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Abstract: In this paper, a new approach is developed to solve a class of first-order fractional initial
value problems. The present class is of practical interest in engineering science. The results are based
on the Riemann–Liouville fractional derivative. It is shown that the dual solution can be determined
for the considered class. The first solution is obtained by means of the Laplace transform and
expressed in terms of the Mittag–Leffler functions. The second solution was determined through a
newly developed approach and given in terms of exponential and trigonometric functions. Moreover,
the results reduce to the ordinary version as the fractional-order tends to unity. Characteristics
of the dual solution are discussed in detail. Furthermore, the advantages of the second solution
over the first one is declared. It is revealed that the second solution is real at certain values of the
fractional-order. Such values are derived theoretically and accordingly, and the behavior of the real
solution is shown through several plots. The present analysis may be introduced for obtaining the
solution in a straightforward manner for the first time. The developed approach can be further
extended to include higher-order fractional initial value problems of oscillatory types.

Keywords: Mittag–Leffler functions; Riemann–Liouville fractional derivative; initial value problems;
Laplace transform; exact solution

1. Introduction

The fractional calculus (FC) is a growing field of research that is usually utilized to
investigate the physical phenomena of the memory effect [1–3]. Many scientific models
have been analyzed via the FC approach [4–8]. A comprehensive list of FC applications
are listed in Refs. [9–14]. For example, the fractional physical model of the projectile
motion was discussed by Ebaid [15] and Ebaid et al. [16] utilizing the Caputo fractional
derivative (CFD), and their results have been compared with experimental data. In addition,
Ahmed et al. [17] implemented the Riemann–Liouville fractional derivative (RLFD) to
analyze the same problem. The above models have been formulated in the form of second-
order fractional initial value problems (2nd-order FIVPs).

Furthermore, Kumar et al. [18] and Ebaid et al. [19] studied the first-order fractional
initial value problems (1st-order FIVPs) describing the absorption of light by the interstellar
matter (called Ambartsumian-fractional model) by means of CFD. The exact solution of
this model was determined by Ebaid et al. [19] using the Laplace transform (LT). Moreover,
the RLFD was used by El-Zahar et al. [20] to provide the solution of the Ambartsumian-
fractional model in a closed series form. Recent interesting results and applications of FC
can be found in [21–29]. Very recently, El-Dib and Elgazery [30] investigated the nonlinear
oscillations utilizing the properties of the RLFD.
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The objective of this work is to extend the application of RLFD to a certain class
of 1st-order FIVPs of oscillatory nature. Such class is of great importance in the field of
engineering. Thus, this paper considers the class of 1st-order FIVPs:

RL
−∞Dα

t y(t) + ω2y(t) = a cos(Ωt), Dα−1
t y(0) = A, 0 < α ≤ 1, (1)

where α is the non-integer order of the RLFD, while a, ω, Ω, and A are constants. Moreover,
the present model can be viewed as a forced harmonic-oscillator of the first-order in
a fractional form, and it may be of practical interest in engineering science. Although
Equation (1) seems simple, obtaining its exact solution is not an easy task due to several
factors that will be illustrated. It will also be shown that a dual solution exists. As a solution
method, the LT is a basic and effective tool to solve 1st-order FIVPs, even for higher-order
FIVPs. The LT will be applied on the current class to construct the first solution in terms
of Mittag–Leffler functions. However, a new approach is to be developed in this paper
to determine the second solution in which only exponential and trigonometric functions
are involved.

Characteristics of these solutions will also be discussed. The advantages of the second
solution over the first one will be demonstrated. To our knowledge, the present analysis
has not been yet reported in the literature. The rest of the paper is organized as follows.
In Section 2, the definition/properties of the RLFD and the Mittag–Leffler functions are
introduced. In Section 3, a basic theorem for the particular solution of Equation (1) is
introduced. Moreover, it is shown that the present particular solution reduces to the
corresponding one in the literature as a special case. In Section 4, the dual solution of
1st-order FIVPs (1) is constructed and analyzed in detail. Section 5 is devoted to studying
the characteristics of the established solutions. In addition, the α-values that admit real
solutions of the present class are obtained theoretically. Moreover, the behavior of the
current solution is discussed. In Section 6, the main conclusions are summarized.

2. Preliminaries

The Riemann–Liouville fractional integral of order α of function f : [c, d]→ R (−∞ <
c < d < ∞) is defined as [1–3]

c Iα
t f (t) =

1
Γ(α)

∫ t

c

f (τ)
(t− τ)1−α

dτ, t > c, α > 0. (2)

The RLFD of order α ∈ R+
0 is [1–3]

RL
c Dα

t f (t) =
1

Γ(n− α)

dn

dtn

(∫ t

c

f (τ)

(t− τ)α−n+1 dτ

)
, n = [α] + 1, t > c, (3)

where [α] means the integral part of α. For t ∈ R and c→ −∞, the RLFD of the functions
eiωt, cos(ωt), and sin(ωt) are [30,31]

RL
−∞Dα

t eiωt = (iω)αeiωt,

RL
−∞Dα

t cos(ωt) = ωα cos
(

ωt +
απ

2

)
,

RL
−∞Dα

t sin(ωt) = ωα sin
(

ωt +
απ

2

)
.

(4)

It may be important to mention that the first equation in (4) was implemented by
El-Dib and Elgazery [30]. Such implementation is based on the proof introduced by
Ortigueira et al. [31]. However, the last two equations in (4) are utilized in [30] without
proof, which may be because the authors [30] considered the derivation of these equations
an easy task. For this reason, the proof and validity of the last two equations in (4) are
provided in the Appendix A. The Laplace transform (LT) of the RLFD, as c→ 0, is
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L
[

RL
0 Dα

t y(t)
]
= sαY(s)−

n−1

∑
i=0

siDα−i−1
t y(0). (5)

In view of Equations (4) and (5), we have to distinguish between the properties of the
RLFD when c→ −∞ and c→ 0, i.e., RL

−∞Dα
t and RL

0 Dα
t , respectively. Thus, the dual solution

of Equation (1) is expected.
The Mittag–Leffler function of two parameters is defined by

Eα,γ(z) =
∞

∑
i=0

zi

Γ(αi + γ)
, (α > 0, γ > 0). (6)

In particular, we have the following properties

Eα,1(z) = Eα(z), E1(z) = ez, E2,1(−z2) = cos(z), E2,2(−z2) =
sin z

z
. (7)

The inverse LT of some expressions can be given via the Mittag–Leffler function as

L−1
( sα−γ

sα + ω2

)
= tγ−1Eα,γ(−ω2tα), Re(s) > |ω2|

1
α , (8)

which gives the equalities:

L−1
( sα−1

sα + 1

)
= Eα(−tα), (9)

L−1
( 1

sα + ω2

)
= tα−1Eα,α(−ω2tα), Re(s) > |ω2|

1
α , (10)

L−1
( s−1

sα + ω2

)
= tαEα,α+1(−ω2tα), Re(s) > |ω2|

1
α . (11)

3. Analysis

Theorem 1 (The particular solution). The particular solution yp(t) of Equation (1) is given by

yp(t) = ρ1(α) cos(Ωt) + ρ2(α) sin(Ωt), 0 < α ≤ 1, (12)

where ρ1(α) and ρ2(α) are

ρ1(α) = a

(
ω2 + Ωα cos

(
πα
2
)

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
)), ρ2(α) = a

(
Ωα sin

(
πα
2
)

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
)). (13)

Proof. Assume yp in the form of Equation (12), then

RL
−∞Dα

t yp =ρ1(α)
RL
−∞Dα

t cos(Ωt) + ρ2(α)
RL
−∞Dα

t sin(Ωt),

= Ωα cos(Ωt)
(

ρ1(α) cos
(πα

2

)
+ ρ2(α) sin

(πα

2

))
+

Ωα sin(Ωt)
(

ρ2(α) cos
(πα

2

)
− ρ1(α) sin

(πα

2

))
, (14)

and hence

RL
−∞Dα

t yp + ω2yp =
[(

Ωα cos
(πα

2

)
+ ω2

)
ρ1(α) + Ωα sin

(πα

2

)
ρ2(α)

]
cos(Ωt)+[(

Ωα cos
(πα

2

)
+ ω2

)
ρ2(α)−Ωα sin

(πα

2

)
ρ1(α)

]
sin(Ωt). (15)
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Substituting Equation (15) into Equation (1), we obtain the algebraic system:(
Ωα cos

(πα

2

)
+ ω2

)
ρ1(α) + Ωα sin

(πα

2

)
ρ2(α) = a,(

Ωα cos
(πα

2

)
+ ω2

)
ρ2(α)−Ωα sin

(πα

2

)
ρ1(α) = 0.

(16)

Solving the algebraic system (16) for ρ1(α) and ρ2(α), we obtain

ρ1(α) = a

(
ω2 + Ωα cos

(
πα
2
)

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
)), ρ2(α) = a

(
Ωα sin

(
πα
2
)

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
)). (17)

Inserting (17) into (12) and simplifying, we obtain yp in the form:

yp(t) = a

(
ω2 cos(Ωt) + Ωα cos

(
Ωt− πα

2
)

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
) )

, (18)

which completes the proof.

Lemma 1. At a = 1, the particular solution yp(t) of Equation (1) reduces to

yp(t) =
ω2 cos(Ωt) + Ωα cos

(
Ωt− πα

2
)

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
) . (19)

Proof. The proof follows immediately by setting a = 1 in Equation (18); thus

yp(t) =
ω2 cos(Ωt) + Ωα cos

(
Ωt− πα

2
)

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
) , (20)

which agrees with the obtained particular integral in Ref. [30] (Equation (7)) using the(
Dα + ω2)−1 operator. However, our approach is straightforward and easier.

4. Dual Solution

It is shown in this section that the dual solution of the present class of 1st-order FIVPs
can be derived. The first solution is obtained in terms of Mittag–Leffler functions, while
the second is provided in terms of exponential and trigonometric functions so that the
Mittag–Leffler function can be avoided. Characteristics of these solutions will also be
discussed in a subsequent section.

4.1. Solution in Terms of Mittag–Leffler Functions

Applying the LT on Equation (1), yields

sαY(s)− Dα−1
t y(0) + ω2Y(s) =

as
s2 + Ω2 , (21)

where Y(s) is the LT of y(t). Solving (21) for Y(s) gives

Y(s) =
A

sα + ω2 +
as

(sα + ω2)(s2 + Ω2)
. (22)

The solution y(t) is obtained by applying the inverse LT on Y(s), this gives

y(t) = AL−1
(

1
sα + ω2

)
+ L−1

[
as

(sα + ω2)(s2 + Ω2)

]
, (23)
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i.e.,

y(t) = Atα−1Eα,α

(
−ω2tα

)
+ aL−1

(
1

sα + ω2

)
∗ L−1

(
s

s2 + Ω2

)
, (24)

where (∗) refers to the convolution operation. Therefore

y(t) = Atα−1Eα,α

(
−ω2tα

)
+ a

∫ t

0
τα−1Eα,α

(
−ω2τα

)
cos[Ω(t− τ)]dτ, (25)

which can be written as

y(t) = Atα−1Eα,α

(
−ω2tα

)
+ a cos(Ωt)

∫ t

0
τα−1Eα,α

(
−ω2τα

)
cos(Ωτ)dτ +

a sin(Ωt)
∫ t

0
τα−1Eα,α

(
−ω2τα

)
sin(Ωτ)dτ, (26)

As α→ 1, the solution reduces to

y(t) = AE1,1

(
−ω2t

)
+ a cos(Ωt)

∫ t

0
E1,1

(
−ω2τ

)
cos(Ωτ)dτ +

a sin(Ωt)
∫ t

0
E1,1

(
−ω2τ

)
sin(Ωτ)dτ, (27)

i.e.,

y(t) = Ae−ω2t + a cos(Ωt)
∫ t

0
e−ω2τ cos(Ωτ)dτ + a sin(Ωt)

∫ t

0
e−ω2τ sin(Ωτ)dτ. (28)

Evaluating the involved integrals and simplifying yields

y(t) =
(

A− aω2

ω4 + Ω2

)
e−ω2t +

a
ω4 + Ω2

[
ω2 cos(Ωt) + Ω sin(Ωt)

]
, (29)

which agrees with the solution of the ordinary version of the FIVP (1). However, the present
solution in fractional form (26) is not analytic at t = 0, ∀ α ∈ (0, 1) for the existence of term
tα−1. This phenomena will be avoided in the next section via a new approach to obtaining
the exact analytic solution for the FIVP (1) in terms of exponential and trigonometric
functions. Equation (26) is non-analytic at t = 0, which is just a consequence of applying the
LT on the RLFD as c tends to zero. This gives the second solution, in terms of exponential
and trigonometric functions, an advantage over the first one, in terms of the Mittag–
Leffler functions.

4.2. Solution in Terms of Exponential and Trigonometric Functions

The general solution y(t) of the FIVP (1) consists of the complementary solution yc(t)
and the particular solution yp(t) so that

y(t) = yc(t) + yp(t), (30)

where yp(t) was already obtained by Theorem 1, while yc(t) is the solution of the homoge-
neous part:

RL
−∞Dα

t yc(t) + ω2yc(t) = 0. (31)

Assume yc(t) is in the form:

yc(t) = c1(α) cos(δt) + c2(α) sin(δt), (32)
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where c1(α), c2(α), and δ(ω) are to be determined. Substituting (32) into (31), yields[(
δα cos

(πα

2

)
+ ω2

)
c1(α) + δα sin

(πα

2

)
c2(α)

]
cos(δt) +[(

δα cos
(πα

2

)
+ ω2

)
c2(α)− δα sin

(πα

2

)
c1(α)

]
sin(δt) = 0. (33)

In order to avoid trivial solutions for c1(α) and c2(α) in (33), we can set c2(α) = ic1(α),
without loss of generality. Thus, Equation (33) becomes

c1(α)
[
δα cos

(πα

2
+ ω2

)
+ iδα sin

(πα

2

)]
cos(δt) +

ic1(α)
[
δα cos

(πα

2

)
+ ω2 + iδα sin

(πα

2

)]
sin(δt) = 0, (34)

which can be reduced to

c1(α)
[
δα
(

cos
(πα

2

)
+ i sin

(πα

2

))
+ ω2

]
(cos(δt) + i sin(δt)) = 0. (35)

Equation (35) can be further simplified as

c1(α)
[
δαei πα

2 + ω2
]
eiδt = 0. (36)

For a non-trivial complementary solution, we restrict so that c1(α) 6= 0, and hence,
Equation (36) becomes (

δei π
2

)α
+ ω2 = 0. (37)

Solving this equation for δ, we obtain

δ = −i
(
−ω2

)1/α
, yc(t) = c1(α)eiδt. (38)

Accordingly,
y(t) = c1(α)eiδt + yp(t), (39)

where c1(α) can be determined by applying the given initial condition. To do so, we have
from Equation (39) that

Dα−1
t y(t) = c1(α)Dα−1

t eiδt + Dα−1
t yp(t) = c1(α)(iδ)

α−1eiδt + Dα−1
t yp(t), (40)

and at t = 0, we have

Dα−1
t y(0) = c1(α)(iδ)

α−1 + Dα−1
t yp(0). (41)

The magnitude Dα−1
t yp(0) is calculated as follows

[
Dα−1

t yp(t)
]

t=0
= a

(
ω2 + Ωα cos

(
πα
2
)

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
))[Dα−1

t cos(Ωt)
]

t=0
+

a

(
Ωα sin

(
πα
2
)

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
))[Dα−1

t sin(Ωt)
]

t=0
. (42)

Thus



Fractal Fract. 2022, 6, 85 7 of 13

Dα−1
t yp(0) =a

(
ω2 + Ωα cos

(
πα
2
)

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
))Ωα−1 cos

(π

2
(α− 1)

)
+

a

(
Ωα sin

(
πα
2
)

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
))Ωα−1 sin

(π

2
(α− 1)

)
,

=
aΩα−1

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
)×[(

ω2 + Ωα cos
(πα

2

))
cos
(π

2
(α− 1)

)
+ Ωα sin

(πα

2

)
sin
(π

2
(α− 1)

)]
,

=
aΩα−1

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
) [ω2 cos

(π

2
(α− 1)

)
+ Ωα cos

(πα

2
− π

2
(α− 1)

)]
,

=
aω2Ωα−1 sin

(
πα
2
)

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
) . (43)

Substituting (43) into (41) and implementing the given initial condition Dα−1
t y(0) = A,

we obtain

c1(α)(iδ)
α−1 +

aω2Ωα−1 sin
(

πα
2
)

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
) = A. (44)

Therefore, c1(α) is given by

c1(α) = A(iδ)1−α −
aω2

(
Ω
iδ

)α−1
sin
(

πα
2
)

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
) . (45)

Substituting δ = −i
(
−ω2)1/α into (54), yields

c1(α) = A
(
−ω2

) 1
α−1

+
a(−ω2)

1
α Ωα−1 sin

(
πα
2
)

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
) . (46)

Hence, the solution takes the final form:

y(t) =

[
A(−ω2)

1
α−1 +

a(−ω2)
1
α Ωα−1 sin

(
πα
2
)

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
)]e(−ω2)

1
α t+

a

[
ω2 cos(Ωt) + Ωα cos

(
Ωt− πα

2
)

ω4 + Ω2α + 2ω2Ωα cos
(

πα
2
) ]

, (47)

To check as α→ 1, we have

y(t) =
(

A− aω2

ω4 + Ω2

)
e−ω2t +

a
ω4 + Ω2

[
ω2 cos(Ωt) + Ω sin(Ωt)

]
, (48)

which also agrees with the solution of the ordinary version of the FIVP (1). The advantage
of the fractional form (47) is that it is analytic in the whole domain t ≥ 0, ∀ α ∈ (0, 1].
However, this solution is real at specific/certain values of α. This issue is addressed in
detail in the next section.

5. Characteristics of Solutions

For the class of 1st-order FIVP (1), it is observed that the exact solution in Equation (47)

depends on whether the quantity
(
−ω2) 1

α is real or complex for 0 < α < 1. Since ω ∈ R,

then the expression
(
ω2) 1

α ∈ R ∀ α ∈ (0, 1). If we write
(
−ω2) 1

α = ε
(
ω2) 1

α , where
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ε = (−1)
1
α , then the solution is real/complex if ε is real/complex. The following theorem

determines the values of α for the real solutions of the 1st-order FIVP (1).

Theorem 2 (α-values for real solutions). The solution (47) is real at α = 2n−1
2(k+n−1) (ε = 1) and

α = 2n−1
2(k+n)−1 (ε = −1), ∀ n, k ∈ N+.

Proof. For 0 < α < 1, the fractional-order α can be assumed as α = l1
r1

such that 0 < l1 < r1.
For odd l1 and even r1, the possible values of α belong to the sets { 1

2 , 1
4 , 1

6 , . . . }, { 3
4 , 3

6 , 3
8 , . . . },

{ 5
6 , 5

8 , 5
10 , . . . }, { 7

8 , 7
10 , 7

12 , . . . }, . . . , which can be written as { 1
2k}

∞
k=1, { 3

2k+2}
∞
k=1, { 5

2k+4}
∞
k=1,

. . . , and such sets can be unified as

α =
2n− 1

2(k + n− 1)
, ∀ n, k ∈ N+, (49)

and in this case, we have ε = (−1)
1
α = (−1)

2(k+n−1)
2n−1 = 1.

Furthermore, α can be assumed as α = l1
l2

for two odd positive integers such that

0 < l1 < l2. In this case, the values of α belong to the sets { 1
3 , 1

5 , 1
7 , . . . }, { 3

5 , 3
7 , 3

9 , . . . },
{ 5

7 , 5
9 , 5

11 , . . . }, { 7
9 , 7

11 , 7
13 , . . . }, . . . , which can be written as { 1

2k+1}
∞
k=1, { 3

2k+3}
∞
k=1, { 5

2k+5}
∞
k=1,

. . . , and such sets can be unified as

α =
2n− 1

2k + 2n− 1
, ∀ n, k ∈ N+, (50)

and we have ε = −1. Note that ε ∈ C if α = r2
l2

for any even r2 and any odd l2 such that
0 < r2 < l2.

Numerical Results: Oscillatory Solution

In Figures 1–4, the solution in Equation (47) is plotted at some selected values according
to Theorem 2. The periodicity/oscillatory of the solution is clear in these figures. In addition,
it can be seen from Figure 4 that our curves for those values of α near to 1 are identical to
the ordinary case. Finally, Figures 5 and 6 show the effect of the initial condition A and the
parameter Ω on the behavior of the solution.
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Figure 1. Plots of y(t) in Equation (47) vs. t when a = 2, A = 1, ω = 1
3 , and Ω = 3 at different values

of α = 1
9 , 1

8 , 1
7 , 1

6 .
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Figure 2. Plots of y(t) in Equation (47) vs. t when a = 2, A = 1, ω = 1
3 , and Ω = 3 at different values

of α = 1
4 , 1

2 , 3
4 , 7

8 .
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Figure 3. Plots of y(t) in Equation (47) vs. t when a = 2, A = 1, ω = 1
3 , and Ω = 3 at different values

of α = 1
3 , 3

7 , 7
9 , 9

11 .
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Α=45�47
Α=27�29

Figure 4. Plots of y(t) in Equation (47) vs. t when a = 2, A = 1, ω = 1
3 , and Ω = 3 at different values

of α = 27
29 , 45

47 , 61
63 , 81

83 , 1.
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Figure 5. Plots of y(t) in Equation (47) vs. t when α = 1
2 , a = 2, ω = 1

3 , and Ω = 3 at different values
of A = 1, 2, 3, 4.
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Figure 6. Plots of y(t) in Equation (47) vs. t when α = 1
2 , A = 1, a = 2, and ω = 1

3 at different values
of Ω = π/8, π/6, π/4, π/2.

6. Conclusions

A class of 1st-order FIVPs was investigated. This class is oscillatory in nature and
hence of practical interest in engineering science. A dual solution was determined for
the present class. The first solution was obtained through the LT and expressed in terms
of the Mittag–Leffler functions. The second solution was derived via a newly developed
approach in terms of exponential and trigonometric functions. The advantages of the
second solution over the first one were demonstrated. In addition, it was revealed that the
second solution is real at certain values of the fractional-order α. Such values of α were
derived theoretically. The behavior of the real solution was displayed through several
figures. The present analysis may be introduced for the first time to obtain the solution
with a straightforward approach. The developed approach can be extended to higher-order
FIVPs of oscillatory types. Finally, such approach can be viewed as a corner stone to
obtaining periodic solutions for more complex oscillatory problems, such as the forced
Duffing oscillator [30].
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Appendix A. The Fractional Derivative of Periodic Functions

Theorem A1. The RLFD (3), as c→ −∞, of the functions cos(ωt) and sin(ωt) are

RL
−∞Dα

t cos(ωt) = ωα cos
(

ωt +
απ

2

)
, (A1)

RL
−∞Dα

t sin(ωt) = ωα sin
(

ωt +
απ

2

)
. (A2)
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Proof. The proof is quite simple. Let us begin with the RLFD (3), as c → −∞, of the
exponential function introduced by Ortigueira et al. [31]:

RL
−∞Dα

t eiωt = (iω)αeiωt. (A3)

The identities:

eiωt = cos(ωt) + i sin(ωt), (A4)

iα = ei απ
2 = cos

(απ

2

)
+ i sin

(απ

2

)
, (A5)

are to be used to derive Equations (A1) and (A2). Substituting (A4) and (A5) into (A3) reads

RL
−∞Dα

t cos(ωt) + i RL
−∞Dα

t sin(ωt) = ωα(cos(ωt) + i sin(ωt))
[
cos
(απ

2

)
+ i sin

(απ

2

)]
= ωα

[
cos(ωt) cos

(απ

2

)
− sin(ωt) sin

(απ

2

)]
+

iωα
[
sin(ωt) cos

(απ

2

)
+ cos(ωt) sin

(απ

2

)]
= ωα cos

(
ωt +

απ

2

)
+ iωα sin

(
ωt +

απ

2

)
.

(A6)

Comparing the real and imaginary parts of the last equation completes the proof.
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