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Abstract: This paper explains the free convective flowing of micropolar nanofluid through a solid
sphere with Newtonian heating and the magnetic field influence. Sets of partial differential equations
are converted by using convenient transformations to ordinary differential equations. The system of
similar and nonsimilar equations is solved numerically using the Runge–Kutta–Fehlberg method
(RKF45) using MAPLE software (version 20).The numerical results are validated by comparison with
previously published works, and excellent agreement is found between them. The influence of the
magnetic field parameter, solid volume fraction, and micropolar parameter on velocity, temperature,
and angular velocity profiles are shown graphically. In addition, both the skin friction coefficient and
Nusselt number are also discussed. It is found that the skin friction increases with an increase in the
solid volume fraction of both nanoparticles and Newtonian heating and micropolar parameters. In
addition, the magnetic field reduces both the skin friction and the Nusselt number. Moreover, the
solid volume fraction and Newtonian heating parameter enhance the Nusselt number.

Keywords: natural convection; Newtonian heating; solid sphere; magnetic field; micropolar nanofluid

1. Introduction

The importance of nanofluids has been growing with the passage of time, and in-
vestigators have been intending to examine the attitude of nanofluids subjected to heat
transport systems. Nanofluids and their inclusions in the industrial sector have been
growing more due to their homogeneous nature in thermal conductivity and rudimentary
heat transport. Regular fluids such as water, propylene glycol, and ethylene glycol, among
others, have poor heat transport properties. Nanoliquids, a homogenous solid liquid
mixture, are applied to promote the classical, heat transfer base fluids thermal conductivity.
Nanofluids have a vast domain of applications, including cancer therapy, microelectronics
cooling, imaging, sensing, vehicle and industrial cooling, the evolution of new kinds of
cooling towers, fuels, cooling and heating of household appliances, and hybrid-powered
engine efficiency, etc. [1–3]. Choi [4] coined the term nanoparticle to characterize a particle
that improves the thermal conductivity of nanoparticles. In order to realize how ther-
mal conductivity is improved, he provided many numerical and experimental studies.
Khanafer et al. [5] examined the impact of nanomaterials on convection exploring that
driving nanomaterials at some Grashof number considered a rapid thermal conductivity.
Sun et al. [6] studied the influence of nanomaterial size and considered this improving
nanoparticle size improves heat capacity.
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Meanwhile, magnetohydrodynamics (MHD) also has a pivotal role in the effective
application of fluid flow and heat transport. MHD is widely applied to investigate the
properties of magnetic fields and the conduct of electrically conducting liquids. The
definition of MHD is coming from the word magnetohydrodynamics, which far boost
the meaning of magnetic field, water, and movement, respectively. The basic principle
underlying the MHD is that magnetic fields produce currents in a flowing conducting
liquid, polarizing, in turn, the liquid and changing the magnetic field itself. The magnetic
field is useful in material processes, heat exchangers, and scientific research. The magnetic
field can create a force which is used in water evaporation, silver deposition, and protein
crystallization, etc. However, the MHD boundary layer flows also grow in MHD power
generator designs, plasma studies, liquid metal manipulation, cooling of nuclear reactors,
plasma cutting, induction heating, etc. Mabood et al. [7] addressed the magnetoflow of
nanofluid and heat transfer along the stretching sheet. Srinivasacharya et al. [8] analyzed
magnetic nanofluid flow across a wedge. The problem of magnetized nanofluid flow over a
stretchable surface was analyzed by Rashed et al. [9]. Yohannes and Shanker [10] analyzed
melting heat transfer in magnetonanofluid flow over a porous sheet. Free convection
flow of magnetic nanofluid through a vertical semi-infinite flat plate was discussed by
Hamad et al. [11]. Rajesh and Chamkha [12] studied and analyzed the heat transport and
free convective flowing of nanofluid through an orthogonal plate under magnetic field
influence. Nabwey et al. [13] analyzed the unsteady flow of ferrofluid along the radiative
stretchable surface with convective heating. Khan et al. [14] investigated the impact of heat
generation on magnetonanofluid free convection flow about sphere in the plume region.

Industrial and physiological evolutions and the non-Newtonian materials flow are
more known than the viscous fluids. The kind involves the assortment of non-Newtonian
materials. Essentially, there is no integrated constitutive rheological relevance that can
classify all non-Newtonian material topics to their various, assigning fields such as shear
thinning, viscoelasticity, shear thickening and viscoplasticity, among others. Thus, many
constitutive rheological non-Newtonian material patterns were encouraged. Among those,
the micropolar liquid pattern is one that appoints the water solutions showing a great
level of polymer concentration. Lately, many investigators have been focused on the
prominent characteristics of micropolar liquid flows subject to diverse geometries. The first
to present the micropolar fluid theory was Eringen [14,15]. Airman [16,17] introduced many
types of research on micropolar fluids implementations. Bourantas and Loukopoulos [18]
formulated the free convective flow of micropolar nanoliquids. They examined that the
microrotations in general reduce overall heat transport from the heated side and thus
should not be removed. Rashad et al. [19] investigated the flow of a micropolar nanoliquid
along a circular cylinder in a porous medium employing convective boundary conditions.
They noted that the skin friction and heat transference depend on the volume fraction of
nanoparticles and material parameters. Rashad et al. [20] also studied the unsteady slip
flow of a polar nano liquid over a vertical moving surface. They concluded that the skin
friction declines expressively along the moving surface for both metallic and nonmetallic
nanoparticles. Other recent investigations reported by authors relevant to this topic could
be found in references [21,22].

This study explores the magneto-free convective of micropolar nanofluid flow through
a solid sphere, considering the Newtonian heating. The goal of the evaluations is to
diagnose the effects of various governing parameters on velocity, temperature, angular
velocity curves, and the variations of skin friction and Nusselt number along different
positions. This simulation is pertinent to multiphysical magnetic micropolar nanoliquid
materials processing.

2. Basic Equations

Consider the steady laminar 2-D incompressible magneto-free convective flow of
copper (Cu) and cobalt (Co) water-based micropolar nanofluid over a heated sphere of the
radius a which is immersed in a viscous and incompressible micropolar fluid of ambient
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temperature T∞ and subjected to a Newtonian heating(NH) as shown in Figure 1, where g̃
is the gravity vector, the x̃ coordinate is measured along the surface of the solid sphere at
the lower stagnation point (x̃ ≈ 0), the ỹ coordinate is measured the distance normal to the
surface of the sphere, and r̃(x̃) is the radial distance from the symmetricalaxis to the surface
of the solid sphere. A uniform magnetic field B0 is utilized in the direction perpendicular to
the surface. Under the Boussinesq and boundary layer approximations, the basic equations
are (Salleh et al. [23]);

∂

∂x̃
(r̃ ũ) +

∂

∂ỹ
(r̃ ṽ) = 0 (1)

(
ũ

∂ũ
∂x̃

+ ṽ
∂ũ
∂ỹ

)
=

µn f + κ

ρn f

(
∂2ũ
∂ỹ2

)
+

[
g̃(ρβ)n f (T − T∞)

ρn f

]
sin

x̃
a
+

κ

ρn f

∂Ñ
∂ỹ
−

σn f B2
0

ρn f
(2)

ũ
∂Ñ
∂x̃

+ ṽ
∂Ñ
∂ỹ

=
γn f

jρn f

(
∂2Ñ
∂ỹ2

)
− κ

jρn f

(
2Ñ +

∂ũ
∂ỹ

)
(3)

ũ
∂T
∂x̃

+ ṽ
∂T
∂ỹ

= αn f

(
∂2T
∂ỹ2

)
(4)
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Figure 1. Flow model.

The boundary conditions of Equations (1)–(4) are:

ũ = ṽ = 0, ∂T
∂ỹ = −hsT, Ñ = − 1

2
∂ũ
∂ỹ at ỹ = 0.

ũ→ 0, T → T∞, N → 0 at ỹ→ ∞.
(5)

where (ũ, ṽ) stand for the velocity components along x̃, ỹ axes. Ñ is the angular velocity, T
is the temperature of the fluid, g is the acceleration, j is the microinertia density, κ is the
vortex viscosity, B0 is the magnetic field strength, and hs is the heat transfer coefficient for
Newtonian heatingcondition.

The nondimensional variables are defined as ([23]):

x = x̃
a , y = Gr

1
4

(
ỹ
a

)
, r = r̃

a , u = a
ν f

Gr−
1
2 ũ, v = a

ν f
Gr−

1
4 ṽ, N = a2

ν f
Gr−

3
4 Ñ,

θ = T−T∞
T∞

, r̃(x̃) = a sin x̃
a , j = a2Gr−

1
2 ,

(6)

Substituting Equation (6) into Equations (1)–(4) as follows:

∂

∂x
(ru) +

∂

∂y
(rv) = 0, (7)

(
u

∂u
∂x

+ v
∂u
∂y

)
=

ρ f

ρn f

(
µn f

µ f
+ R

)(
∂2u
∂y2

)
+

(
ρ f

ρn f

)(
(ρβ)n f

(ρβ) f

)
θ sin x +

ρ f

ρn f
R

∂N
∂y
−

ρ f

ρn f

σn f

σf
Mu (8)



Fractal Fract. 2022, 6, 57 4 of 15

u
∂N
∂x

+ v
∂N
∂y

=
ρ f

ρn f

(
µn f

µ f
+

R
2

)(
∂2N
∂y2

)
− R

ρ f

ρn f

(
2N +

∂u
∂y

)
(9)

u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

kn f

k f

(
ρCp

)
f(

ρCp
)

n f

(
∂2θ

∂y2

)
(10)

The boundary condition for Equations (7)–(10) are defined as:

u = v = 0, ∂θ
∂y = −γ(1 + θ), N = − 1

2
∂u
∂y , at y = 0

u→ 0, θ → 0, N → 0 at y→ ∞
(11)

where R = κ
µ f

, M =
σf B2

0
ρ f ν f

a2Gr−
1
2 , Pr =

ν f
α f

, Gr =
a3 g̃β f T∞

ν2
f

are the micropolar parameter,

magnetic parameter, Prandtl number, and Grashof number, respectively. γ = ahsGr−
1
4

is the conjugate parameter for Newtonian heating case (NH). From condition (11), θ = 0
when γ = 0, corresponding to the presence of hs = 0, and thus, there is no heat from the
sphere [24]. The following variables are used to solve Equations (7)–(10) and condition (11):

ψ = xr(x) f (x, y), θ = θ(x, y), N = xg(x, y) (12)

where ψ is a stream function and defined as:

u =
1
r

∂ψ

∂y
, v = −1

r
∂ψ

∂x
(13)

In the current research, the following thermophysical relations are applied; see Tiwari
and Das’s model [23];

ρn f = (1− φ)ρ f + φρs, µn f =
µ f

(1− φ)2.5 , αn f =
kn f(

ρCp
)

n f
(14)

(
ρCp

)
n f = (1− φ)

(
ρCp

)
f + φ

(
ρCp

)
s, (ρβ)n f = (1− φ)(ρβ) f + φ(ρβ)s, (15)

γn f =
(

µn f +
κ

2

)
j = µ f

(
µn f

µ f
+

R
2

)
j (16)

(σ)n f = σf

[
1 +

3(σ− 1)φ
(σ + 2)− (σ− 1)φ

]
, σ =

σs

σf
(17)

kn f = k f

(
ks + 2k f

)
− 2φ

(
k f − ks

)
(

ks + 2k f

)
+ φ

(
k f − ks

) (18)

where αn f is the thermal diffusivity, γn f is the spin-gradient nanofluid viscid,
(
ρCp

)
n f

is the stands for the specific heat at a uniform pressure, βn f is the thermal expansion
coefficient of the nanofluid, β f and βs are the thermal expansion coefficients of the base
fluid and nanoparticle, respectively, and ρ f and ρs are the densities of the base fluid and
nanoparticles, respectively. The dynamic viscosity for nanofluid is denoted by µn f , and
σf is the electric conductivity of the base fluid, and σs is the electric conductivity of the
nanoparticles. kn f is the effective thermal conductivity of nanofluid. The efficient thermal
and physical properties of nanofluid are presented in Table 1.
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Table 1. Thermophysical properties of pure water, copper, and cobalt nanoparticles [22,24].

Physical Properties Pure Water (Copper) Cu (Cobalt) Co

CP (J/kg-K) 4179 385 420

ρ
(
kg/m3) 997.1 8933 8900

k (W/mK) 0.613 401 100

σ (S/m) 5.5 × 10−6 59.6 × 106 1.6 × 107

β
(

K−1
)

21 × 10−5 1.67 × 10−5 1.30 × 10−5

Substituting Equations (12) and (13) into Equations (7)–(10), then

ρ f

ρn f

(
µn f

µ f
+ R

)
∂3 f
∂y3 +

(
1 +

x
sin x

cos x
)

f
∂2 f
∂y2 −

(
∂ f
∂y

)2

+

(
ρ f

ρn f

)(
(ρβ)n f

(ρβ) f

)
θ

sin x
x

+
ρ f

ρn f
R

∂g
∂y
−

ρ f

ρn f

σn f

σf
M

∂ f
∂y

= x
(

∂ f
∂y

∂2 f
∂x∂y

− ∂ f
∂x

∂2 f
∂y2

)
(19)

ρ f

ρn f

(
µn f

µ f
+ R/2

)
∂2g
∂y2 +

(
1 +

x
sin x

cos x
)

f
∂g
∂y
− g

∂ f
∂y
− R

ρ f

ρn f

(
2g +

∂2 f
∂y2

)
= x

(
∂ f
∂y

∂g
∂x
− ∂ f

∂x
∂g
∂y

)
(20)

1
Pr

kn f

k f

(
ρCp

)
f(

ρCp
)

n f

∂2θ

∂y2 +
(

1 +
x

sin x
cos x

)
f

∂θ

∂y
= x

(
∂ f
∂y

∂θ

∂x
− ∂ f

∂x
∂θ

∂y

)
(21)

with the boundary-condition:

f = ∂ f
∂y = 0, ∂θ

∂y = −γ(1 + θ), g = − 1
2

∂2 f
∂y2 at y = 0 at

∂ f
∂y → 0, θ → 0, g→ 0 at y→ ∞

(22)

At x ≈ 0 (lower stagnation point) for the sphere, Equations (19)–(21) can be written as:

ρ f

ρn f

(
µn f

µ f
+ R

)
f ′′′ + 2 f f ′′ − f ′2 +

(
ρ f

ρn f

)(
(ρβ)n f

(ρβ) f

)
θ +

ρ f

ρn f
Rg′ −

ρ f

ρn f

σn f

σf
M f ′ = 0 (23)

ρ f

ρn f

(
µn f

µ f
+

R
2

)
g′′ + 2 f g′ − g f ′ − R

ρ f

ρn f
(2g + f ′′ ) = 0 (24)

1
Pr

kn f

k f

(
ρCp

)
f(

ρCp
)

n f
θ′′ + 2 f θ′ = 0 (25)

In addition, the boundary condition

f ′(0) = 0, f (0) = 0, θ′(0) = −γ(1 + θ(0)), g(0) = 0
f ′ → 0, θ → 0, g→ 0 as y→ ∞

(26)

Important quantities, namely, the skin friction coefficient C f and local Nusselt number
Nux, are defined for physical interest as follows:

Nux =
aGr−

1
4

k f (T∞)
qw, C f =

a2Gr−
3
4

µ f ν f
τw (27)

qw = −
[
kn f

]∂T
∂ỹ

∣∣∣∣
ỹ=0

, τw =
(

µn f +
κ

2

)(∂ũ
∂ỹ

)
ỹ=0

(28)

Using Equations (6) and (11) thus:

C f =

(
µn f

µ f
+

R
2

)
x

∂2 f
∂y2

∣∣∣∣∣(x,0), Nux = −
kn f

k f

(
∂θ

∂y

)∣∣∣∣∣(x,0) = −
kn f

k f
γ(1 + θ(x, 0)), (29)
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At x ≈ 0 (lower stagnation point of the sphere), wall temperature and skin friction
coefficient are defined as θ(0), f ′′ (0).

3. Numerical Method

Following [25,26], Equations (19)–(21) with boundary conditions (22) can be solved
using the local similarity and nonsimilarity methods. In the local similarity method, the
first derivatives concerning x are neglected, and Equations (19)–(21) can be rewritten as:

ρ f
ρn f

(
µn f
µ f

+ R
)

f ′′′ +
(
1 + x

sin x cos x
)

f f ′′ − f ′2 +
(

ρ f
ρn f

)(
(ρβ)n f
(ρβ) f

)
θ sin x

x

+
ρ f
ρn f

Rg′ − ρ f
ρn f

σn f
σf

M f ′ = 0,
(30)

ρ f

ρn f

(
µn f

µ f
+

R
2

)
g′′ +

(
1 +

x
sin x

cos x
)

f g′ − g f ′ − R
ρ f

ρn f
(2g + f ′′ ) = 0, (31)

1
Pr

kn f

k f

(
ρCp

)
f(

ρCp

)
n f

θ′′ +
(

1 +
x

sin x
cos x

)
f θ′ = 0 (32)

with the same boundary conditions (22) and

F(0) = F′(0) = 0, Θ′(0) = −γΘ(0), G(0) = −1
2

F′′ (0) (33)

Following [25,26], for the local nonsimilarity solution, now we hold all the terms by
assuming the new auxiliary functions F(x, y) and Θ(x, y), which are defined by

F =
∂ f
∂x

, Θ =
∂θ

∂x
(34)

Using these functions, Equations (19)–(21) can be rewritten as

ρ f

ρn f

(
µn f

µ f
+ R

)
f ′′′ +

(
1 +

x
sin x

cos x
)

f f ′′ − f ′2 +

(
ρ f

ρn f

)(
(ρβ)n f

(ρβ) f

)
θ

sin x
x

+
ρ f

ρn f
Rg′ −

ρ f

ρn f

σn f

σf
M f ′ = x

(
f ′F′ − F f ′′

)
(35)

ρ f

ρn f

(
µn f

µ f
+

R
2

)
g′′ +

(
1 +

x
sin x

cos x
)

f g′ − g f ′ − R
ρ f

ρn f
(2g + f ′′ ) = x

(
f ′G− Fg′

)
, (36)

1
Pr

kn f

k f

(
ρCp

)
f(

ρCp

)
n f

θ′′ +
(

1 +
x

sin x
cos x

)
f θ′ = x

(
f ′Θ− Fθ′

)
, (37)

subjected to the same boundary conditions (22) and (33). The new ordinary differential
Equations (34)–(37) with boundary conditions (22) represent a local nonsimilarity model.
To simplify this model, these equations and the corresponding boundary conditions are
now differentiated, w.r.t. x, simplified, and the derivatives, w.r.t. x, are neglected again to
obtain a local similarity model and can be written as:

ρ f
ρn f

(
µn f
µ f

+ R
)

F′′′ +
(

cos x
sin x − x− x cos x2

sin x2

)
f f ′′ +

(
1 + x

sin x cos x
)

F f ′′ +
(
1 + x cos x

sin x
)

f F′′ − 2 f ′F′

+
(

ρ f
ρn f

)(
(ρβ)n f
(ρβ) f

)(
Θ sin x

x + θ cos x
x − θ sin x

x2

)
+

ρ f
ρn f

RG′ − ρ f
ρn f

σn f
σf

MF′

= ( f ′F′ − F f ′′ ) + x
(

F′2 − FF′′
) (38)

ρ f
ρn f

(
µn f
µ f

+ R
2

)
G′′ +

(
cos x
sin x − x− x cos x2

sin x2

)
f g′ +

(
1 + x cos x

sin x
)
(g′ f ′ + f G′)− f ′G− gF′ − R

ρ f
ρn f

(2G + F′′ )

= ( f ′G− Fg′) + x(F′ − FG′)
(39)
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1
Pr

kn f

k f

(
ρCp

)
f(

ρCp

)
n f

Θ′′ +
(

cos x
sin x

− x− x cos x2

sin x2

)
f θ′ +

(
1 +

x cos x
sin x

)(
Fθ′ + f Θ′

)
=
(

f ′Θ− Fθ′
)
+ x
(

F′Θ− FΘ′
)

(40)

The ordinary differential Equations (38)–(40) with boundary conditions (22) and (33)
were solved numerically by employing the Runge–Kutta–Fehlberg method (RKF45) using
MAPLE software (Version 20). This software uses the most excellent method available and
delivers more accurate results. The step size ∆y = 0.001 and a convergence criterion of
10−6 were selected in the numerical computations. The asymptotic boundary conditions,
given in Equation (22), were replaced by using a value of 10 for the similarity variable ymax
as follows:

f ′(10) = 0, θ(10), F′(10) = 0, Θ(10) = 0, G′(10) = 0 (41)

To ensure the proper convergence of dimensionless velocity and temperature,
ymax = 10 is selected. The value of x is progressedin small intervals from the lower
stagnation point to the upper stagnation point, and the derivatives of the functions are
revised after every outer iteration step.

On account of the complexity of the given problem, the local similar and nonsimilar
Equations (34)–(40) with boundary conditions (22) and (33) are solved by the Runge–Kutta–
Fehlberg method. RKF 45th order was used with the effective choice of step h to decrease
governing equations into first-order equations. Considering the function, f (t, y) was
applied, and the technique was written as follows;

k1 = h f (tk + yk)

k2 = h f
(

tk +
1
4 h, yk +

1
4 k1

)
k3 = h f

(
tk +

3
8 h, yk +

3
32 k1 +

9
32 k2

)
k4 = h f

(
tk +

12
13 h, yk +

1932
2197 k1 − 7200

2197 k2 +
7200
2197 k3

)
k5 = h f

(
tk + h, yk +

439
216 k1 − 8k2 +

3680
513 k3 − 845

4104 k4

)
k6 = h f

(
tk +

1
2 h, yk − 8

27 k1 + 2k2 − 3544
2565 k3 +

1859
4104 k4 − 11

40 k5

)
(42)

Hence, the iterative process for the solution is obtained by using the Runge–Kutta
fifth-order formula as,

yk+1 = yk +
16

135
k1 +

6656
12, 825

k3 +
28, 561
56, 430

k4 −
9

50
k5 +

2
55

k6 (43)

As mentioned above, we chose a convenient finite value of ymax so that far field
boundary conditions are satisfiedasymptotically. In this investigation, anappropriate finite
value of ymax is addressed as ymax = 10 in such a way that not only numerical solutions
converge but also boundary conditions satisfied at infinity satisfy asymptotically. The
relative error tolerance to 10−6 is addressed for convergence, and the step size is chosen as
∆y = 0.001. Moreover, the CPU time to appreciate the values of velocity profiles (1.23 s)
ismuch less than the CPU time to estimate the values of temperature profiles (1.67 s), and
the CPU time for angular velocity is 2.01 s. For a check, the accuracy of this numerical
method was validated by comparing the present results with the results reported by Salleh
et al. [23], in the absence of magnetic field, and micropolar parameter for Newtonian pure
fluid. Table 2 presents the results of this comparison. The current results are found in an
excellent agreement with the existing results.
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Table 2. Values of wall temperature θ(0) and skin friction coefficient f ′′ (0) at x ≈ 0 (lower stagnation
point), when R = 0, φ = 0, γ = 1 for different values of Pr.

θ(0) f”(0)

Pr Salleh et al. [23] Present Results Salleh [23] Present Results

0.7 26.4590 26.4590 8.9609 8.9609

1 17.2876 17.2876 6.1409 6.1409

7 3.3635 3.3635 1.2489 1.2489

4. Results and Discussion

The local similar and nonsimilar Equations (34)–(39) with boundary conditions (22)
and (33) are solved by the Runge–Kutta–Fehlberg method. Two different Cu and Co
nanoparticles are employed to investigate the effects of Newtonian heating and magnetic
and micropolar parameters along the surface of a solid sphere. The present numerical
results are validated with the existing results and are found in good agreement.

The effects of magnetic parameter M, micropolar parameter R, and solid volume
fraction of both nanoparticles φ on velocity curves f ′(x, y) are presented in Figures 2 and 3
along the surface of the sphere. Due to buoyancy forces, the dimensionless velocity reaches
a maximum value near the solid surface. It then goes to the ambient velocity at the edge
of the velocity boundary layer. The magnetic field creates a Lorentz force, which opposes
the motion of the fluid. As the magnetic field increases, the maximum velocity near the
surface reduces. Consequently, the velocity boundary layer thickness increases in both
cases. Physically, the encouragement of Lorentz strength through the prompting in the
magnetic constraint caused a deceleration to flow and boosted the temperature for pure
fluid and nanofluid at two positions. The effects of the micropolar parameter R on the
dimensionless velocity are also shown in Figure 2 for both nanofluids. It is noticed that
the velocity boundary layer thickness decreases as R increases from R = 0 (Newtonian
fluid) to R = 2 (micropolar fluid). The variation of dimensionless velocity with a solid
volume fraction of selected nanoparticles is depicted in Figure 3a,b at the lower and upper
stagnation points. The variation is examined only for micropolar fluid. The maximum
velocity at the lower stagnation point is the smallest and increases along the sphere surface
up to the upper stagnation point. Consequently, the velocity boundary layer thickness
increases along the surface. However, no appreciable effect of solid volume fraction of
nanoparticles φ on the dimensionless velocity could be observed.
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Figure 3. Effects of solid volume fraction of (a) Cu and (b) Co nanoparticles on dimensionless velocity
along different positions.

The behavior of the dimensionless angular velocity g(x, y) for different values of the
magnetic parameter M is depicted in Figure 4a,b for Newtonian and micropolar nanofluids.
In this case, the solid volume fraction of both nanoparticles φ is taken as 5%. Due to the
magnetic field’s Lorentz forces, the dimensionless angular velocity rises at the surface and
within the boundary layer. For the Newtonian nanofluid (R = 0), the angular velocity is
lesser at the surface and higher for the micropolar nanofluid (R = 2). The impact of solid
volume fraction of selected nanoparticles φ on dimensionless angular velocity g(x, y) is
exhibited in Figure 5a,b along the spherical surface. No noticeable effect of solid volume
fraction of nanoparticles could be noticed on the angular velocity.
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The influence of the magnetic field M on the dimensionless temperature θ(x, y) at the
selected position is displayed in Figure 6a,b for the nanofluids under consideration. The
magnetic field tends to increase the surface temperature and the boundary layer thickness
in both cases. Consequently, the thermal resistance to heat flow increases with an increase
in the magnetic field. For the Newtonian nanofluid, the surface temperature is found to be
lower and increases for micropolar nanofluid. The variation of dimensionless temperature
θ(x, y) with the solid volume fraction of nanoparticles φ is displayed in Figure 7a,b at
the lower and upper stagnation points for the micropolar fluid. The effects of the solid
volume fraction of both nanoparticles are not significant. It is important to note that the
dimensionless temperature increases from lower to upper stagnation points.
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Figure 7. Effects of solid volume fraction of (a) Cu and (b) Co nanoparticles on dimensionless
temperature along different positions.

The variation of skin friction C f (x, 0) with governing parameters is explained in
Figures 8 and 9 for both nanofluids. The variation of skin friction with the solid vol-
ume fraction of the selected nanoparticles for different magnetic field values is shown in
Figure 8a,b for micropolar nanofluids. In the absence of a magnetic field, the skin friction
is higher and declines with an increase in the magnetic field due to Lorentz forces in both
cases. Since both nanoparticles’ density is 9–11 times higher than water (Table 1), the density
of both nanofluids increases with an increase in the solid volume fraction of nanoparticles.
As a result, the skin friction increases with ϕ, as shown in Figure 8a,b. The variation of skin
friction with Newtonian heating is demonstrated in Figure 9a,b for water-based nanofluids
at different locations on the solid sphere. During Newtonian heating, surface resistance is
dominant over internal resistance. Consequently, the skin friction increases with an increase
in Newtonian heating and the location from lower stagnation point to upper stagnation
point. The Prandtl number measures the momentum and thermal transport capacities
of the fluids and varies directly with the fluid’s viscosity. Consequently, the skin friction
decreases with an increase in the Prandtl number.
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number along different positions for (a) Cu-water and (b) Co-water nanofluids.

The variation of Nusselt number Nu(x, 0) with pertinent parameters is depicted in
Figures 10 and 11 for the selected nanofluids at different positions. Figure 10a,b shows
Nusselt number’s variation with the solid volume fraction of nanoparticles chosen for
different magnetic parameter values. The dimensionless temperature at the surface is due to
an increase in the magnetic field, which reduces the heat transfer rate. The Nusselt number
varies directly with the nanofluid’s thermal conductivity, which depends upon the solid
volume fraction of nanoparticles. As a result, the Nusselt number Nu(x, 0) increases with
ϕ, as shown in Figure 10a,b for both nanofluids at the selected position. The micropolar
parameter also tends to reduce the heat transfer rate in both cases. The variation of the
Nusselt number Nu(x, 0) with the Newtonian heating parameter is shown in Figure 11a,b
for different values of Prandtl number at two selected positions. It is demonstrated that the
Prandtl number enhances the heat transfer rate.
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Figure 10. Variation of Nusselt number with solid volume fraction of nanoparticles of (a) Cu and
(b) Co nanoparticles for different values of magnetic and micropolar parameters.
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5. Conclusions

This study reflects the magneto-free convective flow of micropolar nanofluid past a
solid sphere with Newtonian heating. Copper or Cobalt-nanoparticles with water based-
nanofluids are addressed. Nondimensional factors were employed to transmute the gov-
erning PDEs into a nonsimilar type. The transmuted pattern, subject to equivalent BCs, was
then solved numerically using the Runge–Kutta–Fehlberg method (RKF45) using MAPLE
softwareversion20. The impacts of eminent parameters on velocity, angular velocity, and
temperature curves as well as the skin friction coefficient and Nusselt number are visualized
and examined through plots. The major achieved outcomes are as follows:

- Both the velocity and temperature profiles along the sphere display a considerable
improvement with an increase in the solid volume fraction;

- Elevating in the magnetic and micropolar parameters decline the velocity profiles and
improve in the temperature;

- Besides the micropolar parameter, all other pertinent parameters show negligible
effects on the angular velocity;

- Both skin friction coefficient and Nusselt number decline with upsurging in the
magnetic field;

- Micropolar parameter contributes to the dwindling the heat-transfer rate skin friction
coefficient ever-boosting;

- Boosted Newtonian heating parameter and nanoparticles volume fraction enhance
both the skin friction coefficient and Nusselt number.
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Nomenclature

a Radius of sphere
B0 Magnetic field strength
M Magnetic parameter
hs Heat transport parameter for Newtonian heating
σ Electrical conductivity
f Dimensionless stream function
C f Skin friction coefficient
g Acceleration due to gravity
j Microinertia density
R Micropolar parameter
k Thermal conductivity
N Microrotation component
T Temperature of the fluid
Gr Grashof number
Nu Nusselt number
Pr Prandtl number
x x-axis coordinate
y y-axis coordinate
u Component of the velocity along x-axis
T∞ Ambient temperature
Greek symbols
α Thermal diffusivity
γ Conjugate parameter for Newtonian heating
θ Dimensionless temperature
φ Nanoparticle volume fraction
ψ Stream function
ν Kinematic viscosity
µ Dynamic viscosity
ρ Density
Subscript
w Condition at the surface
f Fluid
n f Nanofluid
s Solid
∞ Condition at infinity
′ Differentiation with respect to η
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