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Abstract: In this paper, we propose a modified fractional diffusive SEAIR epidemic model with a
nonlinear incidence rate. A constructed model of fractional partial differential equations (PDEs) is
more general than the corresponding model of fractional ordinary differential equations (ODEs). The
Caputo fractional derivative is considered. Linear stability analysis of the disease-free equilibrium
state of the epidemic model (ODEs) is presented by employing Routh–Hurwitz stability criteria. In
order to solve this model, a fractional numerical scheme is proposed. The proposed scheme can be
used to find conditions for obtaining positive solutions for diffusive epidemic models. The stability of
the scheme is given, and convergence conditions are found for the system of the linearized diffusive
fractional epidemic model. In addition to this, the deficiencies of accuracy and consistency in the
nonstandard finite difference method are also underlined by comparing the results with the standard
fractional scheme and the MATLAB built-in solver pdepe. The proposed scheme shows an advantage
over the fractional nonstandard finite difference method in terms of accuracy. In addition, numerical
results are supplied to evaluate the proposed scheme’s performance.

Keywords: proposed fractional scheme; diffusive epidemic model; non-linear incidence rate; stability;
convergence

1. Introduction

Nowadays, the world faces the contagious outcomes of a fatal pathogen called coron-
avirus [1], which belongs to the family of SARS-CoV-2. Viruses of this family can transfer
their pathogenicity to humans and animals. In humans, they affect the respiratory tract,
injure the digestive lining, and cause severe gastroenteritis. Lung disorders may vary from
mild cold to acute degenerative respiratory syndrome that ultimately becomes a cause of
death. Precautionary and preventive measures have been taken at the government level to
contain the virus to save the economy and health system from collapse. This situation of
uncertainty between life and death has opened a new gospel in the field of quantitative
mathematical modeling. Civil society and philanthropists are turning towards numerical
modeling to gain insight to control the spread of the virus and predict possible measures
to reduce cases. Many researchers have imparted fruitful numerical contributions on
epidemic situations in the past decades. Bernoulli’s work among those researchers has
a notable significance in epidemiology, as his studies were pioneering against smallpox
disease. In 1927, Kermack and McKendrick developed an epidemic modeling technique
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that has recently provided the basis for COVID-19 modeling. However, epidemiologists
are still struggling to better understand the COVID-19 virus and effective measures for its
containment [2].

In the COVID-19 epidemiological model, scientists prefer to add factors such as
the exposed population. The addition of more compartments will increase the model’s
suitability and refine the description with the assumption of transfer of infection from one
class to another [3–5]. The best possible coronavirus solution is vaccination. Alternatively,
the confinement of susceptible individuals will limit their proportion. In this regard, the
simulation model has its value. Such models provide crucial tools and gather efforts to
slow the pathogen’s spread to save lives.

Due to its diverse and distinctive qualities, fractional calculus has grown substantially.
The non-integer order derivative is solved using fractional calculus techniques discussed
further below. Fractional calculus is the generalization of conventional calculus and has
around a 300-year-old history. Fractional calculus is an effective tool for describing many
systems. There are various disciplines where fractional calculus has been used, including
electrochemistry and water transport at the ground level, elasticity, geology, distribution,
heat conduction, and electromagnetism and elasticity. Recently, it has been recognized
that fractional operators are more appropriate tools for differentiation than local operators,
particularly for physical, real-world problems. It has long been recognized that fractional
derivatives are more relevant than ordinary derivatives when modeling various real-world
physic-mathematical phenomena. Fractional operators are defined by convolutions of
fractional operators’ kernels with their local derivatives.

Unlike integer-order models, different biological models offer subsequent memory
effects. These models are based on inheritance introduced through the ABC operator, a
substantial property of the biological process. In the modeling of biological processes,
fractional operators have gained increasing interest. A detailed review of [6] revealed a
proposed SEIHDR model comprising an ABC operator to study the dynamics of COVID-19.
In [7,8], new fractional derivatives have been introduced for theoretical and application
aspects of the heat transfer model and application to the Baggs and Freedman model.

In December 2019, the first case of COVID-19 was reported in Wuhan, a province of
China. Since then, more cases have been reported in China and worldwide, making this
pandemic a universal warning. High case numbers and exponential death rates urged the
World Health Organization to declare COVID-19 a global health emergency. The recent
focus of many scholars is to produce a model of COVID-19 based on a system of differential
equations and devise some suitable means to restrict the spread of the virus. A careful
investigation of [9] found that the efficacy of treatment response would influence whether
an endemic scenario is to emerge inside a community or not. Furthermore, the author of [9]
applied the SEIR model to the COVID-19 scenario, derived the basic reproduction number,
and proved the local and global stabilities of the disease-free and endemic states.

The SEIR model utilized in [9] is the addition of the SERIUS model investigated
in [10,11]. In this model, S stands for the susceptible group, E stands for exposed individuals
to a particular pathogen, I refer to an infectious class, and R stands for the recovered group.
U is an undetected class obtained by collapsing the undetected and recovered class only
then when they appear as COVID-19-negative twice in PCR tests. In 2017, the Centers for
Disease Control declared that the SERIUS model was formulated on the principle that there
is no re-infection after recovery. Today, there is no evidence that individuals who recover
from the coronavirus can be re-infected [12]. It is also questionable whether a person
re-infected after recovery contracted the virus from another source, or if they already had
the virus in the body [13]. Trend analysis of the coronavirus revealed that this disease has
become endemic in some parts of the world, like Lassa fever in Nigeria [14] and Ebola
in the Democratic Republic of the Congo [15]. This shows that if the infection is long
forgotten, it may become endemic in a particular place. In this regard, epidemiologists
examined whether certain infections are prevalent in society or completely lost [16–18].
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They proposed that if R0 < 1, a disease can be eradicated from the public, whereas an
epidemic occurs when R0 > 1 [19].

Alexander et al. [20] and Arino et al. [21] proposed that the concept of R0 < 1 is
insufficient to describe the control of the spread of infection and introduced a backward
bifurcation process. The backward bifurcation comprises three equilibriums for a certain
range of parameters with R0 < 1. First is the stable disease-free equilibrium, second is
a large stable endemic equilibrium, and third is a small unstable endemic equilibrium
that acts as a boundary between two stable equilibriums. Sometimes, bifurcation leads to
instability, making an infection endemic in the population, producing the first exponential
outbreak. References [22–25] describe the bifurcation of COVID-19 models. This bifurcation
phenomenon raised a question of epidemiology and risk for disease management since
its existence implies that the basic reproduction number of the disease should be reduced
to a value much lower than 1 to ensure the eradication of the epidemic. The classical
epidemic model shows the direct relationship between the rate of treatment and the
number of infected individuals. In the case of COVID-19, medical equipment such as
oxygen machines, masks, patient beds, and healthcare staff are too dwindled compared
to the number of patients. This imparts great pressure on the healthcare system. While
developing a mathematical model for infectious diseases, such as the coronavirus, it is
more appropriate to assume a saturation incidence treatment rate, which increases more
slowly as the infected population grows larger.The present study comprises the SEAIR
COVID-19 epidemic model considering ABC fractional derivatives due to the surged trend
of their use in biological models.

The epidemic model presented in this research is based on five categories of susceptible,
exposed, asymptomatic, infectious, and recovered individuals. Susceptible individuals do
not have the pathogen. Exposed individuals have the pathogen but cannot infect others.
The asymptomatic individuals have the pathogen, and these people spread the disease
without being aware they are infected. The infectious individuals have the disease; these
people spread the disease and have symptoms of the disease. The recovered individuals
are those who are healed after having the disease.

A fractional model of susceptible–infected–recovered has been presented in [26].
The model considers the spread of infectious diseases. In addition, another model of
the system of the incommensurate fractional differential equation has been used. The
equilibrium points and their stability analysis have been computed and investigated.
Another fractional model [27] for the treatment of cancer using stem cells and chemotherapy
has been presented and local stability with respect to equilibrium points has been discussed.
In the study [27], memory and hereditary traits were considered, which emphasized the
advantages of the non-integer order model. Instead of a fractional model, a stochastic
model comprising four human classes has been reformulated in [28]. It was shown that the
solution of the proposed model existed and was unique. The stochastic Lyapunov function
has been used for stationary distribution. To solve the model, a first-order stochastic
Runge–Kutta method has been employed. In literature, various methods exist for solving
fractional differential equations. Among these, the singular boundary method [29] has been
utilized to solve variable-order time diffusion equations. The inclusion of the diffusion
effect in fractional time differential equations has been described in [29]. Three types
of methods have been employed to solve the problem, namely, the singular boundary
method, dual reciprocity method, and finite difference method. For the discretization
fractional time derivative, which was given in Caputo sense, the finite difference method
was employed, and the remaining two methods were implemented for spatial discretization.
The fundamental solution of the problem was transformed into inhomogeneous Helmholtz-
type and then singular boundary method approximation was implemented and dual
reciprocity method was considered to find the particular solution. Another numerical
method was implemented in [30] to solve non-integer-order time reaction-sub diffusion
equations, and the Riemann–Liouville derivative was considered. The method was based
on the central difference approach for the discretization of the time derivative. For spatial
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discretization, hybridization of the cubic and Gaussian kernels was deliberated. The method
consisted of developing a kernel that gave benefits that were achieved from the advantages
of two different kernels. It avoided their limitations, and additionally, it maintained the
global collocation method. The unconditional stability and convergence of the method
have also been discussed. Another fractional advection-diffusion equation on the finite
domain was considered in [31] and both time and space derivatives were non-integer order
derivatives in Caputo sense. For the time-fractional direction, a quadratic interpolation was
applied, and the spatial derivative was discretized by the Chebyshev collocation method of
the fourth kind. The energy method was also employed to prove the unconditional stability
and gain convergence order.

The standard susceptible–infected–recovered (SIR) model gives the interaction be-
tween susceptible and infectious individuals. This interaction term in the context of the
Covid-19 pandemic can be studied with the safety measure of susceptible people and
the quarantine of infected people. The effective interaction of susceptible and infectious
individuals decreases by the increment of infectious people under some circumstances.
A category of asymptomatic people describes the existence of a pathogen in a group of
people which can spread the disease but these people are not aware of their disease and
this category of people has also been considered in the literature.

The main aim of this work is to propose a numerical scheme for solving time-dependent
epidemic models. This scheme has the main advantage of providing a more accurate so-
lution than the existing nonstandard finite difference method. The nonstandard method
is named for its use of the nonstandard difference formula for time derivatives with a
particular way of discretizing the differential equation that gives the positive and uncondi-
tionally stable solution. However, it has the drawback of providing an inaccurate solution,
which is also shown in the presented simulations. In literature, there exist some ways to
choose time step size in nonstandard finite difference method(s), but these ways do not
describe the loss of the order of accuracy. it should be chosen so that the resulting difference
equation must give at least first-order accuracy. Thus, there will not be more than one
way to choose the time step size in the category of nonstandard finite difference methods
when the scheme takes care of the order of accuracy and also provides a guarantee to get
the positive solution. This is one of the issues in most of the existing nonstandard finite
difference methods for addressing sufficient order of accuracy, due to having the main focus
on developing nonstandard schemes for obtaining the positive solution without checking
the order of accuracy. Obtaining the positive solution is a useful property in the category of
models whose solution must be positive to make physical sense, but it must also achieve
minimum first-order accuracy. In this work, the comparison of the proposed fractional
numerical scheme is also made with the existing corresponding fractional nonstandard
finite difference method.

Preliminaries

Definition 1 [32]. The Caputo fractional derivative Dα
t v(t, x) of order,α is defined as:

Dα
t v(t, x) =

1
Γ(m− α)

∫ t

0

1

(t− τ)α−m+1 Dm
τ v(τ, x), m− 1 < α < m, mεN

Definition 2 [33]. Let α be any real number and Ω be an arbitrary interval. Then,Iα
a g(x) is

defined as:

Iα
a g(x) =

1
Γ(α)

∫ x

a
(x− t)α−1g(t)dt

and under the definition of Iα
a g(x), the following set is defined as:

La
α =

{
g ∈ {(Ω) : Iα

a g(x) is f inite ∧ ∃ ∈ Ω
}
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Theorem 1. [33]. Let n be the natural number, g be a continuous function in[a, b], andα ∈, if g
satisfies the following conditions:

(1) ∀i = 1, . . . , p Diα
t g ∈ C([a, b]) and Diα

t ∈ La
α([a, b]).

(2) D(p+1)α
t g(x) is continuous on [a, b].
Then,∀x ∈ [a, b],

g(x) =
p

∑
i=0

Diα
t g(a)

(x− a)iα

Γ(iα + 1)
+ Rp(x, a)

where

Rp(x, a) = D(p+1)α
t g(ζ)

(x− a)iα

Γ((n + 1)α + 1)
, a ≤ ζ ≤ x

Let β be the infecting rate of infectious individuals, α1 the bilinear incidence rate,
γ the transfer rate of exposed people to become asymptomatic, σ the transferring rate of
asymptomatic people to become infectious, and µ the healing rate of both asymptomatic
and infectious people. It is assumed that the exposed people have the pathogen but cannot
spread it and that the asymptomatic people have the pathogen and can spread it, but are
not aware that they have the disease. The infectious people have pathogens, they are aware
that they have the disease, and they can spread the disease. The final category of people is
recovered people, which is the class of people who are healed from the disease.

The proposed epidemic model can be expressed as:

dS
dt

=
−βIS

1 + α1 I2 (1)

dE
dt

=
βIS

1 + α1 I2 − γE (2)

dA
dt

= γE− (σ + µ)A (3)

dI
dt

= σA− µI (4)

dR
dt

= µA + µI (5)

One of the trivial solutions of the system (1)–(5) is the disease-free state (1, 0, 0, 0, 0). It
corresponds to a situation when the pathogen is absent.

Theorem 2. The system (1)–(5) is in linear stability of the disease-free equilibrium states if it
satisfies µ2 + σµ > βσ.

Proof. To prove this theorem, the Jacobian matrix of system (1)–(5) is expressed as:

J =



βI
1+α1 I2 0 0 2Sα1 I2

(1+α1 I2)
2 −

βS
1+α1 I2 0

βI
1+α1 I2 −γ 0 −2Sβα1 I2

(1+α1 I2)
2 +

βS
1+α1 I2 0

0 γ −µ− σ 0 0
0 0 σ −µ 0
0 0 µ −µ 0


(6)
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At disease-free equilibrium point B(1, 0, 0, 0, 0), the Jacobian can be expressed as:

J|B =


0 0 0 −β 0
0 −γ 0 β 0
0 γ −µ− σ 0 0
0 0 σ −µ 0
0 0 µ −µ 0

 (7)

The eigenvalue of Jacobian J|B can be found from the following equation:

| J|B − λI.D| = 0 (8)

where I.D is an identity matrix of 5× 5.
Equation (8) can be expressed as:∣∣∣∣∣∣∣∣∣∣

−λ 0 0 −β 0
0 −γ− λ 0 β 0
0 γ −µ− σ− λ 0 0
0 0 σ −µ 0
0 0 µ −µ λ

∣∣∣∣∣∣∣∣∣∣
= 0

It implies:

λ2

∣∣∣∣∣∣
−γ− λ 0 β

γ −µ− σ− λ 0
0 σ −µ

∣∣∣∣∣∣ = 0 (9)

The two eigenvalues are trivial λ = 0 and the remaining three eigenvalues can be
found from the following characteristic polynomial:

R(λ) = λ3 + (γ + 2µ + σ)λ2 +
(

2γµ + µ2 + γσ + µσ
)

λ + γµ2 − βγσ + γµσ (10)

The remaining three values will be negative if the Routh–Hurwitz criteria for cubic
characteristic polynomial (10) satisfy the following inequalities: a0 ≥ 0, a2 ≥ 0 and
a2a1 > a0. a0, a1, and a2 in this case, are given as:

a0 = γµ2 − βγσ + γµσ
a1 = 2γµ + µ2 + γσ + µσ

a2 = γ + 2µ + σ

Since, a0 ≥ 0 by the given condition in the statement of this theorem, and all terms in
a2 are positive, a2 > 0 and the third condition a2a1 > a0 can be proved by finding a2a1 − a0,
which is in this case simplified as:

2γ2µ + 4γµ2 + 2µ3 + βγσ + γ2σ + 4γµσ + 3µ3σ + γσ2 + µσ2 (11)

The expression (11) is positive and therefore, a1a2− a0 > 0. This implies that a1a2 > a0.
Thus, Routh–Hurwitz’s criterion is satisfied. Hence, all eigenvalues are zero or negative,
and this proves the theorem.

The model given in (1)–(5) is a set of ordinary differential equations. To propose a
more general model, a diffusion effect can be considered. Since the model of ordinary
differential equations is constructed only on time variables, the model of partial differential
equations is given constructed on both time and space coordinates. The diffusion effects
describe the spread of susceptible, exposed, asymptomatic, infected, and recovered people
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over the spatial coordinate. If a diffusive space term is introduced, the fractional diffusive
epidemic model can be expressed as:

Dα
t S = d1

∂2S
∂x2 −

βIS
1 + α1 I2 (12)

Dα
t E = d2

∂2E
∂x2 +

βIS
1 + α1 I2 − γE (13)

Dα
t A = d3

∂2 A
∂x2 − σA− µA + γE (14)

Dα
t I = d4

∂2 I
∂x2 + σA− µI (15)

Dα
t R = d1

∂2R
∂x2 + µA + µI (16)

subject to the boundary conditions,

∂S
∂x

=
∂E
∂x

=
∂A
∂x

=
∂I
∂x

=
∂R
∂x

= 0 (17)

and the initial conditions are expressed as:

S(0, x) = f1(x), E(0, x) = f2(x), A(0, x) = f3(x), I(0, x) = f4(x), R(0, x) = f5(x) (18)

where d1, d2, d3, d4, and d5 are constants.

2. Proposed Fractional Scheme

To solve Equations (12)–(18), a fractional numerical scheme is proposed based on
the fractional Taylor series approach. The first Equation (12) in the diffusive model is
discretized as:

Sn+1
i = Sn−1

i + a1
(∆t)α

Γ(α + 1)

{
d1

Sn
i+1 − 2Sn+1

i + Sn
i−1

(∆x)2 −
βIn

i Sn+1
i

1 + α1
(

In
i
)2

}
(19)

where a1 is unknown, to be determined later.
We expand Sn+1

i and Sn−1
i using fractional Taylor series as:

Sn+1
i = Sn

i +
(∆t)α

Γ(α + 1)
Dα

t Sn
i + O

(
(∆t)2α

)
(20)

Sn−1
i = Sn

i −
(∆t)α

Γ(α + 1)
Dα

t Sn
i + O

(
(∆t)2α

)
(21)

Substituting the fractional Taylor series expansion for Sn+1
i and Sn−1

i from (20) and
(21) into Equation (19) results in:

Sn
i +

(∆t)α

Γ(α + 1)
Dα

t Sn
i = Sn

i −
(∆t)α

Γ(α + 1)
Dα

t Sn
i + a1

(∆t)α

Γ(α + 1)
(22)

By substituting Equation (12) into Equation (22), we obtain:

Sn
i +

(∆t)α

Γ(α + 1)
Dα

t Sn
i = Sn

i −
(∆t)α

Γ(α + 1)
Dα

t Sn
i +

a1(∆t)α

Γ(α + 1)
(23)
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Comparing coefficients of Sn
i and Dα

t Sn
i on both sides of Equation (23) results in:

1 = 1
(∆t)α

Γ(α + 1)
=
−(∆t)α

Γ(α + 1)
+ a1

(∆t)α

Γ(α + 1)

(
1− 2d1dα −

β∆t

1 + α1
(

In
i
)2

)
, (24)

where dα = ∆t
(∆x)2 and ∆t = (∆t)α

Γ(α+1) . Solving Equation (24) gives a1:

a1 =
2

1− 2d1dα − β∆t

1+α1(In
i )

2

. (25)

The difference equation for numerically solving Equation (12) can be expressed as:

Sn+1
i = Sn−1

i +
2∆t

1− 2d1dα − β∆t

1+α1(In
i )

2

[
d1

Sn
i+1 − 2Sn+1

i + Sn
i−1

(∆x)2 −
βIn

i Sn+1
i

1 + α1
(

In
i
)2

]
(26)

Similarly, the difference equations for solving the remaining Equations (13)–(16) are
expressed as:

En+1
i = En−1

i +
2∆t

1− 2d2dα − γ∆t

[
d2

En
i+1 − 2En+1

i + En−1
i

(∆x)2 +
βIn

i Sn
i

1 + α1
(

In
i
)2 − γEn+1

i

]
(27)

An+1
i = An−1

i +
2∆t

1− 2d3dα − (σ + µ)∆t

[
d3

An
i+1 − 2An+1

i + An−1
i

(∆x)2 + γEn
i − (σ + µ)An+1

i

]
(28)

In+1
i = In−1

i +
2∆t

1− 2d4dα − µ∆t

[
d4

In
i+1 − 2In+1

i + In−1
i

(∆x)2 + σAn
i − µIn+1

i

]
(29)

Rn+1
i = Rn−1

i +
2∆t

1− 2d5dα

[
d5

Rn
i+1 − 2Rn+1

i + Rn−1
i

(∆x)2 + µ(An
i + In

i )

]
(30)

Theorem 3. The proposed fractional numerical scheme is conditionally positivity-preserving
if the initial conditions are positive and it satisfies ai > 0 for i = 1, 2, 3, 4, 5, where a1 =

2
1−2d1dα− β∆t

1+α1(In
i )

2

, a2 = 2∆t
1−2d2dα−γ∆t

, a3 = 2∆t
1−2d3dα−(σ+µ)∆t

, a4 = 2∆t
1−2d4dα−µ∆t

, a5 = 2∆t
1−2d5dα

.

Proof. We rewrite Equation (26) as:

Sn+1
i =

2∆t

1− 2d1dα − β∆t

1+α1(In
i )

2

[
Sn−1

i + ∆ta1

{
d1

Sn
i+1 + Sn

i−1

(∆x)2

}]
(31)

This is positive because every term is positive.
Similarly, we rewrite Equations (27)–(30) as:

En+1
i = En−1

i +

∆ta2

{
d2

En
i+1+En

i−1

(∆x)2 +
βIn

i Sn
i

1+α1(In
i )

2

}
1 + 2a2d2dα + a2γ∆t

, (32)
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An+1
i = An−1

i +

∆ta3

{
d3

An
i+1+An

i−1

(∆x)2 + γEn
i

}
1 + 2a3d3dα + a3(σ + µ)∆t

, (33)

In+1
i = In−1

i +

∆ta4

{
d4

In
i+1+In

i−1

(∆x)2 + σAn
i

}
1 + 2a4d4dα + a4µ∆t

, (34)

Rn+1
i = Rn−1

i +

∆ta5

{
d5

Rn
i+1+Rn

i−1

(∆x)2 + µAn
i + µ− In

i

}
1 + 2a5d5dα

. (35)

Since all terms on the left-hand side of Equations (32)–(35) are positive, the components
of the solution at the ith grid point and at the (n + 1)th time level will be positive. Since the
same difference Equations (31)–(35) will be used to find each component of each solution at
every grid point and at every time level, the positive solution will be obtained subject to the
satisfaction of conditions given in the statement of the theorem. Therefore, the proposed
scheme is a conditionally positivity-preserving scheme.

2.1. Stability of Proposed Fractional Scheme

In this section, the stability of the proposed scheme for the first fractional equation in
the considered model (12)–(16) is presented. Since the first Equation (12) is a non-linear
fractional differential equation, it is linearized as:

Dα
t S = d1

∂2S
∂x2 − HS, (36)

where H = βI
1+α1 I2 will be considered as a fixed quantity. At the beginning of the stability

analysis procedure, the difference equation for solving Equation (36) is constructed first,
which can be expressed as:

Sn+1
i = Sn−1

i + b
(∆t)α

Γ(α + 1)

[
d1

Sn
i+1 − 2Sn+1

i + Sn
i−1

(∆x)2 − HSn+1
i

]
(37)

where b = 2
1−d1dα−∆tH

.
According to von Neumann stability analysis, the following transformations are

considered:
Sn+1

i = Fn+1eiIθ , Sn−1
i = Fn−1eiIθ , Sn

i±1 = Fne(i±1)Iθ (38)

where I =
√
−1.

Substituting transformations (38) into Equation (37) results in:

Fn+1eiIθ = Fn−1eiIθ + b
(∆t)α

Γ(α + 1)
. (39)

Dividing both sides of Equation (39) by eiIθ , we obtain the following:

Fn+1 = Fn−1 + b
(∆t)α

Γ(α + 1)

[
d1

2cosθFn

(∆x)2 −
2d1Fn+1

(∆x)2 − HFn+1

]
(40)

We rewrite Equation (40) in the form:(
1 + 2bdα + bH∆t

)
Fn+1 = Fn−1 + b[2cosθdαFn] (41)

where dα = d1∆t
(∆x)2 and ∆t = (∆t)α

Γ(α+1) .
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Equation (41) can be expressed as:

Fn+1 = b1Fn + b2Fn−1 (42)

where b1 = 2bcosθdα

1+2bdα+bH∆t
and b2 = 1

1+2bdα+bH∆t
.

Since the scheme is constructed at three-time levels, one more equation is formed. For
this reason, we write Fn as:

Fn = 1Fn + 0Fn−1 (43)

We rewrite Equations (42) and (43) in a matrix-vector equation as:[
Fn+1

Fn

]
=

[
b1 b2
1 0

][
Fn

Fn−1

]
(44)

The stability conditions will be obtained by imposing a condition on the amplification
matrix of Equation (44). These conditions are imposed on the eigenvalues of the matrix
given in Equation (44). Let λ1 and λ2 be the two eigenvalues of the amplification matrix.
The stability conditions are expressed as:

|λ1| ≤ 1 and |λ2| ≤ 1, (45)

where λ1 =
b1−
√

b2
1+4b2

2 and λ1 =
b1+
√

b2
1+4b2

2 . Therefore, if dα satisfies condition (45), the
scheme will be stable. This can be verified by using maximum or minimum values of cosθ
and some value of H. By doing so, two functions in terms of dα can be obtained. These
two functions can be plotted over different ranges of parameter dα, and two-dimensional
graphs of the eigenvalues can be obtained. On these graphs, the eigenvalues should lie
within the closed interval [−1, 1] for any range of dα.

2.2. Consistency of Fractional Proposed Scheme

The consistency of the proposed scheme will be checked for the model of fractional
differential equations. Equation (19) is the discretized equation for Equation (12), so to
check the consistency of the scheme, we expand Sn+1

i and Sn−1
i in a fractional Taylor series

form, which already expanded in Equations (20) and (21). The next step is to expand the
terms Sn

i+1 and Sn
i−1 in the Taylor series as:

Sn
i+1 = Sn

i + ∆x
(

∂S
∂x

)n

i
+

(∆x)2

2

(
∂2S
∂x2

)n

i
+ O

(
(∆x)3

)
(46)

Sn
i−1 = Sn

i − ∆x
(

∂S
∂x

)n

i
+

(∆x)2

2

(
∂2S
∂x2

)n

i
+ O

(
(∆x)3

)
(47)

Adding Sn
i+1 and Sn

i−1, the following is obtained:

Sn
i+1 + Sn

i−1 = 2Sn
i + (∆x)2

(
∂2S
∂x2

)n

i
(48)

Substituting expansions for Sn+1
i and Sn−1

i from (20) and (21) and (48) into Equation
(19) results in:
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Sn
i + (∆t)α

Γ(α+1)Dα
t Sn

i

= Sn
i −

(∆t)α

Γ(α+1)Dα
t Sn

i

+a1
(∆t)α

Γ(α+1)

{
d1

(2Sn
i )

(∆x)2 + d1

(
∂2S
∂x2

)n

i
− d1

(2Sn
i )

(∆x)2 −
2(∆t)αd1Dα

t Sn
i

Γ(α+1)(∆x)2 −
βIn

i Sn
i

1+α1(In
i )

2 −
βIn

i (∆t)αDα
t Sn

i(
1+α1(In

i )
2)

Γ(α+1)

} (49)

We rewrite Equation (49) as:

2Dα
t Sn

i = a1

[
d1

(
∂2S
∂x2

)n

i
−

βIn
i Sn

i

1 + α1
(

In
i
)2 − 2d1dαDα

t Sn
i −

βIn
i ∆tDα

t Sn
i

1 + α1
(

In
i
)2

]
(50)

By substituting Equation (25) in Equation (50), we obtain:

(
1− 2d1dα − β∆t

1+α1(In
i )

2

)
Dα

t Sn
i

= d1

(
∂2S
∂x2

)n

i
− βIn

i Sn
i

1+α1(In
i )

2 − 2d1dαDα
t Sn

i −
βIn

i ∆tDα
t Sn

i

1+α1(In
i )

2 + O
(
(∆t)2α, (∆t)3

) (51)

Equation (51) can be simplified as:

Dα
t Sn

i = d1

(
∂2S
∂x2

)n

i
±

βIn
i Sn

i

1 + α1
(

In
i
)2 + O

(
(∆t)2α, (∆t)3

)
(52)

Applying (∆t)α → 0, ∆x → 0 , the original Equation (12) is obtained, evaluated at the
ith grid point and the nth time level. Thus, the proposed scheme is consistent with Equation
(12). Similarly, it can be proved that the proposed fractional scheme is consistent for the
remaining Equations (13)–(16).

2.3. Issue of Accuracy in Fractional NSFD

The non-standard finite difference method (conventional-NSFD) is one of the existing
numerical methods providing unconditionally positivity-preserving solutions and uncon-
ditionally stable solutions for epidemic models. However, it has the drawback of lacking
first-order accuracy. In this work, it is pointed out that fractional NSFD is not even first-
order accurate in fractional time. In order to provide theoretical evidence, the fractional
Taylor series is implemented on a difference equation, obtained by applying fractional
NSFD on any of the equations in the fractional diffusive epidemic models (12)–(16). To
determine its lack of accuracy, we consider the difference equation obtained by discretizing
Equation (12) using the fractional non-standard finite difference method as:

Sn+1
i = Sn

i +
(∆t)α

Γ(α + 1)

[
d1

Sn
i+1 − 2Sn+1

i + Sn
i−1

(∆x)2 −
βIn

i Sn+1
i

1 + α1
(

In
i
)2

]
(53)

Since expansions for fractional Taylor series of Sn+1
i are already given in this work, we

substitute the expansion for Sn+1
i from (20) into Equation (53) and obtain the following:

Sn
i + (∆t)α

Γ(α+1)Dα
t Sn

i

= Sn
i + (∆t)α

Γ(α+1)

[
d1

Sn
i+1−2Sn

i +Sn
i−1

(∆x)2 − 2(∆t)αDα
t Sn

i
Γ(α+1)(∆x)2 −

βIn
i Sn

i

1+α1(In
i )

2 −
βIn

i (∆t)αDα
t Sn

i

1+α1(In
i )

2

] (54)
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Substituting Equation (12) into Equation (54) evaluated at the ith grid point and nth
time level gives:

Sn
i +

(∆t)α

Γ(α + 1)
Dα

t Sn
i = Sn

i +
(∆t)α

Γ(α + 1)

[
Dα

t Sn
i −

2(∆t)αDα
t Sn

i

Γ(α + 1)(∆x)2 −
βIn

i (∆t)αDα
t Sn

i

1 + α1
(

In
i
)2

]
(55)

Comparing coefficients of both sides of Equation (55) results in:

1 = 1− 2(∆t)α

Γ(α + 1)(∆x)2 −
βIn

i (∆t)α

1 + α1
(

In
i
)2 . (56)

From Equation (56), it can be concluded that the coefficients of first-order fractional
time derivative terms do not vanish, so fractional NSFD is not first-order accurate in time,
according to the fractional Taylor series approach considered in this work. Similarly, it can
be proved that fractional NSFD is not first-order accurate in time for Equations (13)–(16).

2.4. Issue of Consistency in Fractional NSFD

An existing type of explicit fractional NSFD is not consistent for diffusive epidemic
models. For proving this claim, consider Equation (53). Fractional Taylor series expressions
for Sn

i+1 and Sn
i−1 have already been given in Equations (46) and (47). Their sum Sn

i+1 + Sn
i−1

is calculated in Equation (48). Substituting the expressions of Sn
i+1 + Sn

i−1 and Sn+1
i into

Equation (53), we obtain:

Sn
i + (∆t)α

Γ(α+1)Dα
t Sn

i

= Sn
i + (∆t)α

Γ(α+1)

[
d1(2Sn

i )
(∆x)2 + d1

(
∂2S
∂x2

)n

i
− d1(2Sn

i )
(∆x)2 −

2d1(∆t)αDα
t Sn

i
Γ(α+1)(∆x)2 −

βIn
i Sn

i

1+α1(In
i )

2 −
βIn

i (∆t)αDα
t Sn

i

Γ(α+1)
(

1+α1(In
i )

2)
] (57)

Equation (57) can be simplified as:

Dα
t Sn

i = d1

(
∂2S
∂x2

)n

i
−

βIn
i Sn

i

1 + α1
(

In
i
)2 −

 2d1(∆t)α

Γ(α + 1)(∆x)2 +
βIn

i (∆t)α

Γ(α + 1)
(

1 + α1
(

In
i
)2
)
Dα

t Sn
i (58)

We rewrite Equation (58) in the form:

1 +
2d1(∆t)α

Γ(α + 1)(∆x)2 +
βIn

i (∆t)α

Γ(α + 1)
(

1 + α1
(

In
i
)2
)
Dα

t Sn
i = d1

(
∂2S
∂x2

)n

i
−

βIn
i Sn

i

1 + α1
(

In
i
)2 . (59)

Now, applying (∆t)α → 0, ∆x → 0 to Equation (59), the original Equation (12) evalu-
ated at the ith grid point and nth time level will be obtained. Based on this fact, it can be
concluded that fractional NSFD is not consistent for the diffusive epidemic model.

2.5. Convergence of Proposed Fractional Scheme

For finding the convergence condition(s) of the proposed scheme for the system of
fractional Equations (12)–(16), a matrix-vector equation is formed. Since both Equations
(12) and (13) are non-linear, the Jacobian evaluated at disease-free equilibrium point (7) is
calculated. Since the Jacobian contains both positive and negative entries, it is divided into
two matrices that contain all positive entries. The Jacobian can be expressed as:

J|B = J1|B − J2|B (60)
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where J1|B =


0 0 0 0 0
0 0 0 β 0
0 γ 0 0 0
0 0 0 0 0
0 0 µ µ 0

 and J2|B =


0 0 0 β 0
0 γ 0 0 0
0 0 µ + σ 0 0
0 0 0 µ 0
0 0 0 0 0

.

The system of fractional Equations (12)–(16) can be expressed as:

Dα
t U = A

∂2U
∂x2 + J1|BU − J2|BU (61)

where A =


d1 0 0 0 0
0 d2 0 0 0
0 0 d3 0 0
0 0 0 d4 0
0 0 0 0 d5

 and U = [S, E, A, I, R]t.

We discretize Equation (61) using the proposed scheme and obtain:

un+1
i = un−1

i +
a(∆t)α

Γ(α + 1)

[
A

un
i+1 − 2un+1

i + un
i−1

(∆x)2 + J1|Bun
i − J2|Bun+1

i

]
(62)

The unknown a will be found similarly as in the construction of the fractional proposed
scheme, which is given as:

a = 2
(
1− 2dα A− ∆t J2|B

)−1

where dα = ∆t
(∆x)2 and ∆t = (∆t)α

Γ(α+1) .

Theorem 4. The proposed fractional scheme (62) for Equation (61) converges.

Proof. Let the exact scheme for Equation (61) be expressed as:

Un+1
i = Un−1

i +
a(∆t)α

Γ(α + 1)

[
A

Un
i+1 − 2Un+1

i + Un
i−1

(∆x)2 + J1|BUn
i − J2|BUn+1

i

]
(63)

Let un
i −Un

i = en
i , and subtracting Equation (63) from Equation (62), we obtain:

en+1
i = en−1

i +
a(∆t)α

Γ(α + 1)

[
A

en
i+1 − 2en+1

i + en
i−1

(∆x)2 + J1|Ben
i − J2|Ben+1

i

]
(64)

Equation (64) can be expressed as:

(
I.D + 2adα A + a∆t J2|B

)
en+1

i = en−1
i +

a(∆t)α

Γ(α + 1)

[
A

en
i+1 + en

i−1

(∆x)2 + J1|Ben
i

]
(65)

where I.D is an identity matrix of order 5× 5.

Let en+1 = max
(

max
1≤i≤N

Sn+1
i , max

1≤i≤N
En+1

i , max
1≤i≤N

An+1
i , max

1≤i≤N
In+1
i , max

1≤i≤N
Rn+1

i

)
, and ap-

plying the norm on both sides of Equation (65) results in:

‖I.D + 2adα A + a∆t J2|B‖e
n+1
i ≤ en−1

i +
‖a‖(∆t)α

Γ(α + 1)

[
‖A‖ 2en

(∆x)2 + ‖ J1|B‖e
n

]
(66)
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Let µ1 = ‖I.D + 2adα A + a∆t J2|B‖ and µ2 = 2‖A‖‖a‖dα + ∆t‖a‖‖ J1|B‖.
Equation (66) can be expressed as:

en+1 ≤ µ2

µ1
en +

1
µ1

en−1 + C
(

O(∆t)2α, (∆x)3
)

(67)

Consider the case when max
(
en, en−1) = en−1; Equation (67) can be expressed as:

en+1 ≤ µen−1 + C
(

O(∆t)2α, (∆x)3
)

(68)

Substituting n = 1 in inequality (68) obtains:

e2 ≤ µe0 + C
(

O(∆t)2α, (∆x)3
)

(69)

Since e0 = 0 due to the exact initial conditions, Equation (69) can be rewritten as:

e2 ≤ C
(

O(∆t)2α, (∆x)3
)

(70)

Substituting n = 2 in inequality (68) obtains:

e3 ≤ µe1 + C
(

O(∆t)2α, (∆x)3
)

(71)

If the error at the first time level is bounded, i.e.,
∣∣e1
∣∣ ≤ M, then inequality (71) can be

expressed as:
e3 ≤ µM + C

(
O(∆t)2α, (∆x)3

)
(72)

Substituting n = 4 in inequality (68) obtains:

e5 ≤ µe3 + C
(

O(∆t)2α, (∆x)3
)
≤ µ2M + (µ + 1)C

(
O(∆t)2α, (∆x)3

)
(73)

Substituting n = 5 in inequality (68) obtains:

e6 ≤ µe4 + C
(

O(∆t)2α, (∆x)3
)
≤ (µ||2 + µ + 1)C

(
O(∆t)2α, (∆x)3

)
If this is continued, then for odd n,

e2n−1 ≤ µn−1M +
(

µn−2 + µn−3 + . . . + 1
)

C
(

O(∆t)2α, (∆x)3
)

for n = 1, 3, 5, . . . , 2n− 1

.
By using the sum of geometric series, we obtain:

e2n−1 ≤ µn−1M +

(
1− µn−1

1− µ

)
C
(

O(∆t)2α, (∆x)3
)

(74)

For even n,

e2n ≤
(

µn−1 + µn−2 + . . . + µ + 1
)

C
(

O(∆t)2α, (∆x)3
)
=

(
1− µn

1− µ

)
C
(

O(∆t)2α, (∆x)3
)

(75)

where n = 2, 4, 6, . . . , 2n. If n→ ∞ , the infinite geometric series 1 + µ + . . . + µn + . . . will
converge, if |µ| < 1. The case when max

(
en, en−1) = en can be discussed, and it can be

similarly proved.
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3. Results and Discussions

The numerical experiments show the effectiveness of the proposed fractional scheme.
Three numerical schemes are employed to find numerical solutions of considered diffusive
fractional models. The MATLAB built-in solver pdepe, which can be used to find solutions
to parabolic and elliptic equations, is employed to check the accuracy of the schemes
with integer-order time derivatives. For the integer-order time derivative, the considered
diffusive equations become parabolic equations with source terms. Thus, these types of
linear and non-linear equations can also be solved by the MATLAB built-in solver pdepe.
The solver can be implemented for the cases that correspond to the positive solutions. If
the solutions of the considered model are positive for particular values of the contained
parameters, any high-order scheme can be applied to obtain solutions to the problem(s). The
MATLAB built-in solver is used for integer-order derivatives, and for fractional derivatives,
the first-order standard Euler scheme is considered. Since the non-standard finite difference
method considered in this work is explicit, the proposed and first-order forward Euler
schemes are also explicit, so these schemes do not require the use of an iterative scheme to
solve the discretized or difference equations. However, to treat the boundary conditions, an
additional iterative scheme is required. To handle boundary conditions, first-order forward
and backward Euler formulas are employed. The boundary condition for susceptible
individuals at the left endpoint of the domain is discretized as:

Sn+1
i+1 − Sn+1

i
∆x

= 0 at i = 1 (76)

Since the information of susceptible individuals is required at the first grid point and
at (n + 1)th time level, Equation (76) can be expressed as:

Sn+1
i = Sn+1

i+1 at i = 1. (77)

However, the information of Sn+1
2 is not given, so Sn+1

1 cannot be found explicitly.
Therefore, an additional iterative scheme is employed at the first grid point as:

Sn+1,k+1
i = Sn+1,k

i+1 (78)

In Equation (78), k in the superscript is used for the iteration number. Since an initial
guess is chosen at the first iteration, the information of the chosen initial guess will be
used to find susceptible individuals at the first grid point. These iterations will continue
until the stopping criteria are met. The stopping criteria are based on the norm of the
difference between solutions computed on two consecutive iterations. When the norms
of each equation are less than some given smaller value close to zero, the iterations will
be stopped, and the final solution will be obtained. Figures 1–3 show the comparison
of the proposed and non-standard finite difference methods. The scheme will be more
accurate if the absolute error in Figures 1–3 is near zero. The proposed scheme produced
a smaller error as compared to NSFD over time with an integer-order time derivative.
The error is determined by finding the absolute difference between the solutions obtained
by NSFD/proposed scheme and MATLAB built-in solver pdepe. For non-integer time
derivatives, the comparison is made with the first-order fractional forward Euler method.
The three-dimensional error plots are given in Figures 4–8. Again, the scheme will be more
accurate if the absolute error is less than the absolute error produced by the other scheme.
From Figures 4–8, it can be seen that the proposed fractional numerical scheme is more
accurate than the fractional non-standard finite difference method. Moreover, these results
are numerical evidence that the non-standard finite difference method considered in this
work is not first-order accurate.
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Figure 1. Two-dimensional comparison of proposed and NSFD schemes for susceptible and exposed
individuals using L = 10, Nx = 50, Nt = 700, α1 = 0.5, β = 0.3, γ = 0.4, σ = 0.1, µ = 0.1, d1 = d2 =

d3 = d4 = d5 = 0.9, α = 1.
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Figure 2. Two-dimensional comparison of proposed and NSFD schemes for asymptomatic and
infectious individuals using L = 10, Nx = 50, Nt = 700, α1 = 0.5, β = 0.3, γ = 0.4, σ = 0.1, µ =

0.1, d1 = d2 = d3 = d4 = d5 = 0.9, α = 1.
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Figure 3. Two-dimensional comparison of proposed and NSFD schemes for recovered individuals
using L = 10, Nx = 50, Nt = 700, α1 = 0.5, β = 0.3, γ = 0.4, σ = 0.1, µ = 0.1, d1 = d2 = d3 = d4 =

d5 = 0.9, α = 1.
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Figure 4. Three-dimensional comparisons of proposed and NSFD schemes for susceptible individuals
using Nx = 50, Nt = 1300, α1 = 0.1, β = 0.1, γ = 0.3, σ = 0.4, µ = 0.5, d1 = 2, d2 = 2.5, d3 = 2.5, d4 =

2, d5 = 2, α = 0.9.
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Figure 9 compares the impact of the bilinear incidence rate parameter α1 on susceptible,
exposed, asymptomatic, and infectious individuals. This figure shows that susceptible
individuals de-escalate by increasing values of bilinear incidence rate, and exposed, asymp-
tomatic, and infectious people have both increasing and decreasing behavior. These three
categories of people have increasing behavior for the first interval of time, and then this
behavior is reversed. Figure 10 shows the contour plots for recovered people by varying
bilinear incidence rate parameters. The difference between both contour plots can be seen
in this figure. Figure 11 shows the impact of fractional parameter α on four categories of
people. Clearly, Figure 11 shows the increasing behavior of susceptible, exposed, asymp-
tomatic, and infectious people by enhancing the values of the fractional parameter. By
increasing the order of fractional time derivatives, a growth in four categories of people
can be seen. Figure 12 shows the impact of fractional parameters on recovered people in
the form of contours.

Table 1 shows the comparison of the proposed scheme with the nonstandard finite
difference method for the integer-order time derivative. The errors produced by both
schemes can be seen in this table. The error is found when the norm of the difference of
two solutions is computed. Both schemes are checked when their comparison is made with
MATLAB solver pdepe. The higher norm of error shows the higher error in the solution. In
Figures 9 and 11, L denotes the length of the boundary. Figures 9 and 11 are drawn at a
fixed value of x = 14.6939 and in Table 1, Nx = 50, and Nt = 300 denote the number of grid
points and the number of time levels respectively.
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Figure 9. Impact of the bilinear incidence rate parameter α1 on susceptible, exposed, asymptomatic,
and infected individuals using Nx = 50, Nt = 300, β = 0.9, γ = 0.7, σ = 0.9, µ = 0.9, d1 = 2, d2 =

2.5, d3 = 2.5, d4 = 2, d5 = 2, α = 0.9, L = 30.
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Figure 10. Impact of the bilinear incidence rate parameter α1 on recovered individuals using Nx =

50, Nt = 300, β = 0.9, γ = 0.7, σ = 0.9, µ = 0.9, d1 = 2, d2 = 2.5, d3 = 2.5, d4 = 2, d5 = 2, α = 0.9.
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Figure 11. Impact of fractional order parameter α on susceptible, exposed, asymptomatic, and
infected individuals using Nx = 50, Nt = 300, α1 = 0.9, β = 0.9, γ = 0.7, σ = 0.9, µ = 0.9, d1 =

2, d2 = 2.5, d3 = 2.5, d4 = 2, d5 = 2, L = 30.
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Figure 12. Impact of fractional order parameter α on recovered individuals using Nx =

50, Nt = 300, α1 = 0.9, β = 0.9, γ = 0.7, σ = 0.9, µ = 0.9, d1 = 2, d2 = 2.5, d3 = 2.5, d4 = 2, d5 =

2, α = 0.9.

Table 1. Comparison of proposed and NSFD schemes over spatial coordinate x using d1 = 2, d2 = 2.5,
d3 = 2.5, d4 = 2, d5 = 2, Nx = 50, and Nt = 300.

β
Norm of Error

α1 γ σ µ Proposed NSFD

0.1 0.1 0.3 0.4 0.5 7.3001 × 10−4 3.3566
0.9 0.0060 4.3839

0.9 0.0128 3.8177
0.7 0.0147 4.3007

0.9 0.0204 5.5968
0.9 0.0099 1.7447

It is to be noted that the values of parameters are chosen randomly and are somewhat
suitable for the comparison of the two schemes.

4. Conclusions

In this work, a fractional numerical scheme is proposed to solve fractional time-
dependent problems. A modified model of the diffusive epidemic model was constructed
with a non-linear incidence rate. The proposed scheme was second-order accurate in
space. The stability of the fractional numerical scheme has been given, and convergence
conditions have also been found. It was also pointed out that the fractional non-standard
finite difference method is not accurate enough to use in its present form. The performance
of the proposed scheme was also checked by comparing the results with the MATLAB built-
in solver pdepe for the classical case. This comparison showed the accuracy of the proposed
scheme and described the inaccuracy of the considered form of the nonstandard finite
difference method for problems with diffusion effects. The proposed fractional numerical
scheme can be used in situations where the conditions of obtaining a positive solution are
desired with unconditional stability for numerous problems in science and engineering. As
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a result of the completion of this study, it is feasible to propose further applications for the
currently available approach [34–36].
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