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Abstract: In this paper, the Fourier spectral method is used to solve the fractional-in-space nonlinear
coupled FitzHugh–Nagumo model.Numerical simulation is carried out to elucidate the diffusion
behavior of patterns for the fractional 2D and 3D FitzHugh–Nagumo model. The results of numerical
experiments are consistent with the theoretical results of other scholars, which verifies the accuracy
of the method. We show that stable spatio-temporal patterns can be sustained for a long time;
these patterns are different from any previously obtained in numerical studies. Here, we show
that behavior patterns can be described well by the fractional FitzHugh–Nagumo and Gray–Scott
models, which have unique properties that integer models do not have. Results show that the Fourier
spectral method has strong competitiveness, reliability, and solving ability for solving 2D and 3D
fractional-in-space nonlinear reaction-diffusion models.

Keywords: Riesz fractional derivative; FitzHugh–Nagumo model; spatial patterns; Fourier spectral
method

1. Introduction

In the past few decades, the theory and application of fractional calculus have been
widely concerned and rapidly developed because it can more accurately simulate various
physical processes in nature, especially suitable for characterizing the memory and genetic
properties of materials and processes. Applications of fractional calculus include control
theory [1], non-Newtonian fluid dynamics [2], rheology [3], hysteretic phenomena [4],
dynamical systems [5], viscoelastic theory [6], and abnormal diffusion [7–9]. Most of these
problems can be expressed as fractional differential equations (FDEs), so it is of great
significance to study the analytical or numerical methods of FDEs. Analytical methods
for solving nonlinear FDEs have an Adomian decomposition method [10], new iteration
method [11], homotopy perturbation method [12], and so on. In these methods, the solution
does not require discrete equations or approximation operators. Because these methods
produce local solutions under initial conditions, it is necessary to use numerical methods
to study the long time properties of solutions of FDEs. Accurate and time-saving numer-
ical methods are needed for the study of fractional-order dynamical systems and their
related phenomena, such as patterns and chaos. Therefore, the development of time-saving,
accurate, and stable numerical methods of FDEs is a focus. Some numerical methods of
the FDEs have been announced, such as the finite difference method [13], finite difference
predictor-corrector method [14,15], reproducing kernel method [16,17], matrix approach
method [18], spectral method [19–22], and so on [23–29].

The Fourier spectral method [19–22,30,31] is a good method for studying the fractional
diffusion model. Some scholars used the Fourier spectral method to solve the space frac-
tional Klein–Gordon–Schrödinger equations [19], modified Swift–Hohenberg equation [20],
fractional variable-coefficient KdV-modified KdV equation [30], and 2D space fractional
Gray–Scott model [31], and so on [21,22]. In this manuscript, we use the Fourier spectral
method for spatial discretization and the Runge–Kutta method for time discretization to
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solve the FitzHugh–Nagumo model with the Riesz fractional derivative.
FitzHugh [32] proposed a mathematical model of excitable media applied to neuronal

dynamics. This model is called the FitzHugh model. The early FitzHugh model was a
nonlinear ordinary differential equation. Then, Nagumo [33] extended the early FitzHugh
model to derive the FitzHugh–Nagumo model. The most important characteristic of the
FitzHugh–Nagumo model is that the solutions of the model can be excited within a certain
range of control parameters. Therefore, it is one of the best models to study excitable sys-
tems and excitable helical waves. Bueno–Orovio [21] used the Fourier spectral method and
fractional Fick’s law [34,35] to solve the space fractional FHN model. Liu and Zhang [36]
used a semi-alternating direction method for solving a 2D fractional FHN monodomain
model on an approximate irregular domain. With the development of fractional calculus,
this paper considers the following space fractional 3D coupled FitzHugh–Nagumo models
with Riesz fractional derivatives:

∂u
∂t

= −Ku(−∆
α
2 )u− u(1− u)(u− µ)− v,

∂v
∂t

= ε(βu− v),
(1)

with the initial conditions:

u(x, y, z, 0) = u0(x, y, z), v(x, y, z, 0) = v0(x, y, z). (2)

where (x, y, z, t) ∈ Ω× [0, T], Ω = (a, b)× (a, b)× (a, b) and 1 < α ≤ 2. ε, µ, β and k are
constants. Ku are the diffusion coefficients. The fractional Laplacian operator with Riesz
fractional derivative is defined as:

−(−∆
α
2 )v =

∂αv
∂|x|α

+
∂αv

∂|y|α
+

∂αv
∂|z|α

= − 1
2 cos πα/2

(
xDα

Lv + xDα
Rv + yDα

Lv + yDα
Rv + zDα

Lv + zDα
Rv
)
, (3)

with xDα
L, xDα

R, yDα
L, yDα

R, and zDα
L, zDα

R being the Riemann-Liouville fractional operators as
follows [37–40]:

xDα
Lv =

1
Γ(2− α)

d2

dx2 (
∫ x

a
(x− τ)1−αv(τ, y, z, t)dτ), (4)

xDα
Rv =

1
Γ(2− α)

d2

dx2 (
∫ b

x
(τ − x)1−αv(τ, y, z, t)dτ). (5)

Definition 1. The Riesz fractional derivative [27,28] of order α ∈ (0, 1) is given by:

Dαh(x) =
d

dx
H1−α

x h(x) =
1

2Γ(1− α) cos πα
2

d
dx

∫ ∞

−∞

sgn(x− τ)

|x− τ|α h(τ)dτ, x ∈ R. (6)

where Hα
x h(x) is the conjugate Riesz potential [41,42] of the order α ∈ (0, 1).

Definition 2. The conjugate Riesz potential [41,42] of the order α ∈ (0, 1) takes the following form:

Hα
x h(x) =

1
2Γ(α) sin πα

2

∫ ∞

−∞

sgn(x− τ)

|x− τ|1−α
h(τ)dτ, x ∈ R. (7)

The Fourier transforms of Riesz fractional derivative for α ∈ (0, 1) is presented as:

Fx[Dα
x h(x)](ω) = |ω|α ĥ(ω). (8)

2. Numerical Method

In order to normalize the space interval [a, b] to [0, 2π], we let x → 2π(x−a)
L , y →

2π(y−a)
L , z → 2π(z−a)

L and L = b− a, xi = i∆x = 2πLi
N , yi = i∆y = 2πLi

N , zi = i∆z = 2πLi
N ,
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i = −N/2,−N/2 + 1, · · · · · · , N/2− 1, N > 0 and N is an integer.
The discrete Fourier transform(DFT) definition as:

ĥ(kx, ky, kz, t) = F (h) = 1
N3 ∑

N
2 −1

j=− N
2

∑
N
2 −1

j=− N
2

∑
N
2 −1

j=− N
2

h(xj, yj, zj, t)e−ikx xj−ikyyj−ikzzj , (9)

Using the discrete Fourier transform (9) for u, v in the spatial domain. Equation (1)
can be transformed into the following ordinary differential equations (ODEs) about t.{

∂U
∂t = F(t, U),

U(Kα, 0) = U0.
(10)

where:

Kα = |λx|α + |λy|α + |λz|α, φ̂ =

(
û
v̂

)
, r(t, φ̂) =

( ∂û
∂t
∂v̂
∂t

)
,

U = (φ̂0(Kα, t), φ̂1(Kα, t), · · · , φ̂N−1(Kα, t))T ,
F(t, U) = (r0(t, φ̂0(t)), r1(t, φ̂0(t)), · · · , rN−1(t, φ̂N−1(t)))T ,
U0(Kα) = (φ̂00(Kα), φ̂01(Kα), · · · , φ̂0(N−1)(Kα))T ,

(11)

Definition 3. Fourth-order Runge–Kutta method(RKM) for ODEs (10) in the form of:

Un+1 = Un + τη(Un, tn, τ), (12)

where incremental function η(Un, tn, τ) is determined by F(t, U).

Definition 4. If for any differential equations ∂U
∂t = F(t, U) which satisfies the Lipschitz condition

when τ = T
n , n −→ ∞ and U0(Kα) −→ U(Kα, 0), there is un −→ U(t) for any 0 ≤ t ≤ T, then

Equation (12) is convergent [30,31].

Theorem 1. If η(U, t, τ) satisfies the Lipschitz condition in U, then the numerical method given
by Equation (12) is stable.

Proof. We refer the reader to [30,31] for the details of the proof.

Lemma 1. If ‖en+1‖ ≤ (1 + τL1)‖en‖+ c, then Equation (12) is fourth order one-step method
and the error estimate is as follows:

|en| ≤ eL1T(|e0|+ L1τe + cTτ4), (13)

where en = Un −U(tn) and c is constant. where L1 is lipschitz constant and e = max(|e0|, |e1|,
· · · , |en−1|). τ is step-size and n = 1, · · · , T

τ .

Proof. For the details of the proof, one may refer to [30,31].

Then, we use the following inverse discrete Fourier transform(IDFT) (14), and can
obtain the numerical solution. The inverse discrete Fourier transform definition as:

h(xj, yj, zj, t) = F−1(ĥ) = ∑
N
2 −1

kx=− N
2

∑
N
2 −1

ky=− N
2

∑
N
2 −1

kz=− N
2

ĥ(kx, ky, kz, t)eikx xj+ikyyj+ikzzj , 0 ≤ j ≤ N − 1. (14)
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To sum up, the steps of solving fractional partial differential equations by the Fourier
spectral method are as follows:

uj−N/2 · · · uj−2 uj−1 uj uj+1 uj+2 · · · uj+N/2−1 u(x, y, z, t)
⇑ IDFT

• · · · • • • • • · · · • û(Kα, t)
↑ ↑ ↑ ↑ ↑ ↑ ↑
• · · · • • • • • · · · •

ODEs ← RKM
• · · · • • • • • · · · •
↑ ↑ ↑ ↑ ↑ ↑ ↑

ûm−N · · · ûm−2 ûm−1 ûm ûm+1 ûm+2 · · · ↑ û(Kα, t0)
⇑ DFT

uj−N/2 · · · uj−2 uj−1 uj uj+1 uj+2 · · · uj+N/2−1 u(x, y, z, t0)

3. Simulation Results

Figure 1 shows the logarithm of the absolute error at x = 0.5. The absolute error
values at t = 0.15 are shown in Figure 2. In this section, we use the present method to
numerically solve the space fractional 2D and 3D coupled FitzHugh–Nagumo models
and space fractional coupled Gray–Scott models, the numerical simulation results are
shown in Figures 3–18. All computations of simulation results are performed by the
MatlabR2017b software.

Experiment 1. By comparing with some effective methods in the literature, the accuracy and
effectiveness of the numerical method in this paper are illustrated. We consider the following 1D
FitzHugh–Nagumo model [43,44].

∂u
∂t

= uxx + u(1− u)(u− µ), (15)

Table 1 shows the absolute errors by the present method, and those in Refs. [43,44], at
different x values. Table 2 shows the error norms L2 and L∞ by the present method and
the methods of Ref. [44] at different τ values, which shows that our numerical method has
higher precision than other methods.

Where the error norms, L2 and L∞ are used to determine the accuracy of the method:

L2 =
√

1
N ∑N

j=1[u(xj, t)− u∗(xj, t)]2, L∞ = max
1≤j≤N

| u(xj, t)− u∗(xj, t) |, where u(xj, t) and

u∗(xj, t) are the numerical solution and the exact solution.

Table 1. The absolute errors of u(x, t) at t = 0.04, τ = 5.00e− 3, and µ = 0.5.

x ExpFDM [43] Ref. [44] Present Method

0.2 3 × 10−6 2 × 10−7 1.67 × 10−10

0.4 1 × 10−5 5 × 10−7 1.69 × 10−10

0.6 2 × 10−5 7 × 10−7 1.72 × 10−10

0.8 4 × 10−5 6 × 10−7 1.77 × 10−10
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Table 2. The error norms L2 and L∞ of u(x, t) at different values of τ and µ = 0.75, for example, 1.

τ = 0.001 t t = 0.01 t = 1 t = 10

L2
Present method 2.17 × 10−9 2.08 × 10−10 3.66 × 10−9

[44] method 1 × 10−7 1 × 10−6 2 × 10−7

L∞
Present method 2.07 × 10−9 2 × 10−10 5.41 × 10−9

[44] method 2 × 10−7 1 × 10−6 2 × 10−7

τ = 0.0001 t t = 0.01 t = 1 t = 10

L2
Present method 2.17 × 10−9 1.51 × 10−9 3.36 × 10−9

[44] method 1 × 10−7 6 × 10−7 2 × 10−7

L∞
Present method 2.07 × 10−9 1.47 × 10−9 5.42 × 10−9

[44] method 2 × 10−7 9 × 10−7 3 × 10−7

τ = 0.00001 t t = 0.01 t = 1 t = 10

L2
Present method 2.17 × 10−9 4.08 × 10−9 3.37 × 10−9

[44] method 1 × 10−7 6 × 10−7 2 × 10−7

L∞
Present method 2.07 × 10−9 3.90 × 10−9 5.49 × 10−9

[44] method 2 × 10−7 9 × 10−7 3 × 10−7

Figure 1. Logarithm of absolute error of u(x, t) at x = 0.5 for Experiment 1.
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Figure 2. Absolute error of v(x, t) at t = 0.15 for Experiment 1.

Experiment 2. In the simulation experiment, we set v = v(x, y, t) or v = v(x, y, z, t) with similar
expressions for u in two and three dimensions. In two dimensions, we experiment (1) on a square
domain size [−2.5, 2.5]× [−2.5, 2.5] with boundary conditions. We experiment (1) on diffusion
coefficients in the space given as Ku = 1× 10−4, and parameter ε = 0.01, µ = 0.1, β = 0.5,
N = 512, L = 5. The initial conditions have the following form:

u(x, y, 0) =
{

1, (x, y) ∈ [−0.63, 0.62]× [0.62, 1.24] ∪ [−0.63, 1.26],
0, elsewhere.

(16)

v(x, y, 0) =
{

0.1, (x, y) ∈ [−1.88,−0.63] ∪ [0.62, 2.5]× [−1.26, 2.5],
0, elsewhere.

(17)

The spatio-temporal patterns in Figure 3 are obtained at different times with the
same α value. The patterns in Figures 4–6 are obtained at the same time and different
α values. When noise intensity Ku = 1× 10−4, spiral wave can be sustained for a long
time (see Figure 3). With the increment of fractional derivative α, the system is driven
into the excitable states where the stable spatio-temporal waves can be sustained for a
long time (see Figures 4–6). We can find that the width of the excitation wavefront and
the wavelength of the system are markedly reduced with the reduction of order with the
domain being able to accommodate a larger number of wavefronts for a smaller order.
For the excited wavefront with approximately the same width, the wavelength is larger due
to the long-tailed mechanisms of the fractional Laplacian operator in the supper-diffusion
case. These results are consistent with the theoretical analysis and numerical simulation of
other scholars [45].
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The spatio-temporal patterns in Figures 7–9 are obtained at different times and α values
with the noise intensity Ku = 2.5× 10−5, the initial conditions have the following form:

u(x, y, 0) =


u(3 ∗ N/8 : 5 ∗ N/8, 5 ∗ N/8 : 6 ∗ N/8) = 1,
u(3 ∗ N/8 : 5 ∗ N/8, 2 ∗ N/8 : 3 ∗ N/8) = 1,
0, elsewhere.

(18)

v(x, y, 0) =


v(5 ∗ N/8 : N, N/4 : N) = 0.1,
v(1 ∗ N/8 : 3 ∗ N/8, N/4 : N) = 0.1,

0, elsewhere.

(19)

In three dimensions, we experiment (1) on the domain size [−2.5, 2.5]× [−2.5, 2.5]×
[−2.5, 2.5] with boundary conditions. We set different values of α and t, the stable pat-
terns in Figures 10–13 are obtained with Ku = 1× 10−4, ε = 0.0001, µ = 0.01, β = 0.5,
L = 5, N = 512. The initial conditions are: u(3N/8 : 5N/8, 5N/8 : 6N/8, 5N/8 :
6N/8, 0) = u(3N/8 : 5N/8, 2N/8 : 3N/8, 2N/8 : 3N/8, 0) = 1, elsewhere u = 0.
v(5N/8 : N, N/4 : N, N/4 : N, 0) = 0.1, elsewhere, v = 0. We showed some patterns in
Figures 10–13 of fractional-in-space nonlinear coupled FitzHugh–Nagumo models for the
first time. Some patterns in Figures 10–13 are different from any previously obtained in
numerical studies.

(a) t = 400 (b) t = 600 (c) t = 1000 (d) t = 2000 (e) t = 3000

Figure 3. The stable spatio-temporal waves of v at α = 2 and different times for Experiment 2.

(a) α = 1.6 (b) α = 1.7 (c) α = 1.8 (d) α = 1.90

Figure 4. The stable spatio-temporal waves of v at t = 400 for Experiment 2.

(a) α = 1.5 (b) α = 1.6 (c) α = 1.7 (d) α = 1.8 (e) α = 1.9

Figure 5. The stable spatio-temporal waves of v at t = 1000 and different α for Experiment 2.
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(a) α = 1.5 (b) α = 1.6 (c) α = 1.7 (d) α = 1.8 (e) α = 1.9

Figure 6. The stable spatio-temporal waves of v at t = 2000 and different α for Experiment 2.

(a) t = 400 (b) t = 600 (c) t = 1000 (d) t = 2000

Figure 7. The stable spatio-temporal waves of v at α = 1.5 and different times for Experiment 2.

(a) t = 400 (b) t = 600 (c) t = 1000 (d) t = 2000

Figure 8. The stable spatio-temporal waves of v at α = 1.6 and different times for Experiment 2.

(a) t = 400 (b) t = 600 (c) t = 1000 (d) t = 2000

Figure 9. The stable spatio-temporal waves of v at α = 1.7 and different times for Experiment 2.

(a) t = 500 (b) t = 1000 (c) t = 2000 (d) t = 3000

Figure 10. The patterns of u at Ku = 1× 10−4, ε = 0.0001, µ = 0.01, β = 0.5, N = 512, and α = 1.8.
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(a) t = 500 (b) t = 1000 (c) t = 2000 (d) t = 3000

Figure 11. The patterns of u at Ku = 1× 10−4, ε = 0.0001, µ = 0.01, β = 0.5, N = 512, and α = 2.

(a) t = 1000 (b) t = 2000 (c) t = 3000
Figure 12. The patterns of v at Ku = 1× 10−4, ε = 0.0001, µ = 0.01, β = 0.5, N = 512, and α = 1.8.

(a) t = 1000 (b) t = 2000 (c) t = 3000
Figure 13. The patterns of v at Ku = 1× 10−4, ε = 0.0001, µ = 0.01, β = 0.5, N = 512, and α = 2.

Experiment 3. Numerical simulation provides us with a universal approach to physical insight
into fractional reaction-diffusion model. Next, we simulate the following space fractional coupled
Gray–Scott model [37–40],

∂u
∂t

= −Ku(−∆
α
2 )u− uv2 + F(1− u),

∂v
∂t

= −Kv(−∆
β
2 )v + uv2 − (F + k)v.

(20)

In the simulation Experiment, we set v = v(x, y, t) or v = v(x, y, z, t) with similar
expressions for u in two and three dimensions. In two dimensions, we experiment (20) on
a square domain size [−1, 1]× [−1, 1] with boundary conditions. A 64× 64 mesh point
area located symmetrically about the centre of the grid was perturbed to (u, v) = ( 1

2 , 1
4 ),

and the entire model was placed in the state (u, v) = (1, 0). The patterns in Figure 14 were
obtained with the diffusion coefficients in space given as Du = 2× 10−5, Dv = 1× 10−5,
F = 0.025, k = 0.055, L = 2, N = 128, and the time step is τ = 0.01. The patterns in
Figure 15 were obtained with the diffusion coefficients in space given as Du = 2× 10−5,
Dv = 1× 10−5, τ = 0.01. F = 0.037, k = 0.058, and the time step is τ = 0.01.

In three dimensions, we experiment (20) on the domain size [−1, 1]× [−1, 1]× [−1, 1]
with boundary conditions. A 32× 32× 32 mesh point area located symmetrically about
the centre of the grid was perturbed to (u, v) = ( 1

2 , 1
4 ), and the entire model was placed in

the state (u, v) = (1, 0). We show some patterns in Figures 16–18 of the space fractional
3D coupled Gray–Scott model are different from any previously obtained in numerical
studies. The patterns in Figure 16 were obtained with the diffusion coefficients in space
given as Ku = 2× 10−5, Kv = 1× 10−5, F = 0.02, k = 0.055, N = 128, and α = β = 1.8.
The patterns in Figure 17 were obtained with the diffusion coefficients in space given as
Ku = 2× 10−5, Kv = 1× 10−5, F = 0.015, k = 0.045, and α = β = 1.9. The patterns in
Figure 18 were obtained with the diffusion coefficients in space given as Ku = 2× 10−5,
Kv = 1× 10−5, F = 0.02, k = 0.055, N = 128, and α = β = 1.9. The time step was τ = 0.01.
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(a) t = 700 (b) t = 1200 (c) t = 3000

(d) t = 5700 (e) t = 14000 (f) t = 30,000

Figure 14. The patterns of u at α = β = 1.9 for Experiment 3 with Du = 2× 10−5, Dv = 1× 10−5,
F = 0.025, k = 0.055, L = 2, N = 128.

(a) t = 800 (b) t = 1300 (c) t = 1700

(d) t = 5600 (e) t = 10,000 (f) t = 30,000

Figure 15. The patterns of u at α = β = 1.9 for Experiment 3 with Du = 2× 10−5, Dv = 1× 10−5,
τ = 0.01. F = 0.037, k = 0.058.

(a) t = 6000 (b) t = 8000 (c) t = 11,000 (d) t = 20,000

Figure 16. The patterns of u at Ku = 2× 10−5, Kv = 1× 10−5, F = 0.02, k = 0.055, N = 128, and
α = β = 1.8 for Experiment 3.
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(a) t = 5000 (b) t =10,000 (c) t = 15,000 (d) t =20,000

Figure 17. The patterns of v at Ku = 2× 10−5, Kv = 1× 10−5, F = 0.015, k = 0.045, and α = β = 1.9
for Experiment 3.

(a) t = 6000 (b) t = 8000 (c) t = 11,000 (d) t =20,000

Figure 18. The patterns of u at Ku = 2× 10−5, Kv = 1× 10−5, F = 0.02, k = 0.055, N = 128, and
α = β = 1.9 for Experiment 3.

4. Conclusions

In this paper, the Fourier spectral method is used to solve the fractional-in-space
nonlinear coupled FitzHugh–Nagumo model. It is found that the results of numerical
experiments are consistent with the theoretical results of other scholars, which verifies the
accuracy of the method. We show that 3D stable spatio-temporal spiral patterns can be
sustained for a long time; these spiral waves are different from any previously obtained in
numerical studies. The numerical results in Experiment 1 show that the present method has
strong competitiveness and reliability. In Experiment 3, we simulate 2D and 3D fractional-
in-space nonlinear coupled Gray–Scott models. The reliability and efficiency are verified
by numerical experiments. The present method provides us with a universal approach and
insight into the fractional reaction-diffusion model. The results show that the fractional
FitzHugh–Nagumo model and Gray–Scott model can describe the pattern behavior well,
and that the fractional reaction-diffusion model has unique properties that the integer
model does not have.

Author Contributions: Conceptualization, Y.W. and X.L.; data curation and formal analysis, Y.W.;
funding acquisition, C.H.; methodology, X.L.; software, C.H. and X.L.; validation, Y.W. and X.L.;
writing—original draft and writing—review and editing, Y.W., X.L. and C.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This paper is supported by the Natural Science Foundation of Inner Mongolia [2021MS01009].

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Acknowledgments: The authors would like to express their thanks to the unknown referees for their
careful reading and helpful comments.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication
of this article.

References
1. Li, Y.; Chen, Y.Q.; Podlubny, I. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 2009, 45,

1965–1969. [CrossRef]
2. Tan, W.; Xu, M. Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model. Acta Mech. Sin. 2002,

18, 342–349.
3. Scott-Blair, G.W. The role of psychophysics in rheology. J. Colloid Sci. 1947, 2, 21–32. [CrossRef]
4. Ding, C.; Cao, J.; Chen, Y.Q. Fractional-order model and experimental verification for broadband hysteresis in piezoelectric

actuators. Nonlinear Dyn. 2019, 98, 3143–3153. [CrossRef]
5. Sokolov, I.M.; Klafter, J.; Blumen, A. Fractional kinetics. Phys. Today 2002, 55, 48–54. [CrossRef]

http://doi.org/10.1016/j.automatica.2009.04.003
http://dx.doi.org/10.1016/0095-8522(47)90007-X
http://dx.doi.org/10.1007/s11071-019-05128-w
http://dx.doi.org/10.1063/1.1535007


Fractal Fract. 2022, 6, 136 12 of 13

6. Gerasimov, A.N. A generalization of linear laws of deformation and its application to inner friction problems. Prikl. Math. Mekh.
1948, 12, 251–259.

7. Schneider, W.R.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134–144. [CrossRef]
8. Metzler, R.; Glockle, W.G.; Nonnenmacher, T.F. Fractional model equation for anomalous diffusion. Phys. A Stat. Mech. Its Appl.

1994, 211, 13–24. [CrossRef]
9. Jiang, X.; Xu, M.; Qi, H. The fractional diffusion model with an absorption term and modified Fick’s law for non-local transport

processes. Nonlinear Anal. Real World Appl. 2010, 11, 262–269. [CrossRef]
10. Adomian, G. Solving Frontier Problems in Physics: The Decomposition Method; Kluwer Academic: Boston, MA, USA, 1994.
11. Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations differential equations. J. Math. Anal.

Appl. 2006, 316, 321–354. [CrossRef]
12. He, J.H.; El-Dib, Y.O.; Mady, A.A. Homotopy perturbation method for the fractal toda oscillator. Fractal Fraction 2021, 5, 93.

[CrossRef]
13. Zhang, Y.; Cao, J.; Bu, W.; Xiao, A. A fast finite difference/finite element method for the two-dimensional distributed-order

time-space fractional reaction-diffusion equation. Int. J. Model. Simul. Sci. Comput. 2020, 11, 2050016 . [CrossRef]
14. Daftardar-Gejji, V.; Sukale, Y.; Bhalekar, S. A new predictor-corrector method for fractional differential equations. Appl. Math.

Comput. 2014, 244, 158–182. [CrossRef]
15. Jhinga, A.; Daftardar-Gejji, V. A new finite difference predictor-corrector method for fractional differential equations. Appl. Math.

Comput. 2018, 336, 418–432. [CrossRef]
16. Wang, Y.L.; Jia, L.N.; Zhang, H.L. Numerical solution for a class of space-time fractional equation in reproducing. Int. J. Comput.

Math. 2019, 96, 2100–2111. [CrossRef]
17. Dai, D.D.; Ban, T.T.; Wang, Y.L.; Zhang, W. The piecewise reproducing kernel method for the time variable fractional order

advection-reaction-diffusion equations. Therm. Sci. 2021, 25, 1261–1268. [CrossRef]
18. Podlubny, I. Matrix approach to discrete fractional calculus. Fract. Calc. Appl. Anal. 2000, 3, 359–386.
19. Wang, J.J.; Xiao, A.G. Conservative Fourier spectral method and numerical investigation of space fractional Klein-Gordon-

Schrödinger equations. Appl. Math. Comput. 2019, 350, 348–365. [CrossRef]
20. Zhao, X.; Liu, B.; Zhang, P.; Zhang, W.; Liu, F. Fourier spectral method for the modified Swift-Hohenberg equation. Adv. Differ.

Equ. 2013, 2013, 156. [CrossRef]
21. Bueno-Orovio, A.; Kay, D.; Burrage, K. Fourier spectral methods for fractional-in-space reaction-diffusion equations. Bit Numer.

Math. 2014, 54, 937–954. [CrossRef]
22. Pelz, R.B. Fourier spectral method on ensemble architectures. Comput. Methods Appl. Mech. Eng. 1991, 89, 529–542. [CrossRef]
23. Xue, D.Y. Fractional Calculus and Fractional-Order Control; Science Press: Beijing, China, 2018.
24. Owolabi, K.M.; Atangana, A. Numerical Methods for Fractional Differentiation; Springer: Singapore, 2019.
25. Atangana, A.; Alqahtani, R.T. New numerical method and application to Keller-Segel model with fractional order derivative.

Chaos Solitons Fractals 2018, 116, 14–21. [CrossRef]
26. Yang, X.J.; Baleanu, D.; Srivastava, H.M. Local fractional similarity solution for the diffusion equation defined on Cantor sets.

Appl. Math. Lett. 2015, 47, 54–60. [CrossRef]
27. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of

Their Solution and Some of Their Applications; Academic Press: New York, NY, USA, 1998.
28. Podlubny, I. Geometric and physical interpretations of fractional integration and differentiation. Fract. Calc. Appl. Anal. 2001, 5,

230–237.
29. Yang, X.J. General Fractional Derivatives: Theory, Methods and Applications; CRC Press: New York, NY, USA, 2019.
30. Han, C.; Wang, Y.L.; Li, Z.Y. Numerical solutions of space fractional variable-coefficient KdV-modified KdV equation by Fourier

spectral method. Fractals 2021, 29, 2150246. [CrossRef]
31. Han, C.; Wang, Y.L.; Li, Z.Y. A high-precision numerical approach to solving space fractional Gray-Scott model. Appl. Math. Lett.

2022, 125, 107759. [CrossRef]
32. Fitzhugh, R. Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 1995, 17, 257–269.

[CrossRef]
33. Nagumo, J.; Arimoto, S.; Yoshizawa, S. An active pulse transmission line simulating nerve axon. Proc. IRE 1962, 50, 2061–2070.

[CrossRef]
34. Magin, R.L.; Abdullah, O.; Baleanu, D.; Zhou, X.J. Anomalous diffusion expressed through fractional order differential operators

in the Bloch-Torrey equation. J. Magn. Reson. 2008, 190, 255–270. [CrossRef]
35. Meerschaert, M.M.; Mortensen, J.; Wheatcraft, S.W. Fractional vector calculus for fractional advection-dispersion. Phys. A Stat.

Mech. Its Appl. 2006, 367, 181–190. [CrossRef]
36. Liu, F.W.; Zhuang, P.H.; Turner, I.; Anh, V.; Burrage, K. A semi-alternating direction method for a 2-D fractional FitzHugh-Nagumo

monodomain model on an approximate irregular domain. J. Comput. Phys. 2015, 293, 252–263. [CrossRef]
37. Lee, G.H. A second-order operator splitting Fourier spectral method for fractional-in-space reaction-diffusion equations. J.

Comput. Appl. Math. 2018, 33, 395–403. [CrossRef]
38. Wang, T.T.; Song, F.Y.; Wang, H.; Karniadakis, G.E. Fractional Gray-Scott model: Well-posedness, discretization, and simulations.

Comput. Methods Appl. Mech. Eng. 2019, 347, 1030–1049. [CrossRef]

http://dx.doi.org/10.1063/1.528578
http://dx.doi.org/10.1016/0378-4371(94)90064-7
http://dx.doi.org/10.1016/j.nonrwa.2008.10.057
http://dx.doi.org/10.1016/j.jmaa.2005.05.009
http://dx.doi.org/10.3390/fractalfract5030093
http://dx.doi.org/10.1142/S1793962320500166
http://dx.doi.org/10.1016/j.amc.2014.06.097
http://dx.doi.org/10.1016/j.amc.2018.05.003
http://dx.doi.org/10.1080/00207160.2018.1544367
http://dx.doi.org/10.2298/TSCI200302021D
http://dx.doi.org/10.1016/j.amc.2018.12.046
http://dx.doi.org/10.1186/1687-1847-2013-156
http://dx.doi.org/10.1007/s10543-014-0484-2
http://dx.doi.org/10.1016/0045-7825(91)90058-E
http://dx.doi.org/10.1016/j.chaos.2018.09.013
http://dx.doi.org/10.1016/j.aml.2015.02.024
http://dx.doi.org/10.1142/S0218348X21502467
http://dx.doi.org/10.1016/j.aml.2021.107759
http://dx.doi.org/10.1007/BF02477753
http://dx.doi.org/10.1109/JRPROC.1962.288235
http://dx.doi.org/10.1016/j.jmr.2007.11.007
http://dx.doi.org/10.1016/j.physa.2005.11.015
http://dx.doi.org/10.1016/j.jcp.2014.06.001
http://dx.doi.org/10.1016/j.cam.2017.09.007
http://dx.doi.org/10.1016/j.cma.2019.01.002


Fractal Fract. 2022, 6, 136 13 of 13

39. Liu, Y.; Fan, E.Y.; Yin, B.L.; Li, H.; Wang, J. TT-M finite element algorithm for a two-dimensional space fractional Gray-Scott
model. Comput. Math. Appl. 2020, 80, 1793–1809. [CrossRef]

40. Zhang, H.; Jiang, X.Y.; Zeng, F.H.; Karniadakis, G.E. A stabilized semi-implicit Fourier spectral method for nonlinear space-
fractional reaction-diffusion equations. J. Comput. Phys. 2019, 405, 109141. [CrossRef]

41. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam,
The Netherlands, 2006.

42. Atanackovic, T.M.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Maechanics; John Willey Sons Inc.:
Hoboken, NJ, USA, 2014.

43. Ruiz-Ramirez, J.; Macias-Diaz, J.E. A finite-difference scheme to approximate non-negative and bounded solutions of a FitzHugh-
Nagumo equation. Int. J. Comput. Math. 2011, 88, 3186–3201. [CrossRef]

44. INan, B.; Ali, K.K.; Saha, A.; Ak, T. Analytical and numerical solutions of the Fitzhugh-Nagumo equation and their multistability
behavior. Numer. Methods Partial Differ. Equ. 2021, 37, 7–23. [CrossRef]

45. Engler, H. On the speed of spread for fractional reaction-diffusion equations. Int. J. Differ. Equ. 2010, 315, 315–421. [CrossRef]

http://dx.doi.org/10.1016/j.camwa.2020.08.011
http://dx.doi.org/10.1016/j.jcp.2019.109141
http://dx.doi.org/10.1080/00207160.2011.579964
http://dx.doi.org/10.1002/num.22516
http://dx.doi.org/10.1155/2010/315421

	Introduction
	Numerical Method
	Simulation Results
	Conclusions
	References

