarding the stability of neural networks described
by fractional difference operators. This paper makes a contribution to the topic by presenting a
variable-order fractional discrete neural network model and by proving its Ulam–Hyers stability.
In particular, two novel theorems are illustrated, one regarding the existence of the solution for the
proposed variable-order network and the other regarding its Ulam–Hyers stability. Finally, numerical
simulations of three-dimensional and two-dimensional variable-order fractional neural networks
were carried out to highlight the effectiveness of the conceived theoretical approach.

Keywords: fractional-order Caputo h-difference operator; variable-order fractional discrete neural
network; Ulam–Hyers stability

1. Introduction

Fractional calculus deals with non-integer-order differential equations or non-integer-
order difference equations [1]. It is worth noting that, while the first known reference of
fractional derivatives can be found in the correspondence of G. W. Leibniz and Marquis
de l’Hospital in 1695, fractional difference operators were introduced only in 1974 [2].
Consequently, non-integer-order discrete-time systems have received less attention in the
literature with respect to non-integer-order continuous-time systems [1].

Referring to fractional continuous/discrete systems, some manuscripts in the literature
have investigated their stability properties [3–9]. For example, in [3], an extension of
the Mikhailov stability criterion to fractional discrete systems described by the nabla
Grünwald–Letnikov operator was introduced. The stability methods in [3] are efficient
from the computational point of view and can be applied to both commensurate and
incommensurate systems. In [4], a novel definition of the Mittag–Leffler stability for discrete
fractional systems was introduced. In particular, some useful criteria were developed
in order to ensure the stability of nabla discrete fractional systems for both the Caputo
definition and the Riemann–Liouville definition. In [5], the stability and synchronization
for some fractional-order difference equations were investigated. In [9], the fractional delay
discrete systems were studied using a discrete delayed Mittag–Leffler matrix function.
Moreover, a criterion on the finite-time stability of fractional delay difference equations
with constant coefficients was derived.

It is worth noting that very few papers have been published in the literature regarding
the Ulam–Hyers stability in fractional discrete systems [10–12]. For example, in [10], the
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Ulam–Hyers stability of linear and non-linear nabla fractional Caputo difference equations
on finite intervals was investigated. In [11], the Ulam–Hyers stability for Riemann–Liouville
fractional nabla difference equations was studied. In [12], the Hyers–Ulam stability of an
inverted pendulum modeled by a discrete fractional Duffing equation was investigated.

Among the different types of non-integer-order discrete-time dynamical systems, an
important class is represented by neural networks described by non-integer-order difference
operators [13–21]. Even though the stability of fractional discrete neural networks is a
prerequisite for their successful applications [13], few papers have been published to date
on the topic. For example, in [14], the global Mittag–Leffler stability and the finite-time
stability of fractional discrete neural networks (in the complex field) were studied for
two different types of activation functions. In [15], a fractional discrete quaternion-valued
memristive neural network was introduced. Then, a sufficient condition to ensure the quasi-
stability of the network equilibrium point was illustrated. In [16], Lyapunov’s direct method
was utilized to ensure the stability of fractional discrete complex-valued neural networks,
whereas in [17], the stability and synchronization of non-integer-order discrete neural
networks with time delays were studied. In [18], the fixed-point theorem was exploited
to derive some stability conditions for fractional difference equations. Then, the obtained
stability results were applied to fractional discrete neural networks with and without delay.
In [19], the exponential stability of non-integer-order discrete quaternion-valued neural
networks was investigated. In particular, the Lyapunov–Krasovskii functional and matrix
inequality were utilized to prove the exponential stability of the network equilibrium
point. In [20], the Arzela–Ascoli theorem was exploited to ensure the finite-time stability
of fractional discrete complex-valued neural networks. Finally, referring to variable-order
fractional discrete neural networks (i.e., networks where the fractional order changes
over discrete time), an attempt to study their stability was carried out in [21]. However,
the results in [21] were related to the Mittag–Leffler stability. No result is available in
the literature regarding the Ulam–Hyers stability of fractional discrete neural networks,
including those with a variable order.

Based on the absence in the literature mentioned above, this paper makes a contri-
bution to the topic of the stability of fractional discrete neural networks by presenting
a variable-order model based on the Caputo h-difference operator and by proving its
Ulam–Hyers stability. In particular, two novel theorems are illustrated, one regarding the
existence of the solution for the proposed variable-order network and the other regarding
its Ulam–Hyers stability. The paper is organized as follows. In Section 2, the background
on fractional discrete calculus is provided. In Section 3, the equations of the proposed
variable-order fractional discrete neural network are introduced. In Section 4, a novel
theorem is presented, with the aim to prove the existence of the solution for the considered
neural network model. In Section 5, the Ulam–Hyers stability of the proposed variable-
order fractional discrete neural network is proven by means of a novel theorem. Finally, in
Section 6, numerical simulations of three-dimensional and two-dimensional variable-order
fractional neural networks are carried out to highlight the effectiveness of the conceived
theoretical approach.

2. Background on Fractional Discrete Calculus

The following definitions for discrete fractional calculus are introduced.

Definition 1 (Fractional sum [22]). Let x : (hN)a → R and 0 < v be given. a is a starting
point. The v−th order h-sum is given by:

h∆−v
a x(t) =

h
Γ(v)

t
h−v

∑
s= a

h

(t− σ(sh))v−1
h x(sh), σ(sh) = (s + 1)h, t ∈ (hN)a+vh
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where the h-falling factorial function is defined as:

t(v)h = hv Γ( t
h + 1)

Γ( t
h + 1− v)

, t, v ∈ R

while (hN)a+(1−v)h = {a + (1− v)h, a + (2− v)h, ...}.

Definition 2 (Caputo delta difference [22]). For x(t) defined on (hN)a and 0 < α, the Caputo-
like difference is defined by:

C
h ∆α

a x(t) = ∆−(m−α)
a ∆m

h x(t), t ∈ (hN)a+(m−α)h

where ∆hx(t) =
x(t + h)− x(t)

h
and m = [α] + 1.

If the fractional order α is a positive integer m, then we have the following definition:

C
h ∆α

a x(t) = ∆m
h x(t), t ∈ (hN)a.

Lemma 1 ([22]). In what follows, some useful proprieties used in this paper are reported:

• Discrete Leibniz integral law:

h∆−v
a+(1−v)h

C
h ∆v

a x(t) = x(t)− x(a), 0 < v ≤ 1, t ∈ (hN)a+h;

• Fractional Caputo difference of a constant c:

C
h ∆v

ac = 0, 0 < v ≤ 1;

• Delta difference of the h–falling factorial function:

∆s(t− sh)(v)h = −v(t− σ(sh))(v−1)
h .

Lemma 2 (Arzela–Ascoli’s theorem [23]). A bounded, uniformly Cauchy subset Ω of Banach
space E is relatively compact.

Lemma 3 (Krasnoselskii fixed-point theorem [23]). Let Ω be a nonempty, closed, convex, and
bounded subset of Banach space E. Suppose that S, T are two operators, such that:

(i) S is a contraction;
(ii) For any x, y ∈ Ω, Sx + Ty ∈ Ω;
(iii) T is continuous, and B(Ω) is relatively compact.

Then, for x ∈ Ω, the operator equation Sx + Tx = x has a solution.

3. Variable-Order Fractional Discrete Neural Network

Discrete-time fractional-order neural networks are well suited to modeling the dynam-
ics of fractional-order discrete non-linear systems. In reality, because they have modeling
capabilities to a required precision, they are considered a contender for a generic, para-
metric, non-linear model of a large class of discrete non-linear systems with a fractional
order. In this paper, we explore a type of variable-order fractional discrete neural network
described by:

C
h ∆vk

tkl
x(t) = −Ax(t + vkh) + B f (t; x(t + vkh)), (1)

where (1) can be reduced as:
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C
h ∆v0

t0
x(t) = −Ax(t + v0h) + B f (t; x(t + v0h)), t ∈ {t0 + (1− v0)h, ..., tl − v0h}

C
h ∆v1

tl
x(t) = −Ax(t + v1h) + B f (t; x(t + v1h)), t ∈ {tl + (1− v1)h, ..., t2l − v1h}

...
C
h ∆vk

tkl
x(t) = −Ax(t + vkh) + B f (t; x(t + vkh)), t ∈ {tkl + (1− vk)h, ..., t(k+1)l − vkh}

(2)

in which t ∈ (hN)tkl+(1−vk)h, 0 < vk ≤ 1, k = 0, ..., m − 1, m is the number of
intervals, C

h ∆vk
tkl

denotes the variable-order fractional Caputo h-difference operator of order
vk, x(t) = (x1(t), ..., xp(t))T ∈ Rp is the state of the unit at time t, p is the dimension,
A = diag(−a1, ...,−ap), where ai > 0 represents the matrix with which the neurons will
reset their potentials to the resting state when disconnected from the network, while B ∈
Rp×p corresponds to the connection weights, and finally, f (t, x(t)) ∈ C((hN)tkl+(1−vk)h,Rp)
is the activation function.

Lemma 4. A function x(t) is called the solution of (1) if x(t) satisfies:

x(t) =





x(t0) +
h

Γ(v0)
∑

t
h−v0

s= t0
h +1−v0

(t− σ(sh))v0−1
h [−Ax(sh) + B f (sh, x(sh))], t ∈ {t0 + h, ..., tl}

x(t0) + ∑m−1
n=1

h
Γ(vn−1)

∑
tnl
h −vn−1

s=
t(n−1)l

h +1−vn−1

(tnl − σ(sh))vn−1−1
h [−Ax(sh) + B f (sh, x(sh))]

+
h

Γ(vm−1)
∑

t
h−vm−1

s=
t(m−1)l

h +1−vm−1

(t− σ(sh))vm−1−1
h [−Ax(sh) + B f (sh, x(sh))], t ∈ {t(m−1)l + h, ..., tml}.

(3)

Proof. Actually, the system (2) is equivalent to:




x(t) = x(t0) + h∆−v0
t0+(1−v0)h

[−Ax(t) + B f (t, x(t))], t ∈ {t0 + h, ..., tl}
x(t) = x(tl) + h∆−v1

tl+(1−v1)h
[−Ax(t) + B f (t, x(t))], t ∈ {tl + h, ..., t2l}

...

x(t) = x(t(m−1)l) + h∆
−v(m−1)
t(m−1)l+(1−vm−1)h

[−Ax(t) + B f (t, x(t))], t ∈ {t(m−1)l + h, ..., tml}.

As for k = 0, t ∈ {t0 + (1− v0)h, ..., tl − v0h}, we obtain that the solution of (1) can
be expressed as:

x(t) = x(t0) + h∆−v0
t0+(1−v0)h

[−Ax(t) + B f (t, x(t))].

We can further obtain:

x(t) = x(t0) +
h

Γ(v0)

t
h−v0

∑
s= t0

h +1−v0

(t− σ(sh))v0−1
h [−Ax(sh) + B f (sh, x(sh))],

andwecanhave x(tl) = x(t0)+
h

Γ(v0)
∑

tl
h −v0

s= t0
h +1−v0

(tl−σ(sh))v0−1
h [−Ax(sh)+ B f (sh, x(sh))]

as an initial condition of:

C
h ∆v1

tl
x(t) = −Ax(t + v1h) + B f (t; x(t + v1h)), t ∈ {tl + (1− v1)h, ..., t2l − v1h}.

Using the same approach, we can obtain the expression of x(t) for any t ∈ {tl + (1−
v1)h, ..., t2l − v1h}. In other words, we can have:
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x(t) = x(tl) +
h

Γ(v1)

t
h−v1

∑
s= t0

h +1−v1

(t− σ(sh))v1−1
h [−Ax(sh) + B f (sh, x(sh))]

= x(t0) +
h

Γ(v0)

tl
h −v0

∑
s= t0

h +1−v0

(tl − σ(sh))v0−1
h [−Ax(sh) + B f (sh, x(sh))]

+
h

Γ(v1)

t
h−v1

∑
s= tl

h +1−v1

(t− σ(sh))v1−1
h [−Ax(sh) + B f (sh, x(sh))].

Now, for any t ∈ {tkl + (1− vk)h, ..., t(k+1)l−vkh}, k = 2, 3, ..., m− 1, we can similarly
derive x(t) as follows:

x(t) =





x(t0) +
h

Γ(v0)
∑

t
h−v0

s= t0
h +1−v0

(t− σ(sh))v0−1
h [−Ax(sh) + B f (sh, x(sh))], t ∈ {t0 + h, ..., tl}

x(t0) + ∑m−1
n=1

h
Γ(vn−1)

∑
tnl
h −vn−1

s=
t(n−1)l

h +1−vn−1

(tnl − σ(sh, sh))vn−1−1
h [−Ax(sh) + B f (sh, x(sh))]

+
h

Γ(vm−1)
∑

t
h−vm−1

s=
t(m−1)l

h +1−vm−1

(t− σ(sh))vm−1−1
h [−Ax(sh) + B f (sh, x(sh))], t ∈ {t(m−1)l + h, ..., tml}

and hence, the proof is completed.

4. Existence of the Solution

The following operator can now be defined:

Px(t) = x(t0) +
m−1

∑
n=1

h
Γ(vn−1)

tnl
h −vn−1

∑
s=

t(n−1)l
h +1−vn−1

(tnl − σ(sh))vn−1−1
h [−Ax(sh) + B f (sh, x(sh))]

+
h

Γ(vm−1)

t
h−vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t− σ(sh))vm−1−1
h [−Ax(sh) + B f (x(sh, sh))], t ∈ (hN)a+h.

It is easily concluded that x is a solution of (1) iff x is a fixed point of the operator
P. We adopt Kransnoselkii’s fixed-point Theorem 3 to establish existence results. For any
t ∈ (hN)a+h, we can define the following two operators:

Tx(t) =
m−1

∑
n=1

h
Γ(vn−1)

tnl
h −vn−1

∑
s=

t(n−1)l
h +1−vn−1

(tnl − σ(sh))vn−1−1
h [−Ax(sh) + B f (sh, x(sh))]

and:

Sx(t) = x(t0) +
h

Γ(vm−1)

t
h−vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t− σ(sh))vm−1−1
h [−Ax(sh) + B f (sh, x(sh))].

Now, we introduce the following assumptions:

(A1) For all t ∈ (hN)t(m−1)l+(1−vm−1)h, f (t, x) represents a continuous function with respect

to x, and there exists a constant L ∈ R+ such that:

‖ f (t, x)− f (t, y)‖ ≤ L‖x− y‖;
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(A2) There exists a constant M ∈ R+ such that M < 1, where:

M = [MA + LMB]




m−1

∑
n=1

(tnl + (vn−1 − 1)h + t(n−1)l)
(vn−1)
h

Γ(1 + vn−1)
+ sup

t∈{t(m−1)l+h,...,tml}

(t + (vm−1 − 1)h + t(m−1)l)
(vm−1)
h

Γ(1 + vm−1)




and:
MA = ‖A‖∞, MB = ‖B‖∞.

Now, a novel theorem is illustrated, which proves the existence of the solution of the
variable-order fractional discrete neural network (1).

Theorem 1. Assume (A1) and (A2) hold. For any x ∈ Rp, if there exists positive κ such that
‖x(t0)‖ ≤ κ, then the system (1) has at least one bounded solution in Omega = {x ∈ Rp : ‖x‖ ≤
r} if the following condition holds:

r >
κ

1−M
.

Proof. Let x : (hN)a → RP, |x(t)| denote the norm l∞ of the vector x(t), |x(t)| =
maxi=1,...p |xi(t)|, and let the supremum norm ‖x(t)‖ = supt∈(hN)a

‖x(t)‖ be defined on

the set Ω. The matrix norm is used as ‖B‖∞ = maxi=1,...,p ∑
p
j=1 |bij|. It is obvious that Ω is a

nonempty, closed, bounded, and convex subset of Rp. Hence, we have the following description:

Step 1. We show that S maps Ω into Ω. For any x ∈ Ω, we have:

‖Sx(t)‖ ≤ ‖x(t0)‖+
h

Γ(vm−1)

t
h−vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t− σ(sh))vm−1−1
h ‖ − Ax(sh) + B f (sh, x(sh))‖

≤ κ + [MA + LMB] sup
t∈{t(m−1)l+h,...,tml}

(t + (vm−1 − 1)h + t(m−1)l)
(vm−1)
h

Γ(1 + vm−1)
‖x‖

≤ κ + [MA + LMB] sup
t∈{t(m−1)l+h,...,tml}

(t + (vm−1 − 1)h + t(m−1)l)
(vm−1)
h

Γ(1 + vm−1)
r ≤ r.

This implies SΩ ⊂ Ω;

Step 2. We need to prove that S is continuous. Let {xn} be a sequence of Ω satisfying
xn → x as n→ +∞. Then, we can obtain:

‖Sxn(t)− Sx(t)‖ ≤ ‖xn(t0)− x(t0)‖

+ ‖ h
Γ(vm−1)

t
h−vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t− σ(sh))vm−1−1
h [−A(xn(sh)− x(sh))

+ B( f (sh, xn(sh))− f (sh, x(sh)))]‖
≤ ‖xn(t0)− x(t0)‖

+ [MA + LMB] sup
t∈{t(m−1)l+h,...,tml}

(t + (vm−1 − 1)h + t(m−1)l)
(vm−1)
h

Γ(1 + vm−1)
‖xn(t)− x(t)‖.

Then, we can conclude that ‖Sxn(t)− Sx(t)‖ → 0 when n→ +∞, which implies
that S is continuous;

Step 3. We show that S is relatively compact. We choose t1, t2 ∈ {tkl + h, ..., t(k+1)l}, k =
1, 2, ...m− 1, and t1 < t2. Then, we have:
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‖Sx(t1)− Sx(t2)‖ ≤
h

Γ(vm−1)
‖

t1
h −vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t1 − σ(sh))vm−1−1
h [−Ax(sh) + B f (sh, x(sh))]

−
t2
h −vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t2 − σ(sh))vm−1−1
h [−Ax(sh) + B f (sh, x(sh))]‖

≤ h
Γ(vm−1)

‖
t1
h −vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t1 − σ(sh))vm−1−1
h [−Ax(sh) + B f (sh, x(sh))]

−
t1
h −vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t2 − σ(sh))vm−1−1
h [−Ax(sh) + B f (sh, x(sh))]

−
t2
h −vm−1

∑
s= t1

h +1−vm−1

(t2 − σ(sh))vm−1−1
h [−Ax(sh) + B f (sh, x(sh))]‖

≤ h
Γ(vm−1)

‖
t1
h −vm−1

∑
s=

t(m−1)l
h +1−vm−1

(
(t1 − σ(sh))vm−1−1

h − (t2 − σ(sh))vk−1
h

)
[−Ax(sh) + B f (sh, x(sh))]

−
t2
h −vm−1

∑
s= t1

h +1−vm−1

(t2 − σ(sh))vm−1−1
h [−Ax(sh) + B f (sh, x(sh))]‖

≤ h
Γ(vm−1)

[MA + LMB](

t1
h −vm−1

∑
s=

t(m−1)l
h +1−vm−1

|(t1 − σ(sh))vm−1−1
h − (t2 − σ(sh))vk−1

h |

+

t2
h −vm−1

∑
s= t1

h +1−vm−1

(t2 − σ(sh))vm−1−1
h )r → 0, as t1 → t2.

This implies that {Sx : x ∈ Ω} is a bounded and uniformly Cauchy subset E, and
together with Arzela–Ascoli’s lemma 2, we obtain that SΩ is relatively compact;

Step 4. We choose a fixed y ∈ Ω and x = Tx + Sy for all k = 0, 1, 2, ..., m− 1. Then, we have:

‖x‖ ≤ ‖Tx‖+ ‖Sy‖

≤
m−1

∑
n=1

h
Γ(vn−1)

tnl
h −vn−1

∑
s=

t(n−1)l
h +1−vn−1

(tnl − σ(sh))vn−1−1
h ‖ − Ax(sh) + B f (sh, x(sh))‖

+ ‖y(t0)‖+
h

Γ(vm−1)

t
h−vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t− σ(sh))vm−1−1
h ‖ − Ay(sh) + B f (sh, y(sh))‖
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≤ [MA + LMB]r
m−1

∑
n=1

h
Γ(vn−1)

tnl
h −vn−1

∑
s=

t(n−1)l
h +1−vn−1

(tnl − σ(sh))vn−1−1
h

+ κ + [MA + LMB]r
h

Γ(vm−1)
sup

t∈{t(m−1)l+h,...,tml}

(t + (vm−1 − 1)h + t(m−1)l)
(vm−1)
h

Γ(1 + vm−1)

≤ κ + [MA + LMB](
m−1

∑
n=1

(tnl + (vn−1 − 1)h + t(n−1)l)
(vn−1)
h

Γ(1 + vn−1)

+ sup
t∈{t(m−1)l+h,...,tml}

(t + (vm−1 − 1)h + t(m−1)l)
(vm−1)
h

Γ(1 + vm−1)
)r ≤ r.

Therefore, x ∈ Ω. Finally, we prove that the operator T is the contraction mapping.
For x(t), y(t) ∈ Ω, taking the norm of Tx(t)− Ty(t) yields:

‖Tx(t)− Ty(t)‖ =‖
m−1

∑
n=1

h
Γ(vn−1)

tnl
h −vn−1

∑
s=

t(n−1)l
h +1−vk−n−1

(tnl − σ(sh))vn−1−1
h [−A(x(sh)− y(sh))

+ B( f (sh, x(sh))− f (sh, y(sh)))]‖

≤ [MA + LMB]‖x− y‖
m−1

∑
n=1

(tnl + (vn−1 − 1)h + t(n−1)l)
(vn−1)
h

Γ(1 + vn−1)
< ‖x− y‖.

According to (A2), it can be concluded that the operator T is a contraction mapping.
From Lemma (3), P = T + S has a fixed point in Ω, which is a solution of (1).

Remark 1. The goal of Theorem 1 is to establish certain fixed-point outcomes that will be needed in
this section. By constructing the set Ω and assuming that the initial condition is bounded, which is
necessary, and establishing an essential condition that relies on the assumptions (A1) and (A2), we
ensure the existence of at least one solution when the Kransnoselkii’s fixed-point theorem ia applied.

5. Ulam–Hyers Stability of a Variable-Order Fractional Discrete Neural Network

Definition 3 (Ulam–Hyers stability [10]). We say (1) is Ulam–Hyers stable if there exists c > 0
such that for arbitrary ε > 0, if x ∈ Rp satisfies:

‖C
h ∆vk

tkl
x(t) + Ax(t + vkh)− B f (t; x(t + vkh)‖ ≤ ε, (4)

for t ∈ (hN)tkl+(1−vk)h, 0 < vk ≤ 1, k = 0, ..., m− 1, then there exists a solution y of (1) satisfying:

‖x(t)− y(t)‖ ≤ cε.

First, the following lemma is proven.

Lemma 5. If x solves (4), then:

‖x(t)−x(t0) +
m−1

∑
n=1

h
Γ(vn−1)

tnl
h −vn−1

∑
s=

t(n−1)l
h +1−vn−1

(tnl − σ(sh))vn−1−1
h [Ax(sh)− B f (sh, x(sh))]

+
h

Γ(vm−1)

t
h−vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t− σ(sh))vm−1−1
h [Ax(sh)− B f (sh, x(sh))]‖ ≤ dε,
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where:

d =




m−1

∑
n=1

(tnl + (vn−1 − 1)h + t(n−1)l)
(vn−1)
h

Γ(1 + vn−1)
+ sup

t∈{t(m−1)l+h,...,tml}

(t + (vm−1 − 1)h + t(m−1)l)
(vm−1)
h

Γ(1 + vm−1)


.

Proof. If x(t) satisfies (4), there exists a function g(t) satisfying ‖g(t)‖ ≤ ε such that:

C
h ∆vk

tkl
x(t) + Ax(t + vkh)− B f (t; x(t + vkh)) = g(t), t ∈ {tkl + h, ..., t(k+1)l}, k = 0, 1, 2, ..., m− 1,

which means:




C
h ∆v0

t0
x(t) + Ax(t + v0h)− B f (t; x(t + v0h)) = g(t), t ∈ {t0 + h, ..., tl},

C
h ∆v1

tl
x(t) + Ax(t + v1h)− B f (t; x(t + v1h)) = g(t), t ∈ {tl + h, ..., t2l},

...
C
h ∆vm−1

t(m−1)l
x(t) + Ax(t + vm−1h)− B f (t; x(t + vm−1h)) = g(t), t ∈ {t(m−1)l + h, ..., tml}.

That is equivalent to:




x(t)− x(t0) +
h

Γ(v0)
∑

t
h−v0

s= t0
h +1−v0

(t− σ(sh))v0−1
h [Ax(sh)− B f (sh, x(sh))] =

h
Γ(v0)

∑
t
h−v0

s= t0
h +1−v0

(t− σ(sh))v0−1
h g(sh)

x(t)− x(tl) +
h

Γ(v1)
∑

t
h−v1

s= tl
h +1−v1

(t− σ(sh))v1−1
h [Ax(sh)− B f (sh, x(sh))] =

h
Γ(v1)

∑
t
h−v1

s= t1
h +1−v1

(t− σ(sh))v1−1
h g(sh)

...

x(t)− x(t(m−1)l) +
h

Γ(vm−1)
∑

t
h−vm−1

s=
t(m−1)l

h +1−vm−1

(t− σ(sh))vm−1−1
h [Ax(sh)− B f (sh, x(sh))]

=
h

Γ(vm−1)
∑

t
h−vm−1

s=
t(m−1)l

h +1−vm−1

(t− σ(sh))vm−1−1
h g(sh)

.

Therefore, we have:




x(tl) = x(t0) +
h

Γ(v0)
∑

tl
h −v0

s= t0
h +1−v0

(tl − σ(sh))v0−1
h [−Ax(sh) + B f (sh, x(sh))]

+
h

Γ(v0)
∑

tl
h −v0

s= t0
h +1−v0

(tl − σ(sh))v0−1
h g(sh)

x(t2l) = x(tl) +
h

Γ(v1)
∑

t2l
h −v1

s= tl
h +1−v1

(t2l − σ(sh))v1−1
h [Ax(sh)− B f (sh, x(sh))]

+
h

Γ(v1)
∑

t2l
h −v1

s= t1
h +1−v1

(t2l − σ(sh))v1−1
h g(sh)

...

x(t)− x(t(m−1)l) +
h

Γ(vm−1)
∑

t
h−vm−1

s=
t(m−1)l

h +1−vm−1

(t− σ(sh))vm−1−1
h [Ax(sh)− B f (sh, x(sh))]

=
h

Γ(vm−1)
∑

t
h−vm−1

s=
t(m−1)l

h +1−vm−1

(t− σ(sh))vm−1−1
h g(sh)

,

which leads us to the following equality:



Fractal Fract. 2022, 6, 119 10 of 16

x(t)−x(t0) +
m−1

∑
n=1

h
Γ(vn−1)

tnl
h −vn−1

∑
s=

t(n−1)l
h +1−vn−1

(tnl − σ(sh))vn−1−1
h [Ax(sh)− B f (sh, x(sh))]

+
h

Γ(vm−1)

t
h−vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t− σ(sh))vm−1−1
h [Ax(sh)− B f (sh, x(sh))]

=
m−1

∑
n=1

h
Γ(vn−1)

tnl
h −vn−1

∑
s=

t(n−1)l
h +1−vn−1

(tnl − σ(sh))vn−1−1
h g(sh) +

h
Γ(vm−1)

t
h−vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t− σ(sh))vm−1−1
h g(sh).

Now, by taking the norm of each side, one can have:

‖x(t)−x(t0) +
m−1

∑
n=1

h
Γ(vn−1)

tnl
h −vn−1

∑
s=

t(n−1)l
h +1−vn−1

(tnl − σ(sh))vn−1−1
h [Ax(sh)− B f (sh, x(sh))]

+
h

Γ(vm−1)

t
h−vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t− σ(sh))vm−1−1
h [Ax(sh)− B f (sh, x(sh))]‖

= ‖
m−1

∑
n=1

h
Γ(vn−1)

tnl
h −vn−1

∑
s=

t(n−1)l
h +1−vn−1

(tnl − σ(sh))vn−1−1
h g(sh) +

h
Γ(vm−1)

t
h−vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t− σ(sh))vm−1−1
h g(sh)‖

≤



m−1

∑
n=1

(tnl + (vn−1 − 1)h + t(n−1)l)
(vn−1)
h

Γ(1 + vn−1)
+ sup

t∈{t(m−1)l+h,...,tml}

(t + (vm−1 − 1)h + t(m−1)l)
(vm−1)
h

Γ(1 + vm−1)


‖g‖

≤



m−1

∑
n=1

(tnl + (vn−1 − 1)h + t(n−1)l)
(vn−1)
h

Γ(1 + vn−1)
+ sup

t∈{t(m−1)l+h,...,tml}

(t + (vm−1 − 1)h + t(m−1)l)
(vm−1)
h

Γ(1 + vm−1)


ε,

which completes the proof.

Now, a novel theorem is illustrated, which proves the Ulam–Hyers stability of the
variable-order fractional discrete neural network (1).

Theorem 2. Under Assumptions (A1) and (A2), the system (1) is Ulam–Hyers stable.

Proof. It is clear that the solution y of (1) satisfies:

y(t) =x(t0) +
m−1

∑
n=1

h
Γ(vn−1)

tnl
h −vn−1

∑
s=

t(n−1)l
h +1−vn−1

(tnl − σ(sh))vn−1−1
h [Ay(sh)− B f (sh, y(sh))]

+
h

Γ(vm−1)

t
h−vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t− σ(sh))vm−1−1
h [Ay(sh)− B f (sh, y(sh))].

Therefore, we can have:
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‖x(t)− y(t)‖ = ‖x(t)− x(t0)−
m−1

∑
n=1

h
Γ(vn−1)

tnl
h −vn−1

∑
s=

t(n−1)l
h +1−vn−1

(tnl − σ(sh))vn−1−1
h [−Ay(sh) + B f (sh, y(sh))]

− h
Γ(vm−1)

t
h−vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t− σ(sh))vm−1−1
h [−Ay(sh) + B f (sh, y(sh))]‖

= ‖x(t)− x(t0)−
m−1

∑
n=1

h
Γ(vn−1)

tnl
h −vn−1

∑
s=

t(n−1)l
h +1−vn−1

(tnl − σ(sh))vn−1−1
h [−Ay(sh) + B f (sh, y(sh))]

− h
Γ(vm−1)

t
h−vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t− σ(sh))vm−1−1
h [−Ay(sh) + B f (sh, y(sh))]

−
m−1

∑
n=1

h
Γ(vn−1)

tnl
h −vn−1

∑
s=

t(n−1)l
h +1−vn−1

(tnl − σ(sh))vn−1−1
h [−Ax(sh) + B f (sh, x(sh))]

− h
Γ(vm−1)

t
h−vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t− σ(sh))vm−1−1
h [−Ax(sh) + B f (sh, x(sh))]

+
m−1

∑
n=1

h
Γ(vn−1)

tnl
h −vn−1

∑
s=

t(n−1)l
h +1−vn−1

(tnl − σ(sh))vn−1−1
h [−Ax(sh) + B f (sh, x(sh))]

+
h

Γ(vm−1)

t
h−vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t− σ(sh))vm−1−1
h [−Ax(sh) + B f (sh, x(sh))]‖

≤ ‖x(t)− x(t0)−
m−1

∑
n=1

h
Γ(vn−1)

tnl
h −vn−1

∑
s=

t(n−1)l
h +1−vn−1

(tnl − σ(sh))vn−1−1
h [−Ax(sh) + B f (sh, x(sh))]

− h
Γ(vm−1)

t
h−vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t− σ(sh))vm−1−1
h [−Ax(sh) + B f (sh, x(sh))]‖

+ ‖
m−1

∑
n=1

h
Γ(vn−1)

tnl
h −vn−1

∑
s=

t(n−1)l
h +1−vn−1

(tnl − σ(sh))vn−1−1
h [−A(x(sh)− y(sh)) + B( f (sh, x(sh))− f (sh, y(sh)))]‖

+ ‖ h
Γ(vm−1)

t
h−vm−1

∑
s=

t(m−1)l
h +1−vm−1

(t− σ(sh))vm−1−1
h [−A(x(sh)− y(sh)) + B( f (sh, x(sh))− f (sh, y(sh)))]‖

≤



m−1

∑
n=1

(tnl + (vn−1 − 1)h + t(n−1)l)
(vn−1)
h

Γ(1 + vn−1)
+ sup

t∈{t(m−1)l+h,...,tml}

(t + (vm−1 − 1)h + t(m−1)l)
(vm−1)
h

Γ(1 + vm−1)


ε

+ [MA + LMB]{
m−1

∑
n=1

(tnl + (vn−1 − 1)h + t(n−1)l)
(vn−1)
h

Γ(1 + vn−1)

+ sup
t∈{t(m−1)l+h,...,tml}

(t + (vm−1 − 1)h + t(m−1)l)
(vm−1)
h

Γ(1 + vm−1)
}‖x(t)− y(t)‖

≤ d
1−M

ε ≤ cε,
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where
c =

d
1−M

.

Thus, we consequently conclude that (1) is Ulam–Hyers stable.

6. Numerical Simulations

Example 1. Let us consider the following fractional variable-order neural network:





C
h ∆v0

t0
x(t) = −Ax(t + v0h) + B tanh(x(t + v0h)), t ∈ {t0 + (1− v0)h, ..., tl − v0h}

C
h ∆v1

tl
x(t) = −Ax(t + v1h) + B tanh(x(t + v1h)), t ∈ {tl + (1− vl)h, ..., t2l − v1h}

C
h ∆v2

t2l
x(t) = −Ax(t + v2h) + B tanh(x(t + v2h)), t ∈ {t2l + (1− v2)h, ..., t3l − v2h},

(5)

where h = 0.5, k = 0, 1, 2, t ∈ (hN)tkl−(1−vk)h and (v0, v1, v2) = (0.05, 0.1, 0.15), tanh(x(t)) =
(tanh(x1(t)), tanh(x2(t))T), and where:

A =




0.2 0 0
0 0.2 0
0 0 0.2


, B =




0.002 − 0.004 0.0015
−0.002 0.001 − 0.002
−0.0025 0.0015 − 0.003


, x(0) =




0.9
0.6
0.3


.

We note that the assumptions (A1) and (A2) are satisfied for MA = 0.2 and MB = 0.0075.
This results in M = 0.9866 < 1. Then, the conditions of Theorem 1 are fulfilled for r ≈ 67.16,

which indicates the existence of at least one solution. Theorem 2 is also satisfied for c =
d

1−M
where d = 4.7547, and hence, the system (5) is Ulam–Hyers stable. We use the following numerical
formulas to obtain the numerical solution in Figure 1 along with the initial condition x(0) =
(0.9, 0.6, 0.3)T , which shows the stability of the considered neural network:





x(t) = x(t0) +
hv0

Γ(v0)
∑t

t0+1
Γ(t− j + v0)

Γ(t− j + 1)
(−Ax(j) + B tanh(x(j))),

x(t) = x(tl) +
hv1

Γ(v1)
∑t

tl+1
Γ(t− j + v0)

Γ(t− j + 1)
(−Ax(j) + B tanh(x(j))),

x(t) = x(t2l) +
hv2

Γ(v2)
∑t

t2l+1
Γ(t− j + v0)

Γ(t− j + 1)
(−Ax(j) + B tanh(x(j))).
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where
c =

d
1−M

.

Thus, we consequently conclude that (1) is Ulam–Hyers stable.
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h ∆v1

tl
x(t) = −Ax(t + v1h) + B tanh(x(t + v1h)), t ∈ {tl + (1− vl)h, ..., t2l − v1h}
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h ∆v2

t2l
x(t) = −Ax(t + v2h) + B tanh(x(t + v2h)), t ∈ {t2l + (1− v2)h, ..., t3l − v2h},

(5)

where h = 0.5, k = 0, 1, 2, t ∈ (hN)tkl−(1−vk)h and (v0, v1, v2) = (0.05, 0.1, 0.15), tanh(x(t)) =
(tanh x1(t), tanh(x2(t))T , and where:

A =




0.2 0 0
0 0.2 0
0 0 0.2


, B =




0.002 − 0.004 0.0015
−0.002 0.001 − 0.002
−0.0025 0.0015 − 0.003


, x(0) =




0.9
0.6
0.3


.

We note that the assumptions (A1) and (A2) are satisfied for MA = 0.2 and MB = 0.0075. This
results in M = 0.9866 < 1. Then, the conditions of Theorem 1 are fulfilled for r ≈ 67.16, which

indicates the existence of at least one solution. Theorem 2 is also satisfied for c =
d

1−M
where d =

4.7547, and hence, the system (5) is Ulam–Hyers stable. We use the following numerical formulas
to obtain the numerical solution in Figure 1 along with the initial condition x(0) = (0.9, 0.6, 0.3)T ,
which shows the stability of the considered neural network:





x(t) = x(t0) +
hv0

Γ(v0)
∑t

t0+1
Γ(t− j + v0)

Γ(t− j + 1)
(−Ax(j) + B tanh(x(j))),

x(t) = x(tl) +
hv1

Γ(v1)
∑t

tl+1
Γ(t− j + v0)

Γ(t− j + 1)
(−Ax(j) + B tanh(x(j))),

x(t) = x(t2l) +
hv2

Γ(v2)
∑t

t2l+1
Γ(t− j + v0)

Γ(t− j + 1)
(−Ax(j) + B tanh(x(j))).
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Figure 1. Numerical solution of the variable-order neural network (5) (red = 0.05, green = 0.1,
blue = 0.15).

Example 2. Consider the following two-dimensional fractional discrete-time neural network:

Figure 1. Numerical solution of the variable-order neural network (5) (red = 0.05, green = 0.1,
blue = 0.15).

Example 2. Consider the following two-dimensional fractional discrete-time neural network:
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C
h ∆vk

tkl
x(t) = −Ax(t + vkh) + B sin(x(t + vkh)), 0 < vk ≤ 1 t ∈ (hN)kl+(1−vk)h k = 0, 1, 2, 3, (6)

where sin(x(t)) = (sin(x1(t)), sin(x2(t)))T . Suppose x(0) = (1,−1)T , (v0, v1, v2, v3) =
(0.5, 0.4, 0.3, 0.2), h = 1.3 and m = 4 and:

A =

[
0.046 0
0 0.046

]
, B =

[
0.0003 0

−0.0004 0.0002

]
.

We can discuss the stability over different time domains. The parameters satisfy (A1) and
(A2) for MA = 0.046, MB = 0.0006, and M = 0.9858 < 1. All the conditions in Theorem 1 for
the existence of the solution are valid with r ≈ 70.42. Theorem 2 also holds true for the constant

d = 21.155 and c =
d

1−M
, which guarantees that the discrete-time neural network (6) is

Ulam–Hyers stable. The numerical solution of the system is illustrated in Figure 2.

0 20 40 60 80 100 120

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2. The numerical solution of the neural network (6).

Example 3. Consider the following neural network:
{

C
h ∆vk

tkl
x1(t) = −a1x1(t + vkh) + b11 sin(x1(t + vkh)) + b12 sin(x2(t + vkh)),

C
h ∆vk

tkl
x2(t) = −a2x2(t + v1h) + b21 sin(x1(t + vkh)) + b22 sin(x2(t + vkh)),

(7)

where t ∈ (hN)tkl+(1−vk)h, m = 4 and 0 < vk ≤ 1. We consider in this example the following
two cases:

Case 1 Let t ∈ [0, 173], h = 1.9, (v0, v1, v2, v3) = (0.8, 0.6, 0.3, 0.4). and:

A =

[
0.015 0
0 0.015

]
, B =

[ −0.0003 0
−0.0004 0.0002

]
, x(0) =

[−0.001
0.0009

]
.

Here, from the given data, we obtain MA = 0.015 and MB = 0.0006. Clearly, the
assumptions (A1) and (A2) hold with M = 0.9212 < 1. Thus, all the conditions of
Theorem 1 and Theorem 2 are satisfied. Therefore, the system (7) has at least one solution

that is Ulam–Hyers stable for r ≈ 0.0127, d = 59.051 and c =
d

1−M
;
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Cases 2 We admit that t ∈ [0, 120], h = 1.25, (v0, v1, v2, v3) = (0.05, 0.05, 0.05, 0.05), and:

A =

[
0.1 0
0 0.1

]
, B =

[−0.03 0.02
−0.01 0.06

]
, x(0) =

[−0.1
0.1

]
.

As observed, (A1) and (A2) are valid for MA = 0.1, MB = 0.07, and M = 0.9212.
With r ≈ 1.269, Theorem 1 is valid, which implies the existence of the solution. We can
easily confirm that the neural network (7) is Ulam–Hyers stable, as there is a constant

c =
d

1−M
where d = 5.419, and hence, Theorem 2 accurately holds.

The stability is shown in Figures 3 and 4 using the following numerical formulas:




x1(t) = x1(tkl) +
hvk

Γ(vk)
∑i

tk+1
Γ(t− j + vk)

Γ(t− j + 1)
(−a1x1(j) + b11 sin(x1(j)) + b12 sin(x2(j)))

x2(t) = x2(tkl) +
hvk

Γ(vk)
∑i

tk+1
Γ(t− j + vk)

Γ(t− j + 1)
(−a2x2(j) + b21 sin(x1(j)) + b22 sin(x2(j)).
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Figure 3. Numerical solution of the neural network (7), Case 1.
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In this paper, we addressed the existence and stability of a novel type of discrete
fractional neural network with a variable order. In comparison to the literature that already
exists concerning the technique used in our work, Reference [10] provided Ulam–Hyers
stability results for Caputo nabla fractional difference equations in both the linear and non-
linear cases using the generalized Gronwall inequality, and on the other hand, Reference [11]
investigated the Hyers–Ulam stability of a linear fractional neural network with the help
of the discrete Laplace transform. Furthermore, the existence of solutions for an initial-
value discrete fractional Duffing equation with a forcing term using the Krasnoselskii
fixed-point theorem and the Hyers–Ulam stability was shown in [12]. According to the
literature reviewed above, it should be noted that the model addressed in this work is
far more complex than the ones explored previously, and this type of discrete neural
network with the variable-order fractional Caputo h-difference operator has not previously
been investigated. As a consequence, when compared to [10–12], all of the results and
discussions in this work are novel and enhanced.

7. Conclusions

This paper makes a contribution to the topic of the stability of fractional discrete neural
networks by presenting a variable-order network model and by proving its Ulam–Hyers
stability. Specifically, two novel theorems were proven: one theorem regards the existence
of the solution for the proposed variable-order model, whereas the other regards its Ulam–
Hyers stability. Finally, numerical simulations were carried out to show the effectiveness of
the theoretical approach developed herein.
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