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Abstract: The aim of this research work is to derive some appropriate results for extremal solutions to
a class of generalized Caputo-type nonlinear fractional differential equations (FDEs) under nonlinear
boundary conditions (NBCs). The aforesaid results are derived by using the monotone iterative
method, which exercises the procedure of upper and lower solutions. Two sequences of extremal
solutions are generated in which one converges to the upper and the other to the corresponding
lower solution. The method does not need any prior discretization or collocation for generating the
aforesaid two sequences for upper and lower solutions. Further, the aforesaid techniques produce
a fruitful combination of upper and lower solutions. To demonstrate our results, we provide some
pertinent examples.

Keywords: ϑ-Caputo derivative; extremal solutions; monotone iterative method; sequences

1. Introduction

Over the last few decades, fractional calculus has attracted the attention of many
researchers in the community of science and technology. This is because of its significant
applications in different fields of science and engineering such as mathematics, physics,
chemistry, biology, economics, finance, rheology, etc. (for more details, see [1–3]). Further,
the most important applications of fractional calculus can be found in the description of
memory and hereditary processes. The mentioned processes can be more nicely explained
by the concept of fractional-order derivatives as compared to traditional ones. Keeping their
importance in mind, researchers have given much attention to the use of fractional-order
derivatives and integrals in the mathematical modeling of real-world processes instead
of classical derivatives and integrals. In this regard, several monographs, and plenty of
papers and books have been published, in which various kinds of important results and
applications have been reported. Some of these can be found in [4–7]. Nevertheless, the
application of the aforesaid area has been traced out just in the last two decades. This is due
to the progress in the area of chaos that revealed refined relationships with the concepts of
fractional calculus. In addition, in recent times, the application of the theory of fractional
calculus to robotics has opened promising aspects for future developments, where in
these robots, joint-level control is usually planted by using PID-like schemes with position
feedback. For instance, one famous machine using the fractional PDα controller is known
as the Hexapod robot (see [8]). Further, some important applications of fractional calculus
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can be found about the dynamics in the trajectory control of redundant manipulators,
where fractional-order derivatives have a more precise appearance than classical ones
(see [9]). Further, the fractional derivative is a global operator that preserves greater
degrees of freedom as compared to integer-order derivative, because a classical derivative
with integer-order is a local operator. It is estimated that the fractional-order derivative
operation contains some types of boundary conditions that involve information on the
function further out. Some researchers have proved that fractional-order derivatives play
a significant role in electrochemical analysis to elucidate the mechanistic behavior of the
concentration of a substrate at the electrode surface to the current. Some researchers have
proved that fractional-order modelers of contaminant flow in heterogeneous porous media
involving fractional derivatives are more powerful than classical ones (see [10]). It should
be kept in mind that fractional-order derivative operation of a function produces a complete
spectrum or accumulation, which preserves the corresponding integer-order counterpart
as a special case.

It is interesting that fractional-order derivatives have not yet been uniquely defined.
Various renowned mathematicians have given their own definitions. Among the said
definitions, some of them have gained much more popularity and proper attention from
researchers, such as Riemann–Liouville (RL), Caputo, Hilfer, Caputo–Hadamard, Caputo–
Katugampola, etc. It is interesting that aside from the aforesaid operators various other
variants that contain singular kernels have been introduced recently. Hence the frac-
tional differential operators have been divided into two classes including singular and
non-singular. Here we state that this partition is not bad but provides a great degree of
freedom in the choice of operator for the description of a particular phenomenon. It is
remarkable that nearly all mentioned operators preserve memory in their respective kernels.
Further, the two partitions of singular and non-singular kernels have their own benefits
and drawbacks.

We remark that Hilfer-type fractional calculus unifies the aforesaid definitions. It is
important that ϑ-Hilfer operators constitute a wide class of fractional derivatives (FDs). In
this respect, some frequent results involving ϑ-FDs have been reported in [11–13]. How-
ever, various strategies exist in the literature to handle such types of problems of FDEs
for computation of their solutions. Numerous tools and theories have been established
so far. Iterative techniques of various kinds have key importance to investigate the afore-
mentioned area. Among them are the monotone iterative algorithm, along with the upper
and lower solutions method [14,15], fixed-point technique [16–18], and coincidence degree
theory [19,20]. In particular, the monotone iterative method together with the technique
of upper and lower solutions is an advantageous and effective tool for the existence as
well as the approximation of solutions for nonlinear problems. In this regard, very useful
results have been published so far. Among the iterative techniques, those introduced by
Ladde, Lakshmikantham, and Vatsala [21] in 1985 for nonlinear differential equations have
gained proper attention. Therefore, monotone iterative techniques associated with upper
and lower solutions have been extensively used for nonlinear partial differential equations
in the last few decades. In this regard, plenty of work has been published to date; a few
can be found in [22–25]. Proposals have been made for classical differential equations for
the first time [14,15,26–29]. In addition, the aforesaid techniques have been widely used
to deal with FDEs subject to initial and boundary conditions. Some significant results
can be found in [25,30–37]. We demonstrate that the said method is well known because
it not only produces constructive proof for existence theorems but it also yields various
comparison results, which are powerful tools to investigate the qualitative properties of
solutions. Further, the sequence of iterations has useful behavior in the computation of
numerical solutions to various boundary value and initial boundary value problems of
classical as well FDEs. In addition, the method of upper and lower solutions is very useful
for the construction of Lyapunov functions. Construction of such functions is increasingly
used to derive various stability theories in dynamical systems.
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Motivated by the work cited above, and particularly by the work in [31], we determine
the existence criteria of extremal solutions for the following ϑ-Caputo-type FDE in a Caputo
sense with NBCs {

cDν;ϑ
a+ φ(ς) = F(ς, φ(ς)), ς ∈ J := [a, b],

G(φ(a), φ(b)) = 0,
(1)

where 0 < ν ≤ 1, cDν;ϑ
a+ is the ϑ-fractional operator of order ν in the Caputo sense and this

is investigated. Further, F ∈ C(J×R,R), G ∈ C(R2,R).
The considered problem (1) in the current article includes a wide range of nonlinear

FDEs involving the standard Caputo operator (for ϑ(ς) = ς), Caputo–Hadamard (for
ϑ(ς) = log ς), and Caputo–Katugampola (for ϑ(ς) = ςp, p > 0). Further, fractional
operators have been listed in Almeida [11] for further applications. Further, results acquired
in the current article include the results of Franco et al. [26] if a→ 0, ϑ(ς)→ ς, and ν = 1
as a special case.

In this regard, we also point out some recent and similar findings that used operators
on many fractional problems; see [38–40]. To the best of our knowledge in this regard, no
one has considered the monotone iterative procedure to obtain the existence of extremal
solutions involving a ϑ-Caputo derivative subject to NBCs. Therefore, motivated by the
aforesaid gap, we have conducted this study.

The rest of this article is organized as follows. In Section 2, we insert some basic
definitions and important results. Section 3 is devoted to studying the existence of extremal
solutions for (1). In Section 4, we give two appropriate examples to highlight the feasibility
of our abstract results.

2. Basic Results

Some fundamental results about the ϑ-Caputo derivative and integral that are needed
throughout this work are given below.

The function ϑ ∈ C(J,R) is non-decreasing differentiable with argument 0 < ϑ′(ς), at
every point of J.

Definition 1 ([6,11]). The ϑ-RL fractional integral of order ν > 0 for an integrable function
φ : J −→ R is given by

Iν;ϑ
a+ φ(ς) =

1
Γ(ν)

∫ ς

a
ϑ′(s)(ϑ(ς)− ϑ(s))ν−1φ(s)ds, ς > a.

Definition 2 ([11]). Let ϑ, φ ∈ Cn(J,R). The ϑ-RL derivative of fractional order of a function φ
with n− 1 < ν < n is given by

Dν;ϑ
a+ φ(ς) =

(
Dt

ϑ′(ς)

)n
In−ν;ϑ

a+ φ(ς)

=
1

Γ(n− ν)

(
Dt

ϑ′(ς)

)n ∫ ς

a
ϑ′(s)(ϑ(ς)− ϑ(s))n−ν−1φ(s)ds,

where n = [ν] + 1 (n ∈ N), and Dt =
d
dt .

Definition 3 ([11]). Let ϑ, φ ∈ Cn(J,R). The ϑ-Caputo derivative of fractional order of function
φ with n− 1 < ν < n is defined by

cDν;ϑ
a+ φ(ς) = In−ν;ϑ

a+ φ
[n]
ϑ (ς),

where φ
[n]
ϑ (ς) =

(
Dς

ϑ′(ς)

)n
φ(ς), n = [ν] + 1 for ν /∈ N, and n = ν for ν ∈ N.
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One has

cDν;ϑ
a+ φ(ς) =

{∫ ς
a

ϑ′(s)(ϑ(ς)−ϑ(s))n−ν−1

Γ(n−ν)
φ
[n]
ϑ (s)ds , if ν /∈ N,

φ
[n]
ϑ (ς) , if ν ∈ N.

Lemma 1 ([11]). Let ν, µ > 0, and φ ∈ C(J,R), for every ς ∈ J

1. cDν;ϑ
a+ I

ν;ϑ
a+ φ(ς) = φ(ς),

2. Iν;ϑ
a+

cDν;ϑ
a+ φ(ς) = φ(ς)− φ(a), 0 < ν ≤ 1,

3. Iν;ϑ
a+ (ϑ(ς)− ϑ(a))µ−1 = Γ(µ)

Γ(µ+ν)
(ϑ(ς)− ϑ(a))µ+ν−1,

4. cDν;ϑ
a+ (ϑ(ς)− ϑ(a))µ−1 = Γ(µ)

Γ(µ−ν)
(ϑ(ς)− ϑ(a))µ−ν−1,

5. cDν;ϑ
a+ (ϑ(ς)− ϑ(a))k = 0, ∀k < n ∈ N.

Definition 4 ([7]). One- and two-parameter Mittag–Leffler functions (MLFs) are recalled as

Eν(z) =
∞

∑
k=0

zk

Γ(νk + 1)
, (z ∈ R, ν > 0),

and

Eν,µ(z) =
∞

∑
k=0

zk

Γ(νk + µ)
, ν, µ > 0 and z ∈ R,

respectively. Clearly E1,1(z) = E1(z) = exp(z).

Further properties of MLFs are given below.

Lemma 2 ([41]). Let ν ∈ (0, 1) and z ∈ R, one has

1. Eν,1 and Eν,ν are non-negative.
2. Eν,1(z) ≤ 1,Eν,ν(z) ≤ 1

Γ(ν) , for any z < 0.

For further analysis, we recall the following Lemma [31] as:

Lemma 3 ([31] (Lemma 4)). Let ν ∈ (0, 1], λ ∈ R and h ∈ C(J,R), then, the linear version{
cDν;ϑ

a+ φ(ς) + λφ(ς) = h(ς), ς ∈ J.
φ(a) = φa,

has a unique solution that is described as

φ(ς) = θaEν,1
(
−λ(ϑ(ς)− ϑ(a))ν

)
+
∫ ς

a
ϑ′(s)(ϑ(ς)− ϑ(s))ν−1Eν,ν

(
−λ(ϑ(ς)− ϑ(s))ν

)
h(s)ds,

where Eν,µ(·) is the two-parametric MLF defined earlier.

The given comparison results comprise a central rule in the following analysis.

Lemma 4 ([31] (Lemma 5)). Let ν ∈ (0, 1], and λ ∈ R, if γ ∈ C(J,R) obey the given relation{
cDν;ϑ

a+ γ(ς) ≥ −λγ(ς), ς ∈ (a, b],
γ(a) ≥ 0,

then γ(ς) ≥ 0, for all ς ∈ J.
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3. Main Results

Here, key findings are established about the ϑ-Caputo FDEs (1). We develop two
monotone iterative sequences for upper and lower solutions, respectively.

Definition 5. The function φ ∈ C(J,R) such that cDν;ϑ
a+ φ exists and is continuous on J and is

known to be a solution of the problem (1). Further, φ gives the statistics of the equation cDν;ϑ
a+ φ(ς) =

F(ς, φ(ς)), for each ς ∈ J and the NBCs

G(φ(a), φ(b)) = 0.

Subsequently, we mention the definitions of extremal solutions of ϑ-Caputo FDEs (1).

Definition 6. The mapping φ0 ∈ C(J,R) is known as lower solution (1), if it satisfies{
cDν;ϑ

a+ φ0(ς) ≤ F(ς, φ0(ς)), t ∈ (a, b],
G(φ0(a), φ0(b)) ≤ 0.

An upper solution v0 ∈ C(J,R) of the problem (1) can be defined in a similar way by reversing
the above inequality.

Now to move forward, we will introduce the following conditions:

Hypothesis 1. There exist φ0 and v0 as lower and upper solutions of problem (1) in C(J,R)
respectively, with φ0(ς) ≤ v0(ς), ς ∈ J.

Hypothesis 2. There exists a constant λ > 0 with

F(ς, y)− F(ς, x) ≥ −λ(y− x) for φ0(ς) ≤ x ≤ y ≤ v0(ς), ς ∈ J.

Hypothesis 3. There exist constants c > 0 and d ≥ 0 with φ0(a) ≤ u1 ≤ u2 ≤ v0(a),
φ0(b) ≤ v1 ≤ v2 ≤ v0(b), such that

G(u2, v2)−G(u1, v1) ≤ c(u2 − u1)− d(v2 − v1),

Now, we shall apply the monotonous method to prove our key findings.

Theorem 1. Let F : J×R −→ R be continuous. Assume that Hypotheses 1–3 hold. Then there
exist two monotone iterative sequences {φn} and {vn}, which are converging uniformly on J to the
extremal solutions of (1) in the sector [φ0, v0], where

[φ0, v0] = {z ∈ C(J,R) : φ0(ς) ≤ z(ς) ≤ v0(ς), ς ∈ J}.

Proof. First, for any φ0(ς), v0(ς) ∈ C(J,R) and λ > 0, we consider the following FDEs{
cDν;ϑ

a+ φn+1(ς) = F(ς, φn(ς))− λ(φn+1(ς)− φn(ς)), ς ∈ J,
φn+1(a) = φn(a)− 1

cG(φn(a), φn(b)),
(2)

and {
cDν;ϑ

a+ vn+1(ς) = F(ς, vn(ς))− λ(vn+1(ς)−vn(ς)), ς ∈ J,
vn+1(a) = vn(a)− 1

cG(vn(a), vn(b)),
(3)
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According to Lemma 3, one can deduce that (2) and (3) preserve at most one solution
in C(J,R). Thus we have

φn+1(ς) =

(
φn(a)− 1

c
G(φn(a), φn(b))

)
Eν,1

(
−λ(ϑ(ς)− ϑ(a))ν

)
+
∫ ς

a
ϑ′(s)(ϑ(ς)− ϑ(s))ν−1Eν,ν

(
−λ(ϑ(ς)− ϑ(s))ν

)(
F(s, φn(s)) + λφn(s)

)
ds, ς ∈ J,

vn+1(ς) =

(
vn(a)− 1

c
G(vn(a), vn(b))

)
Eν,ν

(
−λ(ϑ(ς)− ϑ(a))ν

)
+
∫ ς

a
ϑ′(s)(ϑ(ς)− ϑ(s))ν−1Eν,ν

(
−λ(ϑ(ς)− ϑ(s))ν

)(
F(s, vn(s)) + λvn(s)

)
ds, ς ∈ J.

For appropriateness, the proof will be divided into a number of steps.
Step 1: The sequences φn(ς), vn(ς)(n ≥ 1) are lower and upper solutions of (1),

correspondingly. Moreover, we assume

φ0(ς) ≤ φ1(ς) ≤ · · · ≤ φn(ς) ≤ · · · ≤ vn(ς) ≤ · · · ≤ v1(ς) ≤ v0(ς), ς ∈ J. (4)

Firstly, we show that

φ0(ς) ≤ φ1(ς) ≤ v1(ς) ≤ v0(ς), ς ∈ J.

Set γ(ς) = φ1(ς)− φ0(ς). From (2) and Definition 6, we obtain

cDν;ϑ
a+ γ(ς) = cDν;ϑ

a+ φ1(ς)− cDν;ϑ
a+ φ0(ς)

≥ F(ς, φ0(ς))− λ(φ1(ς)− φ0(ς))− F(ς, φ0(ς))

= −λγ(ς).

Again, since γ(a) = − 1
cG(φ0(a), φ0(b)) ≥ 0, γ(ς) ≥ 0, for ς ∈ J due to Lemma 4.

Thus, φ0(ς) ≤ φ1(ς).
Similarly, we can find that v1(ς) ≤ v0(ς), ς ∈ J.
Now, let γ(ς) = v1(ς)− φ1(ς). Using (2) and (3) together with Hypotheses 2 and 3,

we obtain

cDν;ϑ
a+ γ(ς) = F

(
ς, v0(ς)

)
− F

(
ς, φ0(ς)

)
− λ

(
v1(ς)−v0(ς)

)
+ λ

(
φ1(ς)− φ0(ς)

)
≥ −λ

(
v0(ς)− φ0(ς)

)
− λ

(
v1(ς)−v0(ς)

)
+ λ

(
φ1(ς)− φ0(ς)

)
= −λγ(ς).

Since

γ(a) =
(
v0(a)− φ0(a)

)
− 1

c
(
G
(
v0(a), v0(b)

)
−G

(
φ0(a), φ0(b)

))
≥ d

c
(
v0(b)− φ0(b)

)
≥ 0,

we obtain φ1(ς) ≤ v1(ς), ς ∈ J due to Lemma 4.
Secondly, we show that φ1(ς), v1(ς) are extremum solutions of (1). Since φ0 and v0

are lower and upper solutions of (1), by Hypotheses 2 and 3, we obtain

cDν;ϑ
a+ φ1(ς) = F

(
ς, φ0(ς)

)
− λ

(
φ1(ς)− φ0(ς)

)
≤ F

(
ς, φ1(ς)

)
,

and

G(φ1(a), φ1(b)) ≤ G(φ0(a), φ0(b)) + c
(
φ1(a)− φ0(a)

)
− d(φ1(b)− φ0(b))

= −d(φ1(b)− φ0(b))

≤ 0.
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Therefore, φ1(ς) is a lower solution of (1). Analogously, it is obvious that v1(ς) is an
upper solution of (1).

Through the above debates and induction, we can show that φn(ς), vn(ς), (n ≥ 1) are
lower and upper solutions of (1), respectively, and the assumption (4) is true.

Step 2: φn → φ and vn → v.
First, we prove that {φn} is uniformly bounded. By considering supposition Hypothesis 2,

we may write

F(ς, φ0(ς)) + λφ0(ς) ≤ F(ς, φn(ς)) + λφn(ς) ≤ F(ς, v0(ς)) + λv0(ς), ς ∈ J

i.e.,

0 ≤ F(ς, φn(ς))− F(ς, φ0(ς)) + λ(φn(ς)− φ0(ς))

≤ F(ς, v0(ς))− F(ς, φ0(ς)) + λ(v0(ς)− φ0(ς)).

Hence, we obtain

|F(ς, φn(ς))− F(ς, φ0(ς)) + λ(φn(ς)− φ0(ς))| ≤ |F(ς, v0(ς))− F(ς, φ0(ς))

+ λ(v0(ς)− φ0(ς))|.

Thus

|F(ς, φn(ς)) + λφn(ς)| ≤ |F(ς, φn(ς))− F(ς, φ0(ς)) + λ(φn(ς)− φ0(ς))|
+ |F(ς, φ0(ς)) + λφ0(ς)|
≤ |F(ς, v0(ς))− F(ς, φ0(ς)) + λ(v0(ς)− φ0(ς))|
+ |F(ς, φ0(ς)) + λφ0(ς)|
≤ 2|F(ς, φ0(ς)) + λφ0(ς)|+ |F(ς, v0(ς)) + λv0(ς)|.

Since φ0,F are continuous on J, we can see a constant M independent of n with

|F(ς, φn(ς)) + λφn(ς)| ≤M. (5)

Furthermore, from Hypothesis 3, we can obtain

φ0(a)− 1
c
G(φ0(a), φ0(b)) ≤ φn(a)− 1

c
G(φn(a), φn(b)) ≤ v0(a)− 1

c
G(v0(a), v0(b)),

i.e.,

0 ≤ φn(a)− φ0(a)− 1
c
(
G(φn(a), φn(b))−G(φ0(a), φ0(b))

)
≤ v0(a)− φ0(a)− 1

c
(
G(v0(a), v0(b))−G(φ0(a), φ0(b))

)
.

Hence, we obtain∣∣∣∣φn(a)− φ0(a)− 1
c
(
G(φn(a), φn(b))−G(φ0(a), φ0(b))

)∣∣∣∣ ≤∣∣∣∣v0(a)− φ0(a)− 1
c
(
G(v0(a), v0(b))−G(φ0(a), φ0(b))

)∣∣∣∣
≤
∣∣∣∣φ0(a)− 1

c
G(φ0(a), φ0(b))

∣∣∣∣+ ∣∣∣∣v0(a)− 1
c
G(v0(a), v0(b))

∣∣∣∣.
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Thus∣∣∣∣φn(a)− 1
c
G(φn(a), φn(b))

∣∣∣∣ ≤ ∣∣∣∣φn(a)− φ0(a)− 1
c
(
G(φn(a), φn(b))−G(φ0(a), φ0(b))

)∣∣∣∣
+

∣∣∣∣φ0(a)− 1
c
G(φ0(a), φ0(b))

∣∣∣∣
≤ 2

∣∣∣∣φ0(a)− 1
c
G(φ0(a), φ0(b))

∣∣∣∣+ ∣∣∣∣v0(a)− 1
c
G(v0(a), v0(b))

∣∣∣∣.
Since φ0, v0 and G are continuous functions, we can find a constant K independent of

n, such that ∣∣∣∣φn(a)− 1
c
G(φn(a), φn(b))

∣∣∣∣ ≤ K. (6)

Moreover, by (2) and (3) we have

|φn+1(ς)| =
∣∣∣∣φn(a)− 1

c
G(φn(a), φn(b))

∣∣∣∣Eν,1
(
−λ(ϑ(ς)− ϑ(a))ν

)
+
∫ ς

a
ϑ′(s)(ϑ(ς)− ϑ(s))ν−1Eν,ν

(
−λ(ϑ(ς)− ϑ(s))ν

)∣∣F(s, φn(s)) + λφn(s)
∣∣ds, ς ∈ J.

Using Lemma 2 along with (5) and (6), we obtain

|φn+1(ς)| = K+
M

Γ(ν)

∫ ς

a
ϑ′(s)(ϑ(ς)− ϑ(s))ν−1ds

≤ K+
M(ϑ(b)− ϑ(a))ν

Γ(ν + 1)
.

Hence, {φn} is uniformly bounded in C(J,R). With same argument one can deduce
that {vn} is uniformly bounded.

It is necessary to derive that the sequences {φn} and {vn} are equi-continuous on J.
To do this, choosing ς1, ς2 ∈ J, with ς1 ≤ ς2. By (5) and (6) and Lemma 2, we have

|φn+1(ς2)− φn+1(ς1)| ≤
∣∣∣∣φn(a)− 1

c
G(φn(a), φn(b))

∣∣∣∣∣∣Eν,1
(
−λ(ϑ(ς2)− ϑ(a))ν

)
−

Eν,1
(
−λ(ϑ(ς1)− ϑ(a))ν

)∣∣
+
∫ ς1

a

ϑ′(s)
[
(ϑ(ς1)− ϑ(s))ν−1 − (ϑ(ς2)− ϑ(s))ν−1]

Γ(ν)
∣∣F(s, φn(s)) + λφn(s)

∣∣ds

+
∫ ς2

ς1

ϑ′(s)(ϑ(ς2)− ϑ(s))ν−1

Γ(ν)
∣∣F(s, φn(s)) + λφn(s)

∣∣ds

≤ K
∣∣Eν,1

(
−λ(ϑ(ς2)− ϑ(a))ν

)
−Eν,1

(
−λ(ϑ(ς1)− ϑ(a))ν

)∣∣
+

2M
Γ(ν + 1)

(ϑ(ς2)− ϑ(ς1))
ν.

By the continuity of Eν,1
(
−λ(ϑ(ς)− ϑ(a))ν

)
on J, the right-hand-side of the preceding

inequality approaches zero, when ς1 → ς2. This implies that {φn(ς)} is equi-continuous
on J. Likewise, we can demonstrate that {vn(ς)} is equi-continuous. Hence, by using
Ascoli-Arzelás theorem, the sequence φnk (ς) → φ∗(ς) and vnk (ς) → v∗(ς) as k → ∞.
Hence the aforesaid relation combined under the monotonicity of sequences {φn(ς)} and
{vn(ς)} yields

lim
n→∞

φn(ς) = φ∗(ς) and lim
n→∞

vn(t) = v∗(ς),

uniformly on ς ∈ J and the limit functions φ∗, v∗ satisfy (1).
Step 3: φ∗ and v∗ are maximal and minimal solutions of (1) in [φ0, v0].
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Let z ∈ [φ0, v0] be any solution of (1). Suppose that

φn(ς) ≤ z(ς) ≤ vn(ς), ς ∈ J, for some n ∈ N∗. (7)

Setting γ(ς) = z(ς)− φn+1(ς). It follows that

cDν;ϑ
a+ γ(ς) = F

(
ς, z(ς)

)
− F

(
ς, φn(ς)

)
+ λ

(
φn+1(ς)− φn(ς)

)
≥ −λ

(
z(ς)− φn(ς)

)
+ λ

(
φn+1(ς)− φn(ς)

)
= −λγ(ς).

Furthermore

φn+1(a) = φn(a)− 1
c
G(φn(a), φn(b))

= φn(a) +
1
c
G(z(a), z(b))− 1

c
G(φn(a), φn(b))

≤ z(a)− d
c
(
z(b)− φn(b)

)
≤ z(a),

that is
γ(a) ≥ 0.

In view of Lemma 4, we obtain γ(ς) ≥ 0, ς ∈ J, which implies

φn+1(ς) ≤ z(ς), ς ∈ J.

Utilizing the same procedure, we can derive that

z(ς) ≤ vn+1(ς), ς ∈ J.

Hence,
φn+1(ς) ≤ z(ς) ≤ vn+1(ς), ς ∈ J.

Hence (7) is satisfied on J for all n ∈ N∗. Employing n → ∞ on (7) from either side,
one has

φ∗ ≤ z ≤ v∗.

This confirms that φ∗, v∗ are the extremal solutions of (1) in [φ0, v0].

4. Illustrative Problems

This section includes some test problems for the illustration of our main results.

Example 1. Consider the ϑ-Caputo FDE (1) with

ν = 0.5, a = 1, b = e, ϑ(ς) = ln ς. (8)

In order to justify that Theorem 1 is valid, we take{
F(ς, φ(ς)) = 1− φ2(ς) + 2

√
ln ς, for ς ∈ [1, e],

G(φ(1), φ(e)) = φ(1)− 1.
(9)

Without difficulty, we can infer that

φ0(ς) = 1, v0(ς) = 1 +
√

ln ς,
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are lower and upper solutions of (1), respectively. It is apparent that φ0(ς) ≤ v0(ς), for ς ∈ [1, e].
In addition, for φ0(ς) ≤ x ≤ y ≤ v0(ς), we have

F(ς, y)− F(ς, x) ≥ −4(y− x), ς ∈ [1, e].

Hence the Hypothesis 2 holds with λ = 4. Further, if φ0(1) ≤ u1 ≤ u2 ≤ v0(1), φ0(e) ≤
v1 ≤ v2 ≤ v0(e), we have

G(u2, v2)−G(u1, v1) ≤ (u2 − u1).

Therefore, Hypothesis 3 holds with c = 1 and d = 0. An application of Theorem 1 shows that
the problem (1) with the data (8) and (9) has extremal solutions in the region [φ0, v0]. Moreover,
the monotone iterative sequences {φn}n∈N, {vn}n∈N can be acquired by

φn+1(ς) = E0.5,1

(
−4
√

ln
ς

s

)
+
∫ ς

1

(
ln

ς

s

)−0.5
E0.5,0.5

(
−4
√

ln
ς

s

)
×
(
1− φ2

n(s) + 2
√

ln s + 4φn(s)
)ds

s
, n ≥ 0,

(10)

vn+1(ς) = E0.5,1

(
−4
√

ln
ς

s

)
+
∫ ς

1

(
ln

ς

s

)−0.5
E0.5,0.5

(
−4
√

ln
ς

s

)
×
(
1−v2

n(s) + 2
√

ln s + 4vn(s)
)ds

s
, n ≥ 0.

(11)

Example 2. Consider the following Caputo FDE{
cDν

0+φ(ς) = sin(φ(ς))− φ(ς), ς ∈ [0, 1],
0.5φ(0)− 3φ(0)φ(1) = 0.

(12)

Note that problem (12) is a particular case of problem (1), where

ν = 0.5, a = 0, b = 1, ϑ(ς) = ς,

and {
F(ς, φ(ς)) = sin(φ(ς))− φ(ς), ς ∈ J,
G(φ(0), φ(1)) = 0.5φ(0)− 3φ(0)φ(1)

Taking φ0(ς) = 0 and v0(ς) =
√

ς, it is easy to verify that φ0, v0 are lower and upper
solutions of (12), respectively, and φ0(ς) ≤ v0(ς), for ς ∈ [0, 1]. Therefore, Hypothesis 1 of
Theorem 1 holds. However, if φ0(ς) ≤ x ≤ y ≤ v0(ς) we have

F(ς, y)− F(ς, x) ≥ −2(y− x), ς ∈ [0, 1].

Hence Hypothesis 2 holds with λ = 2, and if φ0(0) ≤ u1 ≤ u2 ≤ v0(0), φ0(1) ≤ v1 ≤
v2 ≤ v0(1), we have

G(u2, v2)−G(u1, v1) ≤ (u2 − u1).

Therefore, Hypothesis 3 holds with c = 1 and d = 0. According to Theorem 1, there
exist monotone iterative sequences {φn} and {vn} that are uniformly converging to φ∗ and v∗,
respectively, and φ∗, v∗ are the extremal solutions in [φ0, v0] of problem (12).

Example 3. Consider the following ϑ-Caputo FDEcD0.5;e2ς

0+ φ(ς) = 2√
π

√
e2ς − 1 + e2ς − 1− sin(e2ς − 1) + sin(φ(ς))− φ(ς), ς ∈ [0, 1],

φ(0) = 2π
e2−1+2π

φ(1).
(13)
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Comparing the above problem with problem (1), we obtain

ν = 0.5, a = 0, b = 1, ϑ(ς) = e2ς,

and {
F(ς, φ(ς)) = 2√

π

√
e2ς − 1 + e2ς − 1− sin(e2ς − 1) + sin(φ(ς))− φ(ς), ς ∈ J,

G(φ(0), φ(1)) = φ(0)− 2π
e2−1+2π

φ(1).

One can verify that φ(ς) = e2ς − 1 is an exact solution of the problem (1). Moreover, taking
φ0(ς) = 0 and v0(ς) = e2ς − 1 + 2π, it is easy to verify that φ0, v0 are lower and upper solutions
of (13), respectively, and φ0(ς) ≤ v0(ς), for ς ∈ [0, 1]. Therefore, Hypothesis 1 of Theorem 1 holds.
However, if φ0(ς) ≤ x ≤ y ≤ v0(ς) we have

F(ς, y)− F(ς, x) ≥ −2(y− x), ς ∈ [0, 1].

Hence Hypothesis 2 holds with λ = 2, and if φ0(0) ≤ u1 ≤ u2 ≤ v0(0), φ0(1) ≤ v1 ≤
v2 ≤ v0(1), we have

G(u2, v2)−G(u1, v1) ≤ (u2 − u1)−
2π

e2 − 1 + 2π
(v2 − v1).

Therefore, Hypothesis 3 holds with c = 1 and d = 2π
e2−1+2π

. According to Theorem 1, there
exist monotone iterative sequences {φn} and {vn} that are uniformly converging to φ∗ and v∗,
respectively, and φ∗, v∗ are the extremal solutions in [φ0, v0] of problem (13).

5. Conclusions

We have established sufficient results by using monotone iterative techniques together
with upper and lower solutions for a class of boundary value problem involving a general-
ized form of Caputo derivative of fractional order. By using the mentioned tool, we have
established fruitful combinations between lower and upper solutions. Further, the said
method has the ability to produce two sequences of upper and lower solutions, respectively.
For the construction of the aforesaid sequences this method does not need any kind of
discretization or collocation like other methods usually require. The two sequences we have
generated are of a monotonic type with increasing and decreasing behaviors, respectively.
Moreover, the sequence that is monotonically decreasing converges to its lower bound.
However, the other one that is monotonically increasing is converging to its upper bound.
The bounds for upper and lower solutions have also been investigated for their uniqueness
using Banach contraction theorem. For the justification of our results, we have provided
some examples. Overall we have concluded that the proposed procedure is a powerful and
efficient tool to study various classes of FDEs for their extremal solutions. In future this
technique can be applied to investigate those classes of FDEs involving non-singular-type
derivatives under boundary conditions for upper and lower solution. In addition, the
mentioned tool can be applied to investigate fractal-fractional-type problems corresponding
to boundary conditions. Overall we have concluded that the monotone iterative technique
of applied analysis is a powerful technique for dealing with various kinds of problems
involving different types of fractional-order operators.



Fractal Fract. 2022, 6, 146 12 of 13

Author Contributions: Conceptualization, C.D., Z.B.; writing—original draft preparation, C.D., Z.B.
and M.S.A.; methodology, C.D. and Z.B.; software, K.S. and B.A.; validation, C.D., Z.B., M.S.A. and
T.A.; formal analysis, C.D., Z.B. and M.S.A.; writing—review and editing, C.D., Z.B., M.S.A., K.S. and
T.A.; investigation, M.S.A., K.S., B.A. and T.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by the Prince Sultan University, Riyadh P.O. Box 11586, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Authors Kamal Shah, Bahaaeldin Abdalla and Thabet Abdeljawad would like
to thank Prince Sultan University for paying the APC and support through TAS research lab.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000.
2. Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College Press: London, UK, 2010.
3. Tarasov, V.E. Fractional Dynamics; Nonlinear Physical Science; Springer: Heidelberg, Germany, 2010.
4. Abbas, S.; Benchohra, M.; Graef, J.R.; Henderson, J. Implicit Fractional Differential and Integral Equations: Existence and Stability;

De Gruyter: Berlin, Germany, 2018.
5. Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo

Type; Springer Science & Business Media: New York, NY, USA, 2010.
6. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics

Sudies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204.
7. Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions, Related Topics and Applications; Springer: New York,

NY, USA, 2014.
8. Tenreiro Machado, J.A.; Silva, M.F.; Barbosa, R.S.; Jesus, I.S.; Reis, C.M.; Marcos, M.G.; Galhano, A.F. Some applications of

fractional calculus in engineering. Math. Probl. Eng. 2010, 34, 639801. [CrossRef]
9. da Graça Marcos, M.; Duarte, F.B.M.; Machado, J.A.T. Complex dynamics in the trajectory control of redundant manipulators.

Nonlinear Sci. Complex. 2007, 2007, 134143.
10. Atangana, A.; Kilicman, A. On the generalized mass transport equation to the concept of variable fractional derivative. Math.

Probl. Eng. 2014, 2014, 542809. [CrossRef]
11. Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul.

2017, 44, 460–481. [CrossRef]
12. Vanterler da C. Sousa, J.; Capelas de Oliveira, E. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018,

60, 72–91. [CrossRef]
13. Sousa, J.V.D.C.; de Oliveira, E.C. On the Stability of a Hyperbolic Fractional Partial Differential Equation. Differ. Equ. Dyn. Syst.

2019, 2019, 730465. [CrossRef]
14. Du, S.W.; Lakshmikantham, V. Monotone iterative technique for differential equations in a Banach space. J. Math. Anal. Appl.

1982, 87, 454–459. [CrossRef]
15. Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Spaces; Academic Press: New York, NY, USA, 1988.
16. Derbazi, C.; Baitiche, Z. Coupled systems of ψ-Caputo differential equations with initial conditions in Banach spaces. Mediterr. J.

Math. 2020, 17, 169. [CrossRef]
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