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Abstract: Using the concept of fractional derivatives of Riemann–Liouville on time scales, we first
introduce right fractional Sobolev spaces and characterize them. Then, we prove the equivalence of
some norms in the introduced spaces, and obtain their completeness, reflexivity, separability and
some embeddings. Finally, as an application, we propose a recent method to study the existence of
weak solutions of fractional boundary value problems on time scales by using variational methods
and critical point theory, and, by constructing an appropriate variational setting, we obtain two
existence results of the problem.
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1. Introduction

In the past three decades, fractional calculus and fractional differential equations have
attracted extensive interest and attention in the fields of differential equations and applied
mathematics, science and technology. In addition to genuine mathematical interest and
curiosity, this trend is also driven by interesting scientific and technological applications
that produce fractional differential equation models to better describe memory effects
and nonlocal phenomena [1–5]. It is the rise of these applications that drives the field of
fractional calculus and fractional differential equations in a new direction, and further
research in this field is required.

As is known, discrete-time systems are as important as continuous-time systems.
Therefore, it is equally important to study the solvability of boundary value problems
of fractional differential equations and difference equations. At the same time, discrete-
time systems are more convenient for computer processing. However, compared with
the research on continuous-time systems, the research on the corresponding problems
of discrete-time topics is sparse. Fortunately, the time scale theory proposed by Stefan
Hilger [6] can unify the study of differential equations and difference equations. In order to
study the existence and multiplicity of solutions of differential equations and difference
equations by variational methods in a unified framework, Refs. [7–9] have studied some
Sobolev space theories on time scales. More exactly, Agarwal et al. studied the theory of
Sobolev’s spaces of functions defined on a closed subinterval of an arbitrary time scale
endowed with the Lebesgue ∆-measure in [7]. Zhou and Li studied Sobolev’s spaces on
time scales and their properties in [8]. Wang et al. introduced the theory of fractional
Sobolev spaces on time scales by conformable fractional derivatives on time scales in [9].
Recently, some other classical tools or techniques, such as the coincidence degree theory, the
method of upper and lower solutions with monotone iterative technique and some fixed
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point theorems, etc., have been used to study the existence and multiplicity of solutions of
differential equations and difference equations in the literature [10–17].

However, so far, there is no right fractional Sobolev space via Riemann–Liouville
derivatives on time scales. In order to fill this gap, the main purpose of this paper is
to establish right fractional Sobolev spaces on time scales through Riemann–Liouville
fractional derivatives, and study some of their basic properties. Then, as an application of
our new theory, we study the solvability of a class of fractional boundary value problems
on time scales.

The rest of this paper is organized as follows. In Section 2, we review some symbols,
basic concepts and basic results of time scale calculus that will be used in this paper, and
give the definitions of fractional integrals and derivatives on time scales. In Section 3, we
study some basic properties of right Riemann–Liouville fractional integrals and differential
operators on time scales, including the equivalence between the fractional integral on
time scales defined by integrals on time scales and the fractional integral on time scales
defined by the Laplace transform and the inverse Laplace transform. In Section 4, we give
the definition of right fractional Sobolev spaces on time scales and study some of their
important properties. In Section 5, as an application of the results of this paper, we study
the solvability of a fractional boundary value problem on time scales by using the critical
point theory and variational methods. In Section 6, we give a concise conclusion.

2. Preliminaries

In this section, we will recall some basic known notations, definitions and results,
which are needed in what follows.

Throughout this paper, we denote by T a time scale. We will use the following
notations: J0

R = [a, b), JR = [a, b], J0 = J0
R ∩T, J = JR ∩T, Jk = [a, ρ(b)] ∩T.

Definition 1 ([18]). For t ∈ T, we define the forward jump operator σ : T → T by σ(t) :=
inf{s ∈ T : s > t}, while the backward jump operator ρ : T→ T is defined by ρ(t) := sup{s ∈
T : s < t}.

Remark 1 ([18]). (1) In Definition 1, we put inf ∅ = supT (i.e., σ(t) = t if T has a maximum
t) and sup ∅ = infT (i.e., ρ(t) = t if T has a minimum t), where ∅ denotes the empty set.

(2) If σ(t) > t, we say that t is right-scattered, while if ρ(t) < t, we say that t is left-scattered.
Points that are right-scattered and left-scattered at the same time are called isolated.

(3) If t < supT and σ(t) = t, we say that t is right-dense, while if t > infT and ρ(t) = t,
we say that t is left-dense. Points that are right-dense and left-dense at the same time are
called dense.

(4) The graininess function µ : T→ [0, ∞) is defined by µ(t) := σ(t)− t.
(5) The derivative makes use of the set Tk, which is derived from the time scale T as follows: if T

has a left-scattered maximum M, then Tk := T\{M}; otherwise, Tk := T.

Definition 2 ([19]). Assume that f : T→ R is a function and let t ∈ Tk. Then, we define f ∆(t)
to be the number (provided it exists) with the property that, given any ε > 0, there is a neighborhood
U of t (i.e., U = (t− δ, t + δ) ∩T for some δ > 0) such that

| f (σ(t))− f (s)− f ∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|

for all s ∈ U. We call f ∆(t) the delta (or Hilger) derivative of f at t. Moreover, we say that f is delta
(or Hilger) differentiable (or, in short, differentiable) on Tk provided that f ∆(t) exists for all t ∈ Tk.
The function f ∆ : Tk → R is then called the (delta) derivative of f on Tk.

Definition 3 ([18]). A function f : T → R is called rd-continuous provided it is continuous at
right-dense points in T and its left-sided limits exist (finite) at left-dense points in T. The set of
rd-continuous functions f : T → R will be denoted by Crd = Crd(T) = Crd(T,R). The set of
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functions f : T → R that are differentiable and whose derivative is rd-continuous is denoted by
C1

rd = C1
rd(T) = C1

rd(T,R).

Definition 4 ([7]). Let A ⊂ T. A is called a ∆-null set if µ∆(A) = 0. We can say that a property
P holds ∆-almost everywhere (∆-a.e.) on A, or for ∆-almost all (∆-a.a.) t ∈ A if there is a ∆-null
set E ⊂ A such that P holds for all t ∈ A\E.

Definition 5 ([20]). Let J denote a closed bounded interval in T. A function F : J → R is called
a delta antiderivative of function f : J0 → R provided F is continuous on J, delta differentiable
at J0 and F∆(t) = f (t) for all t ∈ J0. Then, we define the ∆-integral of f from a to b by∫ b

a f (t)∆t := F(b)− F(a).

Theorem 1 ([19]). If a, b ∈ T and f , g ∈ Crd(T), then∫
J0

f σ(t)g∆(t)∆t = ( f g)(b)− ( f g)(a)−
∫

J0
f ∆(t)g(t)∆t.

Proposition 1 ([21]). Let f be an increasing continuous function on J. If F is the extension of f to
the real interval JR given by

F(s) :=

{
f (s), i f s ∈ T,

f (t), i f s ∈ (t, σ(t)) /∈ T,

then ∫ b

a
f (t)∆t ≤

∫ b

a
F(t)dt.

Theorem 2 ([22]). y(t, s) = hn−1(t, σ(s)) is the Cauchy function of y∆n
= 0, where

h0(t, s) = 1, hn(t, s) =
∫ t

s
hn−1(τ, s)∆τ, n ∈ N.

Theorem 3 ([22]). For all n ∈ N0, we have

LT(hn(x, 0))(z) =
1

zn−1 , x ∈ T0.

for all z ∈ C\{0} such that 1 + zµ(x) 6= 0, x ∈ T0, and

lim
x→∞

(hn(x, 0)e	z(x, 0)) = 0.

Definition 6 ([22] (Shift (Delay) of a Function)). For a given function f : [t0, ∞) → C, the
solution of the shifting problem

u∆t(t, σ(s)) = −u∆s(t, s), t, s ∈ T, t ≥ t ≥ s ≥ t0,

u(t, t0) = f (t), t ∈ T, t ≥ t0,

is denoted by f̂ and is called the shift or delay of f .

Definition 7 ([22] (∆-Power Function)). Suppose that α ∈ R; we define the generalized ∆-power
function hα(t, t0) on T as follows:

hα(t, t0) = L−1
T (

1
zα+1 )(t), t ≥ t0,
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for all z ∈ C\{0} such that L−1
T exists, t ≥ t0. The fractional generalized ∆-power function

hα(t, s) on T, t ≥ s ≥ t0, is defined as the shift of hα(t, t0), i.e.,

hα(t, s) = ̂hα(·, t0)(t, s), t, s ∈ T, t ≥ s ≥ t0.

Inspired by Definition 4 in [23] and Definition 2.1 in [24], we present the right Riemann–
Liouville fractional integral and derivative on time scales as follows.

Definition 8 (Fractional integral on time scales). Suppose h is an integrable function on J. Let
0 < α ≤ 1. Then, the left fractional integral of order α of h is defined by

T
a Iα

t h(t) :=
∫ t

a

(t− σ(s))α−1

Γ(α)
h(s)∆s.

The right fractional integral of order α of h is defined by

T
t Iα

b h(t) :=
∫ b

t

(s− σ(t))α−1

Γ(α)
h(s)∆s, (1)

where Γ is the gamma function.

Definition 9 (Riemann–Liouville fractional derivative on time scales). Let t ∈ T, 0 < α ≤ 1,
and h : T→ R. The left Riemann–Liouville fractional derivative of order α of h is defined by

T
a Dα

t h(t) :=
(
T
a I1−α

t h(t)
)∆

=
1

Γ(1− α)

( ∫ t

a
(t− σ(s))−αh(s)∆s

)∆

.

The right Riemann–Liouville fractional derivative of order α of h is defined by

T
t Dα

b h(t) := −
(
T
t I1−α

b h(t)
)∆

=
−1

Γ(1− α)

( ∫ b

t
(s− σ(t))−αh(s)∆s

)∆

. (2)

Actually, Tt Dα
b h(t) can be rewritten as −∆ ◦ Tt I1−α

b h(t).

Inspired by Definition 4 and Equation (21) in [23] and Theorem 2.1 in [4], we present
the right Caputo fractional derivative on time scales as follows.

Definition 10 (Caputo fractional derivative on time scales). Let t ∈ T, 0 < α ≤ 1 and
h : T→ R. The left Caputo fractional derivative of order α of h is defined by

TC
a Dα

t h(t) := T
a I1−α

t h∆(t) =
1

Γ(1− α)

∫ t

a
(t− σ(s))−αh∆(s)∆s.

The right Caputo fractional derivative of order α of h is defined by

TC
t Dα

b h(t) := −T
t I1−α

b h∆(t) =
−1

Γ(1− α)

∫ b

t
(s− σ(t))−αh∆(s)∆s.

Definition 11 ([25]). For f : T→ R, the time scale or generalized Laplace transform of f , denoted
by LT{ f } or F(z), is given by

LT{ f }(z) = F(z) :=
∫ ∞

0
f (t)gσ(t)∆t,

where g(t) = e	z(t, 0).
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Theorem 4 ([25] (Inversion formula of the Laplace transform)). Suppose that F(z) is analytic
in the region Reµ(z) > Reµ(c) and F(z)→ 0 uniformly as |z| → ∞ in this region. Suppose F(z)
has finitely many regressive poles of finite order {z1, z2, . . . , zn} and F̃R(z) is the transform of the
function f̃ (t) on R that corresponds to the transform F(z) = FT(z) of f (t) on T. If∫ c+i∞

c−i∞
|F̃R(z)||dz| < ∞,

then

f (t) =
n

∑
i=1

Resz=zi ez(t, 0)F(z)

has transform F(z) for all z with Re(z) > c.

Motivated by Definition 3.1 in [26], we present the right Riemann–Liouville fractional
integral on time scales as follows.

Definition 12 (Right Riemann–Liouville fractional integral on time scales). Let α > 0, T be
a time scale, and f : T→ R. The right Riemann–Liouville fractional integral of f of order α on the
time scale T, denoted by b Iα

T f , is defined by

b Iα
T f (t) = L−1

T

[
−F(z)

zα

]
(t).

Theorem 5 ([8]). A function f : J → RN is absolutely continuous on J if and only if f is
∆-differentiable ∆− a.e. on J0 and

f (t) = f (a) +
∫
[a,t)T

f ∆(s)∆s, ∀t ∈ J.

Theorem 6 ([27]). A function f : T→ R is absolutely continuous on T if and only if the following
conditions are satisfied:

(i) f is ∆-differentiable ∆− a.e. on J0 and f ∆ ∈ L1(T).
(ii) The equality

f (t) = f (a) +
∫
[a,t)T

f ∆(s)∆s

holds for every t ∈ T.

Theorem 7 ([28]). A function q : JR → RN is absolutely continuous if and only if there exist a
constant c ∈ RN and a function ϕ ∈ L1 such that

q(t) = c + (I1
a+ ϕ)(t), t ∈ JR.

In this case, we have q(a) = c and q′(t) = ϕ(t), t ∈ JR a.e.

Theorem 8 ([28] (Integral representation)). Let α ∈ (0, 1] and q ∈ L1. Then, q has a right-sided
Riemann–Liouville derivative Dα

b−q of order α if and only if there exist a constant d ∈ RN and a
function ψ ∈ L1 such that

q(t) =
1

Γ(α)
d

(b− t)1−α
+ (Iα

b−ψ)(t), t ∈ JR a.e..

In this case, we have I1−α
b− q(b) = d and (Dα

b−q)(t) = ψ(t), t ∈ JR a.e.
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Lemma 1 ([7]). Let f ∈ L1
∆(J0). Then, a necessary and sufficient condition for the validity of

the equality ∫
J0
( f · ϕ∆)(s)∆s = 0, f or every ϕ ∈ C1

0,rd(Jk)

is the existence of a constant c ∈ R such that

f ≡ c ∆− a.e. on J0.

Definition 13 ([7]). Let p ∈ R̄ be such that p ≥ 1 and u : J → R̄. We say that u belongs to
W1,p

∆ (J) if and only if u ∈ Lp
∆(J0) and there exists g : Jk → R̄ such that g ∈ Lp

∆(J0) and∫
J0
(u · ϕ∆)(s)∆s = −

∫
J0
(g · ϕσ)(s)∆s, ∀ϕ ∈ C1

0,rd(Jk),

where

C1
0,rd(Jk) :=

{
f : J → R : f ∈ C1

rd(Jk), f (a) = f (b)
}

and C1
rd(Jk) is the set of all continuous functions on J such that they are ∆-differential on Jk and

their ∆-derivatives are rd-continuous on Jk.

Theorem 9 ([7]). Let p ∈ R̄ be such that p ≥ 1. Then, the set Lp
∆(J0) is a Banach space together

with the norm defined for every f ∈ Lp
∆(J0) as

‖ f ‖Lp
∆

:=


[ ∫

J0
| f |p(s)∆s

] 1
p

, i f p ∈ R,

inf{C ∈ R : | f | ≤ C ∆− a.e. on J0}, i f p = +∞.

Moreover, L2
∆(J0) is a Hilbert space together with the inner product given for every ( f , g) ∈

L2
∆(J0)× L2

∆(J0) by

( f , g)L2
∆

:=
∫

J0
f (s) · g(s)∆s.

Theorem 10 ([24]). Fractional integration operators are bounded in Lp(JR), i.e., the following
estimate

‖Iα
a+ ϕ‖Lp(a,b) ≤

(b− a)Reα

Reα|Γ(α)| ‖ϕ‖Lp(JR), Reα > 0

holds.

Proposition 2 ([7]). Suppose p ∈ R̄ and p ≥ 1. Let p′ ∈ R̄ be such that 1
p′ +

1
p′ = 1. Then, if

f ∈ Lp
∆(J0) and g ∈ Lp′

∆ (J0), then f · g ∈ L1
∆(J0) and

‖ f · g‖L1
∆
≤ ‖ f ‖Lp

∆
· ‖g‖

Lp′
∆

.

This expression is called Hölder’s inequality and Cauchy–Schwarz’s inequality whenever
p = 2.
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Theorem 11 ([19] (First Mean Value Theorem)). Let f and g be bounded and integrable functions
on J, and let g be nonnegative (or nonpositive) on J. Let us set

m = inf{ f (t) : t ∈ J0} and M = sup{ f (t) : t ∈ J0}.

Then, there exists a real number Λ satisfying the inequalities m ≤ Λ ≤ M such that

∫ b

a
f (t)g(t)∆t = Λ

∫ b

a
g(t)∆t.

Corollary 1 ([19]). Let f be an integrable function on J and let m and M be the infimum and
supremum, respectively, of f on J0. Then, there exists a number Λ between m and M such that

∫ b

a
f (t)∆t = Λ(b− a).

Theorem 12 ([19]). Let f be a function defined on J and let c ∈ T with a < c < b. If f is
∆-integrable from a to c and from c to b, then f is ∆-integrable from a to b and

∫ b

a
f (t)∆t =

∫ c

a
f (t)∆t +

∫ b

c
f (t)∆t.

Lemma 2 ([29] (A time scale version of the Arzela–Ascoli theorem)). Let X be a subset of
C(J,R) satisfying the following conditions:

(i) X is bounded.
(ii) For any given ε > 0, there exists δ > 0 such that t1, t2 ∈ J, |t1 − t2| < δ implies | f (t1)−

f (t2)| < ε for all f ∈ X.

Then, X is relatively compact.

3. Some Fundamental Properties of Right Riemann–Liouville Fractional Operators on
Time Scales

Inspired by [30], we can obtain the consistency of Definitions 8 and 12 by using the
above theory of the Laplace transform on time scales and the inverse Laplace transform on
time scales.

Theorem 13. Let α > 0, T be a time scale, [a, b]T be an interval of T and f be an integrable
function on [a, b]T. Then,

(T
t Iα

b f
)
(t) = b Iα

T f (t).

Proof. Using the Laplace transform on T for (1), in view of Definition 8, Definition 3,
Theorem 7, the proof of Theorem 4.14 in [22] and Definition 11, we have

LT
{(

T
t Iα

b f
)
(t)
}
(z)

=LT
{

1
Γ(α)

∫ b

t
(s− σ(t))α−1 f (s)∆s

}
(z)

=LT
{
−1

Γ(α)

∫ t

b
(s− σ(t))α−1 f (s)∆s

}
(z)

=−LT(hα−1(·, b) ∗ f )(t)(z)

=−LT(hα−1(·, b))(z)LT( f )(t)(z)

=
−1
zα
LT{ f }(z)

=
−F(z)

zα
(t). (3)
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Taking the inverse Laplace transform on T for (3), with an eye to Definition 12, one
arrives at (

T
t Iα

b f
)
(t) = L−1

T

[
−F(z)

zα

]
(t) = b Iα

T f (t).

The proof is complete.

Combining with [20,26] and Theorem 13, we can prove that Proposition 15, Proposi-
tion 16, Proposition 17, Corollary 18, Theorem 20 and Theorem 21 in [20] hold for the new
definition of Riemann–Liouville fractional operators on time scales.

Proposition 3. Let h be ∆-integrable on J and 0 < α ≤ 1. Then, Tt Dα
b h(t) = −∆ ◦ Tt I1−α

b h(t).

Proof. Let h : T→ R. In view of (1) and (2), we obtain

T
t Dα

b h(t) =
−1

Γ(1− α)

( ∫ b

t
(s− σ(t))−αh(s)∆s

)∆

=−
(
T
t I1−α

b h(t)
)∆

=− (∆ ◦ Tt I1−α
b )h(t).

The proof is complete.

Proposition 4. Let h be integrable on J; then, its right Riemann–Liouville ∆-fractional integral
satisfies

T
t Iα

b ◦
T
t Iβ

b = T
t Iα+β

b = T
t Iβ

b ◦
T
t Iα

b

for α > 0 and β > 0.

Proof. Inspired by the proof of Proposition 3.4 in [26], in view of Definition 12, we have

b Iβ
T(b Iα

T f )(t) = L−1
T

[
−
LT{b Iα

T f }
zβ

]
(t) = L−1

T

[
F(s)
sα+β

]
(t) = b Iα+β

T f (t). (4)

Combining with (4) and Theorem 13, one obtains that

T
t Iα

b ◦
T
t Iβ

b = T
t Iα+β

b .

In a similar way, one arrives at

T
t Iβ

b ◦
T
t Iα

b = T
t Iα+β

b .

Consequently, we obtain that

T
t Iα

b ◦
T
t Iβ

b = T
t Iα+β

b = T
t Iβ

b ◦
T
t Iα

b .

The proof is complete.

Proposition 5. If function h is integrable on J, then T
t Dα

b ◦
T
t Iα

b h = h.

Proof. Taking account of Propositions 3 and 4, one can obtain

T
t Dα

b ◦
T
t Iα

b h(t) = −
(
T
t I1−α

b (Tt Iα
b (h(t))

)∆

= −
(
T
t Ibh(t)

)∆
= h.
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The proof is complete.

Corollary 2. For 0 < α ≤ 1, we have

T
t Dα

b ◦
T
t D−α

b = Id and T
t I−α

b ◦ Tt Iα
b = Id,

where Id denotes the identity operator.

Proof. In view of Proposition 5, we have

T
t Dα

b ◦
T
t D−α

b = T
t Dα

b ◦
T
t Iα

b = Id and T
t I−α

b ◦ Tt Iα
b = T

t Dα
b ◦

T
t Iα

b = Id.

The proof is complete.

Theorem 14. Let f ∈ C(J) and α > 0. Then, f ∈ T
t Iα

b (J) if and only if

T
t I1−α

b f ∈ C1(J) (5)

and (
T
t I1−α

b f (t)
)∣∣∣∣

t=b
= 0, (6)

where T
t Iα

b (J) denotes the space of functions that can be represented by the right Riemann–Liouville
∆-integral of order α of a C(J)-function.

Proof. Suppose f ∈ T
t Iα

b (J), f (t) = T
t Iα

b g(t) for some g ∈ C(J), and

T
t I1−α

b ( f (t)) = T
t I1−α

b (Tt Iα
b g(t)).

In view of Proposition 4, one obtains

T
t I1−α

b ( f (t)) = T
t Ibg(t) =

∫ b

t
g(s)∆s.

As a result, Tt I1−α
b f ∈ C(J) and(

T
t I1−α

b f (t)
)∣∣∣∣

t=b
=
∫ b

b
g(s)∆s = 0.

Inversely, suppose that f ∈ C(J) satisfies (5) and (6). Then, by applying Taylor’s
formula to function T

t I1−α
b f , we obtain

T
t I1−α

b f (t) =
∫ b

t

∆
∆s

T
s I1−α

b f (s)∆s, ∀t ∈ J.

Let ϕ(t) = ∆
∆t

T
t I1−α

b f (t). Note that ϕ ∈ C(J) by (5). Now, by Proposition 4, one
sees that

T
t I1−α

b ( f (t)) = T
t I1

b ϕ(t) = T
t I1−α

b [Tt Iα
b ϕ(t)]

and hence

T
t I1−α

b ( f (t))− T
t I1−α

b [Tt Iα
b ϕ(t)] ≡ 0.

Therefore, we have

T
t I1−α

b [ f (t)−T
t Iα

b ϕ(t)] ≡ 0.
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From the uniqueness of the solution to Abel’s integral equation [31], this implies that
f − T

t Iα
b ϕ ≡ 0. Hence, f = T

t Iα
b ϕ and f ∈ T

t Iα
b (J). The proof is complete.

Theorem 15. Let α > 0 and f ∈ C(J) satisfy the condition in Theorem 14. Then,

(Ta Iα
t ◦ Ta Dα

t )( f ) = f .

Proof. Combining with Theorem 14 and Proposition 5, we can see that

T
t Iα

b ◦
T
t Dα

b f (t) = T
t Iα

b ◦
T
t Dα

b (
T
t Iα

b ϕ(t)) = T
t Iα

b ϕ(t) = f (t).

The proof is complete.

Motivated by the proof of Equation (2.20) in [24], we present and prove the following
theorem.

Theorem 16. Let α > 0, p, q ≥ 1, and 1
p + 1

q ≤ 1 + α, where p 6= 1 and q 6= 1 in the case when
1
p + 1

q = 1 + α. Moreover, let

T
a Iα

t (Lp) :=
{

f : f = T
a Iα

t g, g ∈ Lp(J)
}

and

T
t Iα

b (Lp) :=
{

f : f = T
t Iα

b g, g ∈ Lp(J)
}

.

Then, the following integration by parts formulas hold.

(a) If ϕ ∈ Lp(J) and ψ ∈ Lq(J), then

∫ b

a
ϕ(t)

(
T
a Iα

t ψ

)
(t)∆t =

∫ b

a
ψ(t)

(
T
t Iα

b ϕ

)
(t)∆t.

(b) If g ∈ T
t Iα

b (Lp) and f ∈ T
a Iα

t (Lq), then

∫ b

a
g(t)

(
T
a Dα

t f
)
(t)∆t =

∫ b

a
f (t)

(
T
t Dα

b g
)
(t)∆t.

(c) For Caputo fractional derivatives, if g ∈ T
t Iα

b (Lp) and f ∈ T
a Iα

t (Lq), then

∫ b

a
g(t)

(
TC
a Dα

t f
)
(t)∆t =

[
T
t I1−α

b g(t) · f (t)
]∣∣∣∣b

t=a
+
∫ b

a
f (σ(t))

(
T
t Dα

b g
)
(t)∆t.

and∫ b

a
g(t)

(
TC
t Dα

b f
)
(t)∆t =

[
T
a I1−α

t g(t) · f (t)
]∣∣∣∣b

t=a
+
∫ b

a
f (σ(t))

(
T
a Dα

t g
)
(t)∆t.
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Proof. (a) It follows from Definition 8 and Fubini’s theorem on time scales that

∫ b

a
ϕ(t)

(
T
a Iα

t ψ

)
(t)∆t

=
∫ b

a
ϕ(t)

(∫ t

a

(t− σ(s))α−1

Γ(α)
ψ(s)∆s

)
∆t

=
∫ b

a
ψ(s)

∫ b

s

(t− σ(s))α−1

Γ(α)
ϕ(t)∆t∆s

=
∫ b

a
ψ(t)

∫ b

t

(s− σ(t))α−1

Γ(α)
ϕ(s)∆s∆t

=
∫ b

a
ψ(t)

(
T
t Iα

b ϕ

)
(t)∆t.

The proof is complete.
(b) It follows from Definition 9 and Fubini’s theorem on time scales that∫ b

a
g(t)

(
T
a Dα

t f
)
(t)∆t

=
∫ b

a
g(t)

(
1

Γ(1− α)

( ∫ t

a
(t− σ(s))−α f (s)∆s

)∆
)

∆t

=
∫ b

a
f (s)

(
1

Γ(1− α)

( ∫ b

s
(t− σ(s))−αg(t)∆t

)∆
)

∆s

=
∫ b

a
f (t)

(
1

Γ(1− α)

( ∫ b

t
(s− σ(t))−αg(s)∆s

)∆
)

∆t

=
∫ b

a
g(t)

(
T
t Dα

b f
)
(t)∆t.

The proof is complete.
(c) It follows from Definition 10, Fubini’s theorem on time scales and Theorem 1 that

∫ b

a
g(t)

(
TC
a Dα

t f
)
(t)∆t

=
∫ b

a
g(t)

(
1

Γ(1− α)

∫ t

a
(t− σ(s))−α f ∆(s)∆s

)
∆t

=
∫ b

a
f ∆(s)

(
1

Γ(1− α)

∫ b

s
(t− σ(s))−αg(t)∆t

)
∆s

=
∫ b

a
f ∆(t)

(
1

Γ(1− α)

∫ b

t
(s− σ(t))−αg(s)∆s

)
∆t

=
[
T
t I1−α

b g(t) · f (t)
]∣∣∣∣b

t=a
−
∫ b

a
f (σ(t))

(
1

Γ(1− α)

∫ b

t
(s− σ(t))−αg(s)∆s

)∆

=
[
T
t I1−α

b g(t) · f (t)
]∣∣∣∣b

t=a
+
∫ b

a
f (σ(t))

(
−1

Γ(1− α)

∫ b

t
(s− σ(t))−αg(s)∆s

)∆

=
[
T
t I1−α

b g(t) · f (t)
]∣∣∣∣b

t=a
+
∫ b

a
f (σ(t))

(
T
t Dα

b g
)
(t)∆t.

The second relation is obtained in a similar way. The proof is complete.
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4. Fractional Sobolev Spaces on Time Scales and Their Properties

In this section, inspired by the above discussion, we present and prove the following
results, which are of the utmost significance for our main results. In the following, let
0 < a < b. Suppose a, b ∈ T.

Motivated by Theorems 5–8, we propose the following definition.

Definition 14. Let 0 < α ≤ 1. By ACα,1
∆,b−(J,RN), we denote the set of all functions f : J → RN

that have the representation

f (t) =
1

Γ(α)
d

(b− t)1−α
+ T

t Iα
b ψ(t), t ∈ J ∆− a.e. (7)

with d ∈ RN and ψ ∈ L1
∆.

Theorem 17. Let 0 < α ≤ 1 and f ∈ L1
∆. Then, function f has the right Riemann–Liouville

derivative T
t Dα

b f of order α on the interval J if and only if f ∈ ACα,1
∆,b−(J,RN); that is, f has the

representation (7). In such a case,

(Tt I1−α
b f )(b) = d, (Tt Dα

b f )(t) = ψ(t), t ∈ J ∆− a.e.

Proof. Let f ∈ L1
∆ have a right Riemann–Liouville derivative T

t Dα
b f . This means that Tt I1−α

b f
is (identified to) an absolutely continuous function. From the integral representation of
Theorem 5, there exist a constant vector d ∈ RN and a function ψ ∈ L1

∆ such that

(Tt I1−α
b f )(t) = d + (Tt I1

b ψ)(t), t ∈ J, (8)

with (Tt I1−α
b f )(b) = d and −

(
(Tt I1−α

b f )(t)
)∆

= T
t Dα

b f (t) = ψ(t), t ∈ J ∆− a.e..

By Proposition 4 and applying T
t Iα

b to (8), we obtain

(Tt I1
b f )(t) = (Tt Iα

b d)(t) + (Tt I1
b
T
t Iα

b ψ)(t), t ∈ J ∆− a.e.. (9)

The result follows from the ∆-differentiability of (9).
Conversely, now, let us assume that (7) holds true. From Proposition 4 and applying

T
t I1−α

b on (7), we obtain

(Tt I1−α
b f )(t) = d + (Tt I1

b ψ)(t), t ∈ J ∆− a.e.

and then T
t I1−α

b f has an absolutely continuous representation and f has a right Riemann–
Liouville derivative T

t Dα
b f . This completes the proof.

Remark 2. (i) By ACα,p
∆,b− (1 ≤ p < ∞), we denote the set of all functions f : J → RN

possessing representation (7) with d ∈ RN and ψ ∈ Lp
∆.

(ii) It is easy to see that Theorem 17 implies the following (for any 1 ≤ p < ∞): f has the
right Riemann–Liouville derivative T

t Dα
b f ∈ Lp

∆ if and only if f ∈ ACα,p
∆,b− ; that is, f has the

representation (7) with ψ ∈ Lp
∆.

Definition 15. Let 0 < α ≤ 1 and let 1 ≤ p < ∞. By the right Sobolev space of order α, we mean
the set Wα,p

∆,b− = Wα,p
∆,b−(J,RN) given by

Wα,p
∆,b− :=

{
u ∈ Lp

∆; ∃ g ∈ Lp
∆, ∀ϕ ∈ C∞

c,rd such that
∫ b

a
u(t) · Ta Dα

t ϕ(t)∆t =
∫ b

a
g(t) · ϕ(t)∆t

}
.
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Remark 3. The function g given above will be called the weak right fractional derivative of order
0 < α ≤ 1 of u; let us denote it by Tuα

b− . The uniqueness of this weak derivative follows from ([7]).

We have the following characterization of Wα,p
∆,b− .

Theorem 18. If 0 < α ≤ 1 and 1 ≤ p < ∞, then

Wα,p
∆,b− = ACα,p

∆,b− ∩ Lp
∆.

Proof. On the one hand, if u ∈ ACα,p
∆,b− ∩ Lp

∆, then, from Theorem 17, it follows that u has

the derivative T
t Dα

b u ∈ Lp
∆. Theorem 16 implies that

∫ b

a
u(t) Ta Dα

t ϕ(t)∆t =
∫ b

a
(Tt Dα

b u)(t) ϕ(t)∆t

for any ϕ ∈ C∞
c,rd. So, u ∈Wα,p

∆,b− with

Tuα
b− = g = T

t Dα
b u ∈ Lp

∆.

On the other hand, now, let us assume that u ∈Wα,p
∆,b− ; that is, u ∈ Lp

∆, and there exists

a function g ∈ Lp
∆ such that

∫ b

a
u(t)Ta Dα

t ϕ(t)∆t =
∫ b

a
g(t)ϕ(t)∆t (10)

for any ϕ ∈ C∞
c,rd.

To show that u ∈ ACα,p
∆,b− ∩ Lp

∆, it suffices to check (Theorem 17 and definition of

ACα,p
∆,b− ) that u possesses the right Riemann–Liouville derivative of order α, belonging to

Lp
∆; that is, T

t I1−α
b u is absolutely continuous on [a, b]T and its delta derivative of α order

(existing ∆− a.e. on J) belongs to Lp
∆.

In fact, let ϕ ∈ C∞
c,rd, then ϕ ∈ T

a Dα
t (Crd) and T

a Dα
t ϕ = −(Tt I1−α

b )∆. From Theorem 16, it
follows that ∫ b

a
u(t)Ta Dα

t ϕ(t)∆t =
∫ b

a
u(t)(Ta I1−α

t ϕ)∆(t)∆t

=
∫ b

a
(Tt D1−α

b
T
t I1−α

b u)(t)(Ta I1−α
t ϕ)∆(t)∆t (11)

=
∫ b

a
(Tt I1−α

b u)(t)(ϕ)∆(t)∆t.

In view of (10) and (11), we obtain∫ b

a
(Tt I1−α

b u)(t)ϕ∆(t)∆t =
∫ b

a
g(t)ϕ(t)∆t

for any ϕ ∈ C∞
c,rd. Thus, Tt I1−α

b u ∈ W1,p
∆,b− . Consequently, Tt I1−α

b u is absolutely continuous
and its delta derivative is equal to ∆− a.e. on J to g ∈ LP

∆.

From the proof of Theorem 18 and the uniqueness of the weak fractional derivative,
the following theorem follows.

Theorem 19. If 0 < α ≤ 1 and 1 ≤ p < ∞, then the weak left fractional derivative Tuα
b− of a

function u ∈Wα,p
∆,b− coincides with its right Riemann–Liouville fractional derivative T

t Dα
b u ∆− a.e.

on J.
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Remark 4. (1) If 0 < α ≤ 1 and (1− α)p < 1, then ACα,p
∆,b− ⊂ Lp

∆ and, consequently,

Wα,p
∆,b− = ACα,p

∆,b− ∩ Lp
∆ = ACα,p

∆,b− .

(2) If 0 < α ≤ 1 and (1− α)p ≥ 1, then Wα,p
∆,b− = ACα,p

∆,b− ∩ Lp
∆ is the set of all functions

belonging to ACα,p
∆,b− that satisfy the condition (Tt I1−α

b f )(b) = 0.

By using the definition of Wα,p
∆,b− with 0 < α ≤ 1 and Theorem 19, one can easily prove

the following result.

Theorem 20. Let 0 < α ≤ 1 and 1 ≤ p < ∞ and u ∈ Lp
∆. Then, u ∈ Wα,p

∆,b− if and only if there
exists a function g ∈ Lp

∆ such that

∫ b

a
u(t)Ta Dα

t ϕ(t)∆t =
∫ b

a
g(t)ϕ(t)∆t, ϕ ∈ C∞

c,rd.

In such a case, there exists the right Riemann–Liouville derivative T
t Dα

b u of u and g = T
t Dα

b u.

Remark 5. Function g will be called the weak right fractional derivative of order α of u ∈Wα,p
∆,b− .

Its uniqueness follows from [7]. From the above theorem, it follows that it coincides with the
appropriate Riemann–Liouville derivative.

Let us fix 0 < α ≤ 1 and consider in the space Wα,p
∆,b− a norm ‖ · ‖Wα,p

∆,b−
given by

‖u‖p
Wα,p

∆,b−
= ‖u‖p

Lp
∆
+ ‖Tt Dα

b u‖p
Lp

∆
, u ∈Wα,p

∆,b− .

Here, ‖ · ‖p
L∆

denotes the delta norm in Lp
∆ (Theorem 9).

Lemma 3. Let 0 < α ≤ 1 and 1 ≤ p < ∞, then

‖Tt Iα
b ϕ‖p

Lp
∆
≤ Kp‖ϕ‖p

Lp
∆

,

where K = (b−a)α

Γ(α+1) , i.e., the fractional integration operator is bounded in Lp
∆.

Proof. The conclusion follows from Theorem 10, Propositions 1 and 2. The proof is com-
plete.

Theorem 21. If 0 < α ≤ 1, then the norm ‖ · ‖Wα,p
∆,b−

is equivalent to the norm ‖ · ‖b,Wα,p
∆,b−

given by

‖u‖p
b,Wα,p

∆,b−
= |Tt I1−α

b u(b)|p + ‖ Tt Dα
b u‖p

Lp
∆

, u ∈Wα,p
∆,b− .

Proof. (1) Assume that (1− α)p < 1. On the one hand, for u ∈Wα,p
∆,b− given by

u(t) =
1

Γ(α)
d

(b− t)1−α
+ T

t Iα
b ψ(t)
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with d ∈ RN and ψ ∈ Lp
∆. Since (b− t)(α−1)p is an increasing monotone function, by using

Proposition 1, we can write that
∫ b

a (b− t)(α−1)p∆t ≤
∫ b

a (b− t)(α−1)pdt. Moreover, taking
into account Lemma 3, we have

‖u‖p
Lp

∆
=
∫ b

a

∣∣∣∣ 1
Γ(α)

d
(b− t)1−α

+ T
a Iα

t ψ(t)
∣∣∣∣p∆t

≤2p−1
(
|d|p

Γp(α)

∣∣∣∣∫ b

a
(b− t)(α−1)p∆t

∣∣∣∣+ ‖ Tt Iα
b ψ‖p

Lp
∆

)
≤2p−1

(
|d|p

Γp(α)

∣∣∣∣∫ b

a
(b− t)(α−1)pdt

∣∣∣∣+ ‖ Tt Iα
b ψ‖p

Lp
∆

)
≤2p−1

(
|d|p

Γp(α)

1
(α− 1)p + 1

(b− a)(α−1)p+1 + Kp‖ψ‖p
Lp

∆

)
,

where K is defined in Lemma 3. Noting that d = T
a I1−α

t u(b), ψ = −T
a Dα

t u, thus, one obtains

‖u‖p
Lp

∆
≤Lα,0(|d|p + ‖ψ‖

p
Lp

∆
)

≤Lα,0

(
|Tt I1−α

b u(b)|p + ‖Tt Dα
b u‖p

Lp
∆

)
=Lα,0‖u‖

p
b,Wα,p

∆,b−
,

where

Lα,0 = 2p−1
(

(b− a)1−(1−α)p

Γp(α)(1− (1− α)p)
+ Kp

)
.

Consequently,

‖u‖p
Wα,p

∆,a+
=‖u‖P

LP
∆
+ ‖Ta Dα

t u‖p
Lp

∆

≤Lα,1‖u‖
p
a,Wα,p

∆,b−
,

where Lα,1 = Lα,0 + 1.
On the other hand, now, we will prove that there exists a constant Mα,1 such that

‖u‖p
b,Wα,p

∆,b−
≤ Mα,1‖u‖

p
Wα,p

∆,b−
, u ∈Wα,p

∆,b− .

Indeed, let u ∈ Wα,p
∆,b− and consider coordinate functions (Tt I1−α

b u)i of T
t I1−α

b u with
i ∈ {1, . . . , N}. Lemma 3, Theorem 11 and Corollary 1 imply that there exist constants

Λi ∈
[

inf
t∈[a,b)T

(Tt I1−α
b u)i(t), sup

t∈[a,b)T

(Tt I1−α
b u)i(t)

]
,

such that

Λi =
1

b− a

∫ b

a
(Tt I1−α

b u)i(s)∆s

Hence, if, for all i = 1, 2, . . . , N, (Tt I1−α
b u)i(t0) 6= 0, then we can take constants θi

such that

θi(
T
t I1−α

b u)i(t0) = Λi =
1

b− a

∫ b

a
(Tt I1−α

b u)i(s)∆s
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for fixed t0 ∈ J0. Therefore, we have

(Tt I1−α
b u)i(t0) =

θi
b− a

∫ b

a
(Tt I1−α

b u)i(s)∆s.

From the absolute continuity (Theorem 6) of (Tt I1−α
b u)i, it follows that

(Tt I1−α
b u)i(t) = (Tt I1−α

b u)i(t0) +
∫
[t0,t)T

[
(Tt I1−α

b u)i(s)
]∆

∆s

for any t ∈ J. Consequently, combining with Proposition 3 and Lemma 3, we see that

|(Tt I1−α
b u)i(t)| =

∣∣∣∣(Tt I1−α
b u)i(t0) +

∫
[t0,t)T

[
(Tt I1−α

b u)i(s)
]∆

∆s
∣∣∣∣

≤ |θi|
b− a

‖Tt I1−α
b u‖L1

∆
+
∫
[t0,t)T

|(Tt Dα
b u)(s)|∆s

≤ |θi|
b− a

‖Tt I1−α
b u‖L1

∆
+ ‖Tt Dα

b u‖L1
∆

≤ |θi|
b− a

(b− a)1−α

Γ(2− α)
‖u‖L1

∆
+ ‖Tt Dα

b u‖L1
∆

for t ∈ J. In particular,

|(Tt I1−α
b u)i(b)| ≤ |θi|

b− a
(b− a)1−α

Γ(2− α)
‖u‖L1

∆
+ ‖Tt Dα

b u‖L1
∆

.

Thus,

|(Tt I1−α
b u)(b)| ≤N

(
|θ|(b− a)−α

Γ(2− α)
+ 1
)(
‖u‖L1

∆
+ ‖Tt Dα

b u‖L1
∆

)
≤NMα,0(b− a)

p−1
p
(
‖u‖Lp

∆
+ ‖Tt Dα

b u‖Lp
∆

)
,

where |θ| = max
i∈{1,2,...,N}

|θi| and Mα,0 = |θ|(b−a)−α

Γ(2−α)
+ 1. Thus,

|(Tt I1−α
b u)(b)|p ≤Np Mp

α,0(b− a)p−12p−1
(
‖u‖p

Lp
∆
+ ‖Tt Dα

b u‖p
Lp

∆

)
,

and, consequently,

‖u‖p
b,Wα,p

∆,b−
=|Tt I1−α

b u(b)|p + ‖Tt Dα
b u‖p

Lp
∆

≤
(

Np Mp
α,0(b− a)p−12p−1 + 1

)(
‖u‖p

Lp
∆
+ ‖Tt Dα

b u‖p
Lp

∆

)
=Mα,1‖u‖

p
Wα,p

∆,b−
,

where Mα,1 = Np Mp
α,0(b− a)p−12p−1 + 1.

If some of or even all of (Tt I1−α
b u)i(t0) = 0, from the above proof process, we can see

that our conclusion is still valid.
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(2) When (1− α)p ≥ 1, then (Remark 4) Wα,p
∆,b− = ACα,p

∆,b− ∩ Lp
∆ is the set of all functions

belonging to ACα,p
∆,b− that satisfy the condition (Tt I1−α

b u)(b) = 0. Consequently, in the same
way as in the case of (1− α)p < 1 (putting d = 0), we obtain the inequality

‖u‖p
Wα,p

∆,b−
≤ Lα,1‖u‖

p
b,Wα,p

∆,b−
, with some Lα,1 > 0.

The inequality

‖u‖p
b,Wα,p

∆,b−
≤ Mα,1‖u‖

p
Wα,p

∆,b−
, with some Mα,1 > 0

is obvious (it is sufficient to put Mα,1 = 1 and use the fact that (Ta I1−α
t u)(b) = 0). The proof

is complete.

We are now in a position to state and prove some basic properties of the introduced
space.

Theorem 22. The space Wα,p
∆,b− is complete with respect to each of the norms ‖ · ‖Wα,p

∆,b−
and

‖ · ‖b,Wα,p
∆,b−

for any 0 < α ≤ 1 and 1 ≤ p < ∞.

Proof. In view of Theorem 21, we only need to show that Wα,p
∆,b− with the norm ‖ · ‖b,Wα,p

∆,b−

is complete. Let {uk} ⊂Wα,p
∆,b− be a Cauchy sequence with respect to this norm. Thus, the

sequences {Tt I1−α
b uk(b)} and {Tt Dα

b uk} are Cauchy sequences in RN and Lp
∆, respectively.

Let d ∈ RN and ψ ∈ Lp
∆ be the limits of the above sequences in RN and Lp

∆, respectively.
Then, the function

u(t) =
d

Γ(α)
(b− t)α−1 + T

t Iα
b ψ(t), t ∈ J ∆− a.e.

belongs to Wα,p
∆,b− and is the limit of {uk} in Wα,p

∆,b− with respect to ‖ · ‖b,Wα,p
∆,b−

. (To assert that

u ∈ Lp
∆, it is sufficient to consider the cases (1− α)p < 1 and (1− α)p ≥ 1. In the second

case, Tt I1−α
b uk(b) = 0 for any k ∈ N and, consequently, d = 0.) The proof is complete.

In the proofs of the next two theorems, we use the method presented in Proposition
VIII.1. (b), (c) from [32].

Theorem 23. The space Wα,p
∆,b− is reflexive with respect to the norm ‖ · ‖Wα,p

∆,b−
for any 0 < α ≤ 1

and 1 < p < ∞.

Proof. Let us consider Wα,p
∆,b− with the norm ‖ · ‖Wα,p

∆,b−
and define a mapping

λ : Wα,p
∆,b− 3 u 7→

(
u, T

t Dα
b u
)
∈ Lp

∆ × Lp
∆.

It is obvious that

‖u‖Wα,p
∆,b−

= ‖λu‖Lp
∆×Lp

∆
,

where

‖λu‖Lp
∆×Lp

∆
=

( 2

∑
i=1
‖(λu)i‖

p
Lp

∆

) 1
p

, λu =
(

u, T
t Dα

b u
)
∈ Lp

∆ × Lp
∆,
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which means that the operator λ : u 7→
(
u, T

t Dα
b u
)

is an isometric isomorphic mapping

and the space Wα,p
∆,b− is isometric isomorphic to the space Ω =

{(
u, T

t Dα
b u
)

: ∀u ∈Wα,p
∆,b−

}
,

which is a closed subset of Lp
∆ × Lp

∆ as Wα,p
∆,b− is closed.

Since Lp
∆ is reflexive, the Cartesian product space Lp

∆ × Lp
∆ is also a reflexive space with

respect to the norm ‖v‖Lp
∆×Lp

∆
=

(
2
∑

i=1
‖vi‖

p
Lp

∆

) 1
p

, where v = (v1, v2) ∈ Lp
∆ × Lp

∆.

Thus, Wα,p
∆,b− is reflexive with respect to the norm ‖ · ‖Wα,p

∆,b−
.

Theorem 24. The space Wα,p
∆,b− is separable with respect to the norm ‖ · ‖Wα,p

∆,b−
for any 0 < α ≤ 1

and 1 ≤ p < ∞.

Proof. Let us consider Wα,p
∆,b− with the norm ‖ · ‖Wα,p

∆,b−
and the mapping λ defined in the

proof of Theorem 23. Obviously, λ(Wα,p
∆,b−) is separable as a subset of separable space Lp

∆ ×
Lp

∆. Since λ is the isometry, Wα,p
∆,b− is also separable with respect to the norm ‖ · ‖Wα,p

∆,b−
.

Proposition 6. Let 0 < α ≤ 1 and 1 < p < ∞. For all u ∈Wα,p
∆,b− , if 1− α ≥ 1

p or α > 1
p , then

‖u‖Lp
∆
≤ bα

Γ(α + 1)

∥∥∥ T
t Dα

b u
∥∥∥

Lp
∆

. (12)

If α > 1
p and 1

p + 1
q = 1, then

‖u‖∞ ≤
bα− 1

p

Γ(α)((α− 1)q + 1)
1
q

∥∥∥ T
t Dα

b u
∥∥∥

Lp
∆

. (13)

Proof. In view of Remark 4 and Theorem 15, in order to prove inequalities (12) and (13),
we only need to prove that∥∥∥Tt Iα

b (
T
t Dα

b u)
∥∥∥

Lp
∆

≤ bα

Γ(α + 1)

∥∥∥ T
t Dα

b u
∥∥∥

Lp
∆

(14)

for 1− α ≥ 1
p or α > 1

p , and

∥∥∥ T
t Iα

b (
T
t Dα

b u)
∥∥∥

∞
≤ bα− 1

p

Γ(α)((α− 1)q + 1)
1
q

∥∥∥ T
t Dα

b u
∥∥∥

Lp
∆

(15)

for α > 1
p and 1

p + 1
q = 1.

Firstly, we note that Tt Dα
b u ∈ Lp

∆([a, b]T,RN); the inequality (14) follows from Lemma 3
directly.

We are now in a position to prove (15). For α > 1
p , choose q such that 1

p + 1
q = 1.

For all u ∈ Wα,p
∆,b− , since (s − σ(t))(α−1)q is an increasing monotone function, by using
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Proposition 1, we find that
∫ b

t (s− σ(t))(α−1)q∆s ≤
∫ b

t (s− t)(α−1)qds. Taking into account
Proposition 2, we have∣∣∣Tt Iα

b (
T
t Dα

b u(t))
∣∣∣ = 1

Γ(α)

∣∣∣∣ ∫ b

t
(s− σ(t))α−1 T

t Dα
b u(s)∆s

∣∣∣∣
≤ 1

Γ(α)

( ∫ b

t
(s− σ(t))(α−1)q∆s

) 1
q

‖Tt Dα
b u‖Lp

∆

≤ 1
Γ(α)

( ∫ b

t
(s− t)(α−1)qds

) 1
q

‖Tt Dα
b u‖Lp

∆

≤ b
1
q +α−1

Γ(α)((α− 1)q + 1)
1
q

∥∥∥Tt Dα
b u
∥∥∥

Lp
∆

=
bα− 1

p

Γ(α)((α− 1)q + 1)
1
q

∥∥∥Tt Dα
b u
∥∥∥

Lp
∆

.

This completes the proof.

Remark 6. (i) According to (12), we can consider Wα,p
∆,b− with respect to the norm

‖u‖Wα,p
∆,b−

= ‖ Tt Dα
b u‖Lp

∆
=

( ∫ b

a

∣∣∣Tt Dα
b u(t)

∣∣∣p∆t
) 1

p

, (16)

in the following analysis.
(ii) It follows from (12) and (13) that Wα,p

∆,b− is continuously immersed into C(J,RN) with the
natural norm ‖ · ‖∞.

Proposition 7. Let 0 < α ≤ 1 and 1 < p < ∞. Assume that α > 1
p and the sequence {uk}

converges weakly to u in Wα,p
∆,b− . Then, uk → u in C(J,RN), i.e., ‖u− uk‖∞ = 0, as k→ ∞.

Proof. If α > 1
p , then by (13) and (16), the injection of Wα,p

∆,b− into C(J,RN), with its natural

norm ‖ · ‖∞, is continuous, i.e., uk → u in Wα,p
∆,b− , then uk → u in C(J,RN).

Since uk ⇀ u in Wα,p
∆,b− , it follows that uk ⇀ u in C(J,RN). In fact, for any h ∈(

C(J,RN)
)∗, if uk → u in Wα,p

∆,b− , then uk → u in C(J,RN), and thus h(uk) → h(u). There-

fore, h ∈
(

Wα,p
∆,b−

)∗
, which means that

(
C(J,RN)

)∗ ⊂ (Wα,p
∆,b−

)∗
. Hence, if uk ⇀ u in Wα,p

∆,b− ,

then for any h ∈
(
C(J,RN)

)∗, we have h ∈
(

Wα,p
∆,b−

)∗
, and thus h(uk)→ h(u), i.e., uk ⇀ u

in C(J,RN).
By the Banach–Steinhaus theorem, {uk} is bounded in Wα,p

∆,b− and, hence, in C(J,RN).

We are now in a position to prove that the sequence {uk} is equicontinuous. Let 1
p + 1

q = 1
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and t1, t2 ∈ [a, b]T, t1 ≤ t2, ∀ f ∈ Lp
∆(J,RN), by using Proposition 2, Proposition 1 and

Theorem 12, and noting α > 1
p , we have∣∣∣Tt1

Iα
b f (t1)− T

t2
Iα
b f (t2)

∣∣∣
=

1
Γ(α)

∣∣∣∣ ∫ b

t1

(s− σ(t1))
α−1 f (s)∆s−

∫ b

t2

(s− σ(t2))
α−1 f (s)∆s

∣∣∣∣
≤ 1

Γ(α)

∣∣∣∣ ∫ b

t1

(s− σ(t1))
α−1 f (s)∆s−

∫ b

t1

(s− σ(t2))
α−1 f (s)∆s

∣∣∣∣
+

1
Γ(α)

∣∣∣∣ ∫ t2

t1

(s− σ(t2))
α−1 f (s)∆s

∣∣∣∣
≤ 1

Γ(α)

∣∣∣∣∫ b

t1

(
(s− σ(t1))

α−1 − (s− σ(t2))
α−1
)∣∣∣∣| f (s)|∆s

+
1

Γ(α)

∣∣∣∣∫ t2

t1

(s− σ(t2))
α−1
∣∣∣∣| f (s)|∆s

≤ 1
Γ(α)

∣∣∣∣∣∣
( ∫ b

t1

(
(s− σ(t1))

α−1 − (s− σ(t2))
α−1
)q

∆s
) 1

q

∣∣∣∣∣∣‖ f ‖Lp
∆

+
1

Γ(α)

∣∣∣∣∣∣
( ∫ t2

t1

(s− σ(t2))
(α−1)q∆s

) 1
q

∣∣∣∣∣∣‖ f ‖Lp
∆

≤ 1
Γ(α)

∣∣∣∣∣∣
( ∫ b

t1

(
(s− σ(t1))

(α−1)q − (s− σ(t2))
(α−1)q

)
∆s
) 1

q

∣∣∣∣∣∣‖ f ‖Lp
∆

+
1

Γ(α)

∣∣∣∣∣∣
( ∫ t2

t1

(s− σ(t2))
(α−1)q∆s

) 1
q

∣∣∣∣∣∣‖ f ‖Lp
∆

(17)

≤ 1
Γ(α)

∣∣∣∣∣∣
( ∫ b

t1

(
(s− t1)

(α−1)q − (s− t2)
(α−1)q

)
ds
) 1

q

∣∣∣∣∣∣‖ f ‖Lp
∆

+
1

Γ(α)

∣∣∣∣∣∣
( ∫ t2

t1

(s− t2)
(α−1)qds

) 1
q

∣∣∣∣∣∣‖ f ‖Lp
∆

=
‖ f ‖Lp

∆

Γ(α)(1 + (α− 1)q)
1
q

∣∣∣∣∣∣
(
(b− t1)

(α−1)q+1 − (b− t2)
(α−1)q+1 + (t2 − t1)

(α−1)q+1
) 1

q

∣∣∣∣∣∣
+

‖ f ‖Lp
∆

Γ(α)(1 + (α− 1)q)
1
q

(
(t2 − t1)

(α−1)q+1
) 1

q

≤
‖ f ‖Lp

∆

Γ(α)(1 + (α− 1)q)
1
q

(
(b− t2)

(α−1)q+1 − (b− t1)
(α−1)q+1 + (t2 − t1)

(α−1)q+1
) 1

q
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+
‖ f ‖Lp

∆

Γ(α)(1 + (α− 1)q)
1
q

(
(t2 − t1)

(α−1)q+1
) 1

q

≤
‖ f ‖Lp

∆

Γ(α)(1 + (α− 1)q)
1
q

(
(t2 − t1)

(α−1)q+1
) 1

q

+
‖ f ‖Lp

∆

Γ(α)(1 + (α− 1)q)
1
q

(
(t2 − t1)

(α−1)q+1
) 1

q

=
2‖ f ‖Lp

∆

Γ(α)(1 + (α− 1)q)
1
q
(t2 − t1)

α− 1
p .

Therefore, the sequence {uk} is equicontinuous since, for t1, t2 ∈ [a, b]T, t1 ≤ t2, by
applying (17) and in view of (16), we have

|uk(t1)− uk(t2)| =
∣∣∣Tt1

Iα
b (

T
t1

Dα
b uk(t1))− T

t2
Iα
b (

T
t2

Dα
b uk(t2))

∣∣∣
≤ 2(t2 − t1)

α− 1
p

Γ(α)(1 + (α− 1)q)
1
q
‖Tt Dα

b uk‖Lp
∆

=
2(t2 − t1)

α− 1
p

Γ(α)(1 + (α− 1)q)
1
q
‖Tt Dα

b uk‖Lp
∆

≤ 2(t2 − t1)
α− 1

p

Γ(α)((α− 1)q + 1)
1
q

∥∥∥Tt Dα
b u
∥∥∥

Lp
∆

=
2(t2 − t1)

α− 1
p

Γ(α)((α− 1)q + 1)
1
q
‖uk‖Wα,p

∆,b−

≤C(t2 − t1)
α− 1

p ,

where 1
p + 1

q = 1 and C ∈ R+ is a constant. By the Ascoli–Arzela theorem on time scales

(Lemma 2), {uk} is relatively compact in C(J,RN). By the uniqueness of the weak limit in
C(J,RN), every uniformly convergent subsequence of {uk} converges uniformly on J to
u.

Remark 7. It follows from Proposition 7 that Wα,p
∆,b− is compactly immersed into C(J,RN) with

the natural norm ‖ · ‖∞.

Theorem 25. Let 1 < p < ∞, 1
p < α ≤ 1, 1

p + 1
q = 1, L : J × RN × RN → R, (t, x, y) 7→

L(t, x, y) satisfies

(i) For each (x, y) ∈ RN ×RN , L(t, x, y) is ∆-measurable in t;
(ii) For ∆-almost every t ∈ J, L(t, x, y) is continuously differentiable in (x, y).

If there exists m1 ∈ C(R+,R+), m2 ∈ L1
∆(J,R+) and m3 ∈ Lq

∆(J,R+), 1 < q < ∞, such
that, for ∆-a.e. t ∈ J and every (x, y) ∈ RN ×RN , one has

|L(t, x, y)| ≤ m1(|x|)(m2(t) + |y|p),
|DxL(t, x, y)| ≤ m1(|x|)(m2(t) + |y|p),
|DyL(t, x, y)| ≤ m1(|x|)(m3(t) + |y|p−1).

Then, the functional Φ defined by

Φ(u) =
∫ b

a
L(t, u(t), T

t Dα
b u(t))∆t
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is continuously differentiable on Wα,p
∆,b− , and for all u, v ∈Wα,p

∆,b− , we have

〈Φ′(u), v〉 =
∫ b

a

[(
DxL(t, u(t), T

t Dα
b u(t), v(t)

)
+
(

DyL(t, u(t), T
t Dα

b u(t), T
t Dα

b v(t)
)]

∆t. (18)

Proof. It suffices to prove that ϕ has, at every point u, a directional derivative Φ′(u) ∈
(Wα,p

∆,b−)
∗ given by (18) and that the mapping

Φ′ : Wα,p
∆,b− 3 u 7→ Φ′(u) ∈ (Wα,p

∆,b−)
∗

is continuous. The rest of the proof is similar to the proof of [33] P10 Theorem 1.4. We omit
it here. The proof is complete.

5. An Application

In this section, we present a recent approach via variational methods and critical point
theory to obtain the existence of weak solutions for the following fractional boundary value
problem (FBVP for short) on time scales{

T
a Dα

t
(T

t Dα
b u(t)

)
= ∇G(σ(t), uσ(t)), ∆− a.e. t ∈ J,

u(a) = u(b) = 0,
(19)

where T
a Dα

t and T
t Dα

b are the left and right Riemann–Liouville fractional derivative operators
of order α ∈ (0, 1] defined on T, respectively, and function G : J ×RN → R satisfies the
following assumption:

(A1)G(t, x) is ∆-measurable in t for each x ∈ RN , continuously differentiable in x for ∆-a.e.
t ∈ J and there are p ∈ C(R+,R+), q ∈ L1

∆(J,R+) such that

|G(t, x)| ≤ p(|x|)q(t), |∇G(t, x)| ≤ p(|x|)q(t),

for all x ∈ RN and ∆-a.e. t ∈ J, and ∇G(t, x) is the gradient of G at x.

By constructing a variational structure on Wα,2
∆,b− , we can reduce the problem of finding

weak solutions of (26) to one of seeking the critical points of a corresponding functional.
In particular, when T = R, FBVP (26) reduces to the standard fractional boundary

value problem of the following form{
aDα

t
(

tDα
b u(t)

)
= ∇G(t, u(t)), a.e. t ∈ JR,

u(a) = u(b) = 0.

When α = 1, FBVP (26) reduces to the second-order Hamiltonian system on time
scale T {

u∆2
(t) = ∇G(σ(t), uσ(t)), ∆− a.e. t ∈ Jκ2

,
u(a)− u(b) = 0, u∆(a)− u∆(b) = 0.

Although many excellent results have been obtained based on the existence of solutions
for fractional boundary value problems [34–40] and the second-order Hamiltonian systems
on time scale T [41–45], it seems that no similar results have been obtained in the literature
for FBVP (26) on time scales. The present section seeks to show that the critical point theory
is an effective approach to deal with the existence of solutions for FBVP Theorem 26 on
time scales.
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By Theorem 22, the space Wα,2
∆,b− with the inner product

〈u, v〉 = 〈u, v〉Wα,2
∆,b−

=
∫ b

a
(u(t), v(t))∆t +

∫ b

a
(Tt Dα

b u(t), Tt Dα
b v(t))∆t

and the induced norm

‖u‖ = ‖u‖Wα,2
∆,b−

=

(∫ b

a
|u(t)|2∆t +

∫ b

a
|Tt Dα

b u(t)|2∆t
) 1

2

is a Hilbert space.
Consider the functional Φ : Wα,2

∆,b− → R defined by

Φ(u) =
1
2

∫ b

a
|Tt Dα

b u(t)|2∆t−
∫ b

a
G(σ(t), uσ(t))∆t, ∀u ∈Wα,2

∆,b− . (20)

From now on, H, which we defined in (20), will be considered as a functional on Wα,2
∆,b−

with 1
2 < α ≤ 1. We have the following facts.

Theorem 26. The functional Φ is continuously differentiable on Wα,2
∆,b− and

〈Φ′(u), v〉 =
∫ b

a

[
(Tt Dα

b u(t), T
t Dα

b v(t))− (∇G(σ(t), uσ(t)), vσ(t))
]
∆t

for all v ∈Wα,2
∆,b− .

Proof. Let L(t, x, y) = 1
2 |y|2 − G(t, x) for all x, y ∈ RN and t ∈ J. Then, by condition (A1),

L(t, x, y) meets all the requirements of Theorem 25. Therefore, by Theorem 25, it follows
that the functional ϕ is continuously differentiable on Wα,p

∆,b− and

〈Φ′(u), v〉 =
∫ b

a

[
(Tt Dα

b u(t), T
t Dα

b v(t))− (∇G(σ(t), uσ(t)), vσ(t))
]
∆t

for all v ∈Wα,2
∆,b− . The proof is complete.

Definition 16. A function u : Φ→ RN is called a solution of FBVP (26) if

(i) T
a Dα−1

t (Tt Dα
b u(t)) and T

t Dα−1
b u(t) are differentiable for ∆-a.e. t ∈ J0 and

(ii) u satisfies FBVP (26).

For a solution u ∈Wα,2
∆,b− of FBVP (26) such that ∇G(·, u(·)) ∈ L1

∆(J,RN), multiplying
FBVP (26) by v ∈ C∞

0,rd(J,RN) yields

∫ b

a

[
T
a Dα

t (
T
t Dα

b u(t), v(t))−∇G(σ(t), uσ(t))
]
∆t

=
∫ b

a

[
(Tt Dα

b u(t), T
t Dα

b v(t))∆t−∇G(σ(t), uσ(t))
]
∆t (21)

=0,

after applying (b) of Theorem 16 and Definition 24. Hence, we can give the definition of a
weak solution for FBVP (26) as follows.

Definition 17. By a weak solution for FBVP (26), we mean that a function u ∈Wα,2
∆,b− such that

∇G(·, u(·)) ∈ L1
∆(J,RN) and satisfies (21) for all v ∈ C∞

0,rd(J,RN).
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By our above remarks, any solution u ∈ Wα,2
∆,b− of FBVP (26) is a weak solution

provided that ∇G(·, u(·)) ∈ L1
∆(J,RN). Our task is now to establish a variational structure

on Wα,2
∆,b− with α ∈

(
1
2 , 1
]
, which enables us to reduce the existence of weak solutions of

FBVP (26) to the one of finding critical points of the corresponding functional.

Theorem 27. If 1
2 < α ≤ 1, u ∈ Wα,2

∆,b− is a critical point of Φ in Wα,2
∆,b− , i.e., Φ′(u) = 0, then u

is a weak solution of system (26) with 1
2 < α ≤ 1.

Proof. Because of ϕ′(u) = 0, it follows from Theorem 26 that

∫ b

a

[
(Tt Dα

b u(t), T
t Dα

b v(t))−∇G(σ(t), uσ(t))
]
∆t = 0

for all v ∈Wα,2
∆,b− , and hence for all v ∈ C∞

0 (J,RN). Therefore, according to Definition 17, u
is a weak solution of FBVP (26) and the proof is complete.

According to Theorem 27, we see that in order to find weak solutions of FBVP (26),
it suffices to obtain the critical points of the functional ϕ given by (20). We need to use
some critical point theorems. For the reader’s convenience, we present some necessary
definitions and theorems and skip the proofs.

Let X be a real Banach space and C1(X,RN) denote the set of functionals that are
Fréchet differentiable and their Fréchet derivatives are continuous on X.

Definition 18 ([46]). Let ψ ∈ C1(X,RN). If any sequence {uk} ⊂ H for which {ψ(uk)} is
bounded and ψ′(uk) → 0 as k → ∞ possesses a convergent subsequence, then we say ψ satisfies
the Palais–Smale condition (denoted as P.S. condition for short).

Theorem 28 ([33]). Let X be a real reflexive Banach space. If the functional ψ : X → RN is weakly
lower semi-continuous and coercive, i.e., lim

‖z‖→∞
ψ(z) = +∞, then there exists z0 ∈ X such that

ψ(z0) = inf
z∈X

ψ(z). Moreover, if ψ is also Fréchet differentiable on X, then ψ′(z0) = 0.

Theorem 29 ([46] (Mountain pass theorem)). Let X be a real Banach space and ψ ∈ C1(X,RN),
satisfying the P.S. condition. Assume that

(i) ψ(0) = 0,
(ii) there exist ρ > 0 and σ > 0 such that ψ(z) ≥ σ for all z ∈ X with ‖z‖ = ρ,
(iii) there exists z1 in X with ‖z1‖ ≥ ρ such that ψ(z1) < σ.

Then, ψ possesses a critical value c ≥ σ. Moreover, c can be characterized as

c = inf
ω∈Ω

max
z∈ω([0,1])

ψ(z),

where Ω = {ω ∈ C([0, 1], X) : ω(0) = 0, ω(1) = z1}.

First, we can solve the existence of weak solutions for FBVP (26) by using Theorem 28.
Suppose that the assumption (A1) is satisfied. Looking at (20), the corresponding functional
Φ on Wα,2

∆,b− given by

Φ(u) =
1
2

∫ b

a
|Tt Dα

b u(t)|2∆t−
∫ b

a
G(σ(t), uσ(t))∆t,

is continuously differentiable according to Theorem 26 and is also weakly lower semi-
continuous functional on Wα,2

∆,b− as the sum of a convex continuous function and a weakly
continuous function.
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Actually, in view of Proposition 7, if uk ⇀ u in Wα,2
∆,b− , then uk → u in C(J,RN). As a

result, G(σ(t), uσ
k (t)) → G(σ(t), uσ(t)) ∆-a.e. t ∈ [a, b]T. Using the Lebesgue-dominated

convergence theorem on time scales, we obtain
∫ b

a G(σ(t), uσ
k (t))∆t→

∫ b
a G(σ(t), uσ(t))∆t,

which implies that the functional u→
∫ b

a G(σ(t), uσ(t))∆t is weakly continuous on Wα,2
∆,b− .

Furthermore, because the fractional derivative operator on T is a linear operator, the
functional u→

∫ b
a |

T
a Dα

t u(t)|2∆t is convex and continuous on Wα,2
∆,b− .

If ϕ is coercive, using Theorem 28, Φ has a minimum so that FBVP (26) is solvable. It
remains to find conditions under which Φ is coercive on Wα,2

∆,b− , i.e., lim
‖z‖→∞

ϕ(z) = +∞, for

u ∈Wα,2
∆,b− . We shall know that it suffices to require that G(t, x) is bounded by a function

for ∆-a.e. t ∈ J and all x ∈ RN .

Theorem 30. Let 1
2 < α ≤ 1, and suppose that G satisfies (A1). If

|G(t, x)| ≤ e|x|2 + f (t)|x|2−γ + h(t), ∆− a.e. t ∈ J, x ∈ RN , (22)

where e ∈
[
0, Γ2(α+1)

2b2α

)
, γ ∈ (0, 2), f ∈ L

2
γ

∆ ([a, b]T,R) and h ∈ L1
∆(J,R), then FBVP (26) has at

least one weak solution that minimizes ϕ on Wα,2
∆,b− .

Proof. Taking account of the arguments above, our task reduces to testifying that Φ is
coercive on Wα,2

∆,b− . For u ∈ Wα,2
∆,b− , together with (22), (12) and the Hölder inequality on

time scales, we obtain that

Φ(u)

=
1
2

∫ b

a
|Tt Dα

b u(t)|2∆t−
∫ b

a
G(σ(t), uσ(t))∆t

≥1
2

∫ b

a
|Tt Dα

b u(t)|2∆t− e
∫ b

a
|u(t)|2∆t−

∫ b

a
f (t)|u(t)|2−γ∆t−

∫ b

a
h(t)∆t

≥1
2
‖u‖2 − e‖u‖2

L2
∆
−
(∫ b

a
| f (t)|

2
γ ∆t

) γ
2
(∫ b

a
|u(t)|2∆t

)1− γ
2

∆t−
∫ b

a
h(t)∆t

=
1
2
‖u‖2 − e‖u‖2

L2
∆
−
(∫ b

a
| f (t)|

2
γ ∆t

) γ
2

‖u‖2−γ

L2
∆
−
∫ b

a
h(t)∆t

≥1
2
‖u‖2 − eb2α

Γ2(α + 1)
‖u‖2 −

(∫ b

a
| f (t)|

2
γ ∆t

) γ
2
(

bα

Γ(α + 1)

)2−γ

‖u‖2−γ −
∫ b

a
h(t)∆t

=

(
1
2
− eb2α

Γ2(α + 1)

)
‖u‖2 −

(∫ b

a
| f (t)|

2
γ ∆t

) γ
2
(

bα

Γ(α + 1)

)2−γ

‖u‖2−γ −
∫ b

a
h(t)∆t.

Noting that e ∈
[
0, Γ2(α+1)

2b2α

)
and γ ∈ (0, 2), we obtain Φ(u) = +∞ as ‖u‖ → ∞, and

so Φ is coercive, which completes the proof.

Let e0 = min
λ∈[ 1

2 ,1]

{
Γ2(λ+1)

2b2λ

}
. As a result, we can obtain the following result by Theorem 29.

Corollary 3. For 1
2 < α ≤ 1, if F satisfies the condition (A1) and (22) with e ∈ [0, e0), then FBVP

(26) has at least one weak solution that minimizes Φ on Wα,2
∆,b− .

It is time for us to apply Theorem 29 (Mountain pass theorem) to find a nonzero critical
point of functional Φ on Wα,2

∆,b− .

Theorem 31. Let 1
2 < α ≤ 1, and suppose that G satisfies (A1). If
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(A2)G ∈ C(J×RN ,R), and there are µ > 2 and M > 0 such that 0 < µG(t, x) ≤ (∇G(t, x), x)
for all x ∈ RN with |x| ≥ M and t ∈ J,

(A3) lim sup
|x|→0

G(t,x)
|x|2 < Γ2(α+1)

2b2α uniformly for t ∈ J and x ∈ RN

are satisfied, then FBVP (26) has at least one nonzero weak solution on Wα,2
∆,b− .

Proof. We will demonstrate that Φ satisfies all the conditions of Theorem 29.
First, we will verify that Φ satisfies the P.S. condition. Because G(t, x)− 1

µ (∇G(t, x), x)
is continuous for t ∈ J and |x| ≤ M, there is c ∈ R+ such that

G(t, x) ≤ 1
µ
(∇G(t, x), x) + c, t ∈ J, |x| ≤ M.

In view of condition (A2), one has

G(t, x) ≤ 1
µ
(∇G(t, x), x) + c, t ∈ J, x ∈ RN . (23)

Let {uk} ⊂Wα,2
∆,b− , |Φ(uk)| ≤ K, k = 1, 2, · · · , Φ′(uk)→ 0. Notice that

〈Φ′(uk), uk〉 =
∫ b

a

[
(Tt Dα

b uk(t), T
t Dα

b uk(t))− (∇G(σ(t), uσ
k (t)), uσ

k (t))
]
∆t

=‖uk‖2 −
∫ b

a
∇G(σ(t), uσ

k (t)), uσ
k (t))∆t. (24)

Combining with (23) and (24), one arrives at

K ≥Φ(uk)

=
1
2

∫ b

a
|Tt Dα

b uk(t)|2∆t−
∫ b

a
G(σ(t), uσ

k (t))∆t

≥1
2
‖uk‖2 − µ

∫ b

a
(∇G(σ(t), uσ

k (t)), uσ
k (t))∆t− cb

=

(
1
2
− 1

µ

)
‖uk‖2 +

1
µ
〈ϕ′(uk), uk〉 − cb

≥
(

1
2
− 1

µ

)
‖uk‖2 − 1

µ
‖ϕ′(uk)‖‖uk‖ − cb.

It follows from Φ′(uk)→ 0 that there is N0 ∈ N such that

K ≥
(

1
2
− 1

µ

)
‖uk‖2 − ‖uk‖ − cb, k > N0,

which means that {uk} ⊂Wα,2
∆,b− is bounded. In view of Wα,2

∆,b− being a reflexive space, going

to a subsequence if necessary, we may suppose that uk ⇀ u weakly in Wα,2
∆,b− ; therefore,

one obtains

〈Φ′(uk)−Φ′(u), uk − u〉
=〈Φ′(uk), uk − u〉 − 〈Φ′(u), uk − u〉
≤‖Φ′(uk)‖‖uk − u‖ − 〈Φ′(u), uk − u〉 → 0, (25)

as k→ ∞. Furthermore, in view of (13) and Proposition 7, one can find that uk is bounded
in C(J,RN) and ‖uk − u‖∞ = 0 as k→ ∞. As a result, one has∫ b

a
∇G(σ(t), uσ

k (t))∆t→
∫ b

a
∇G(σ(t), uσ(t))∆t, k→ ∞. (26)
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Noting that

〈Φ′(uk)−Φ′(u), uk − u〉

=
∫ b

a
(Tt Dα

b uk(t)−T
t Dα

b u(t))2∆t−
∫ b

a
(∇G(σ(t), uσ

k (t))−∇G(σ(t), uσ(t)))

× (uσ
k (t)− uσ(t))∆t

≥‖uk − u‖2 −
∣∣∣∣∫ b

a
(∇G(σ(t), uσ

k (t))−∇G(σ(t), uσ(t)))∆t
∣∣∣∣‖uk − u‖∞.

Together with (25) and (26), it is not difficult for us to prove that ‖uk − u‖2 → 0 as
k→ ∞, and so that uk → u in Wα,2

∆,b− . Hence, we obtain the desired convergence property.

By condition (A3), there are ε ∈ (0, 1) and δ > 0 such that G(t, x) ≤ (1− ε)
(

Γ2(α+1)
2b2α

)
|x|2

for all t ∈ J and x ∈ RN with |x| ≤ δ.

Let ρ = Γ(α)(2(α−1)+1)
1
2

bα− 1
2

δ and σ = ερ2

2 > 0. Then, in light of (13), one sees that

‖u‖∞ ≤
bα− 1

2

Γ(α)(2(α− 1) + 1)
1
2
‖u‖ = δ

for all u ∈Wα,2
∆,b− with ‖u‖ = ρ. Hence, combining with (12), one obtains

Φ(u) =
1
2

∫ b

a
|Tt Dα

b u(t)|2∆t−
∫ b

a
G(σ(t), uσ(t))∆t

=
1
2
‖u‖2 −

∫ b

a
G(σ(t), uσ(t))∆t

≥1
2
‖u‖2 − (1− ε)

Γ2(α + 1)
2b2α

∫ b

a
|u(t)|2∆t

≥1
2
‖u‖2 − 1

2
(1− ε)‖u‖2

=
1
2

ε‖u‖2

=σ

for all u ∈Wα,2
∆,b− with ‖u‖ = ρ. This implies that (ii) in Theorem 29 is satisfied.

It follows from the definition of Φ and condition (A3) that Φ(0) = 0, and so it suffices
to prove that Φ satisfies (iii) in Theorem 29.

For s ∈ R, |x| ≥ M and t ∈ J, let

F(s) = G(t, sx), H(s) = F′(s)− µ

s
F(s) (27)

In view of (A2), when s ≥ M
|x| , one obtains

H(s) =
∇G(t, sx)sx− µG(t, sx)

s
≥ 0

In addition, taking the expression of F(·) and H(·) in (27) into account, we can easily
obtain that F(s) satisfies

F′(s) = H(s) +
µ

s
F(s)
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Therefore, when s ≥ M
|x| , we have

G(t, sx) = sµ

[
G(t, x) +

∫ s

1
τ−µH(τ)dτ

]
.

Thus, for |x| ≥ M and t ∈ J, together with (A1), one obtains(
M
|x|

)µ

G(t, x) ≤ G
(

t, x
M
|x|

)
≤ max
|x|≤M

p(|x|)q(t),

which implies that

G(t, x) ≤ |x|
µ

Mµ max
|x|≤M

p(|x|)q(t).

Thus, one obtains

G(t, x) ≥ |x|
µ

Mµ min
|x|≤M

p(|x|)q(t), (28)

For any u ∈Wα,2
∆,b− with u 6= 0, κ > 0 and noting that µ > 2, one has

Φ(κu) =
1
2

∫ b

a
|Tt Dα

b κu(t)|2∆t−
∫ b

a
G(σ(t), κuσ(t))∆t

≤1
2
‖κu‖2 −

∫ b

a

|κu|µ
Mµ min

|κu|≤M
p(|κu|)q(t)∆t

≤1
2

κ2‖u‖2 − κµ

Mµ min
|κu|≤M

p(|κu|)‖u‖µ

L1
∆

inf
t∈[a,b]T

q(t)
∫ b

a
|u|µ∆t

=
1
2

κ2‖u‖2 − κµ

Mµ min
|κu|≤M

p(|κu|) inf
t∈[a,b)T

q(t)‖u‖µ

L1
∆

→−∞

as k → ∞. Then, there is a sufficiently large κ0 such that Φ(κ0u) ≤ 0. As a result, (iii) of
Theorem 29 holds.

Lastly, note that Φ(0) = 0, while, for our critical point u, Φ(u) ≥ σ > 0. Therefore, u
is a nontrivial weak solution of the FBVP (26), and this completes the proof.

Corollary 4. For all 1
2 < α ≤ 1, assume that G satisfies conditions (A1) and (A2). If

(A4)G(t, x) = o(|x|2), as |x| → 0 uniformly for t ∈ J and x ∈ RN

is satisfied, then the FBVP (26) has at least one nonzero weak solution on Wα,2
∆,b− .

6. Conclusions

In this paper, we have proven the equivalence between the fractional integrals and
fractional derivatives on time scales defined by integral and the fractional integrals and
fractional derivatives on time scales defined by the Laplace transform and the inverse
Laplace transform. We give the definition of right fractional Sobolev spaces on time scales
and study some of their important properties. As an application of the results of this
paper, we have shown the solvability of a fractional boundary value problem on time scales
by using the critical point theory. The methods and results of this paper provide a basic
workspace for using variational methods and critical point theory to study the solvability
of dynamic equations on time scales.
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