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Abstract: We investigate a class of fractional time-partial differential equations describing the dynam-
ics of the fast action potential process in contractile myocytes. The system is explored in both one and
two dimensional cases. Homogeneous and nonhomogeneous solutions are derived. We also numeri-
cally simulate some of the proposed fractional solutions to provide a different modeling perspective
on distinct phases of cardiac membrane potential. Results indicate that the fractional diffusion-wave
equation may be employed to model membrane potential dynamics with the fractional order working
as an extra asset to modulate electricity conduction, particularly for lower fractional order values.
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1. Introduction

Advancements in the understanding of heart functioning and related mechanisms
have contributed to the progress and development of more appropriate clinical and surgical
treatments of heart diseases [1]. In spite of the progress, these conditions are composed
of complex phenomena, thus figuring as a multidisciplinary challenge that demands
contribution from not only medical sciences professionals, but also researchers of different
knowledge areas, such as mathematicians, physicists, engineers, among others [2].

The heart consists mainly of muscle, with their cells collectively being called my-
ocardium. There are two types of heart cell. Known as muscle fibers, the first type
corresponds to muscle cells which have a contractile function that plays the mechanical
role of contraction. The second type refers to specialized cells that start the heart rhythm
and propagate electrical impulses, coordinating this activity [3].

In order to exercise the mechanical function of pumping blood, myocardial cells need
to be activated by an electrical stimulus that acts on the cell membrane. This electrical
action is caused by the movement of ions through cell membranes. It is known that the
intra- and extracellular potentials and the currents established by the ion flows through the
cardiac membrane are important electrical variables to study cardiac tissue conduction [4].
Moreover, the mechanical motions of the heart are stimulated and coordinated by electrical
waves that originate in the region of the sinoatrial node and spread through the atria
and ventricles, each different one being responsible for distinct progressions of cardiac
impulses [5,6].

Physical descriptions of these processes can be elaborated through the knowledge
of meticulous macroscopic and microscopic voltage clamping measures at the level of
individual ion channels. The ionic models that describe cardiac action potential have
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become increasingly complex. This complexity, when translated to mathematical models,
makes it difficult to isolate sets of parameters essential to understanding the system.

According to recent literature, new models have been proposed to study and simulate
the electrical activities of the heart. In most of them, it is not necessary to model the ionic
currents of the cell with the precision and complexity inherent to biophysics-based models.
Instead, more simplified approaches have been investigated. Accordingly, mathematical
modeling and computer simulation of cardiac tissue conduction frameworks have allowed
not only qualitative analysis, but also to access to relevant quantitative information about
the related phenomena.

Accordingly, in the context of mathematical prediction [7], optimal control [8], and
stability of stationary solutions [9,10], fractional calculus modeling [11–13] has recently been
adopted to describe biological and health-related processes, particularly the dynamics of
cardiac phenomena [14–17]. In general, the results achieved by those papers indicated that
fractional models can detect subtleties when compared to their counterparts. While there is
a continuous debate on which derivatives are better suited for distinct applications [18] and
on their physical and geometrical interpretations, including the concept of memory [19],
fractional calculus has proven useful in several different areas of application. Therefore, our
interest in modeling action potential phenomena in cardiac tissue using non-integer-order
derivatives stemmed from breakthroughs and significant results from those and other
works regarding biological tissue modeling under fractional calculus.

As a remarkable example, Magin explored fractional models to describe the complex
dynamics of biological tissue. Since tissue properties come from materials’ nanoscale
and microscale organization, he proposed that dynamic models could predict macroscale
tissue behavior and fractional calculus would play an important role in describing these
events through concise and effective models [17]. In parallel, Meral and colleagues offered
experimental evidence that fractional differential equations could model tissue-like soft
and porous materials better under a viscoelastic framework [20].

In relation to heart-related tissue, its solid and fluidlike composition make it suitable
for modeling through the assessment of viscoelastic properties. In this context, a general-
ized fractional-order Maxwell model successfully predicted the behavior of atrial tissue
compared to experimental data [21]. Moreover, there is evidence pointing towards a better
description of phenomena concerning impulse propagation in cardiac muscle. Due, indeed,
to this high heterogeneity of such tissue, fractional diffusion models have been proposed
for modeling such phenomena [15].

In this specific context, the heterogeneous structure of cardiac tissue can be approached
as an underlying fractal process. Complex-order derivates were proposed as a modeling
option, where the real part represents the fractal dimension and the imaginary part corrects
said dimension. The combined effect of these components seems to allow the depiction
of a wide range of eletrophysiological conditions [22]. As another possible tool, image
analysis has been employed along with fractal dimension to provide a quantitative picture
of myocardial fibrosis in mice [23].

Accordingly, the strong relation between fractional calculus and fractals has been
long-debated and explored, with regards to whether this fractance refers to space (as in
a complex geometry) or time (with heterogeneity and memory effects) [24]. Part of this
relation is usually explored through physical and geometrical considerations with the intent
of describing and predicting complex phenomena (such as physiology-related ones) [25].

Furthermore, Butera and Di Paola have shown that once a physical phenomenon takes
place in an underlying fractal geometry (such is the case for cardiac tissue), a power law
naturally appears to govern its evolution, with its order directly related to the anomalous
dimension of such geometry [26] or, as commented before, to heterogeneous memory
effects [24]. For that reason, the physical meaning of magnitudes seen in this work and
the order α could in turn concern the spatiotemporal fractance of the tissue wherein the
phenomenon is occurring and the degree to which it interferes with how electricity diffuses
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in it. Hence, in this sense, the physical relevance of said units is maintained and its
magnitude is only parametrized by the fractional order [27].

Bearing in mind the importance of better understanding the dynamics of the action
potential in cardiac tissues, we investigate a class of fractional time-partial differential
equations capable of modeling some stages of this phenomenon. We expect that the
fractional time-derivative operator can act as an additional resource in the modulation
of the phenomena. Based on this class of equations, the main motivation of this paper is
devoted to solving them analytically, considering both one- and two-dimensional cases.
Additionally, in order to provide a better perspective and scope, we also present some
numerical simulations.

Finally, the paper is organized as follows. In Section 2, preliminaries are presented.
In Section 3, the model is introduced and the necessary mathematical development is
exhibited. In Section 4, some numerical simulations are conducted and their results are
discussed. Finally, in Section 5, the main conclusions are outlined.

2. Preliminaries

The fractional-time reaction–diffusion equation has been studied in the literature and
there are a large number of papers devoted to the study of different physical phenomena
applying this equation [28–30]. Some researchers have used the Riemann–Liouville deriva-
tive [31,32], while others have adopted the Caputo derivative [33,34]—also referred as
the Gerasimov–Caputo derivative [35–38]. Furthermore, different methods have been em-
ployed to solve it, such as Green’s function method [39], finite sine transform method [40],
Fourier–Laplace transform method [29], Adomian decomposition method [41], and the
separation of variables method introduced by Metzler et al. [42].

This paper addresses with homogeneous and nonhomogeneous fractional-time reaction–
diffusion equations and their analytical solutions are achieved by means of the separation
of variables method. In this context, this section recalls fundamental concepts, defini-
tions, and theorems, while introducing some notations that are relevant to the subsequent
development of the paper. In the next section, both positioning and problem statement
are presented.

Definition 1. A real function f (x), x > 0, is said to be in space Cα, α ∈ R if there is a real number
p (> α), such as f (x) = xp f1(x) where f1(x) ∈ C[0, ∞).

Definition 2. A real function f (x), x > 0 is said to be in space Cm
α , m ∈ N∪ {0}, if f (m) ∈ Cα.

Definition 3. Mittag–Leffler function [43,44] is defined as

Eα,β(z) =
∞

∑
k=0

zk

Γ(β + αk)
(1)

and we note that Eα,1(z) = Eα(z).

Definition 4 ([45,46]). The two-dimensional Laplacian ∆ = ∂2

∂x2 +
∂2

∂y2 defined with zero Dirichlet
boundary condition at x = 0, b, y = 0, c has a complete set of orthonormal eigenfunctions φmn
corresponding to eigenvalues A2

mn on a boundary region Ω = [0, b]× [0, c].
If ∆φmn = A2

mnφmn, then the two-dimensional Laplacian has eigenvalues

A2
mn =

m2π2

b2 +
n2π2

c2 , m, n = 1, 2, 3, . . .

and corresponding eigenfunction

φmn = sin
mπx

b
sin

nπy
c

, m, n = 1, 2, 3, . . .
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Proposition 1. Let D be a limited domain that defines the following function space in R:

C(D) = {u : D → R : u is continuous},
C(D̄) = {u : D̄ → R : u is uniformly continuous},

Cm(D) = {u : D → R : u is m-times continuously differentiable},
Cm(D̄) = {u ∈ Cm(D) : Dγu is uniformly continuous for all |γ| ≤ m},

with ∂D ∈ C1,β and Cm,β(D)[Cm,β(D̄)] subspace of Cm(D)[Cm(D̄)], which consists of functions
whose m-order partial derivatives are uniformly continuous.

Let us also consider α ∈ (0, 1) and D∞ = (0, ∞)× D and define:

H∆(D∞) =

{
u : D∞ → R :

∂u
∂t

,
∂αu
∂tα

, ∆u ∈ C(D∞),

∣∣∣∣ ∂

∂t
u(x, y)

∣∣∣∣ ≤ g(x, t)tα−1, g ∈ C(D), t > 0

}
.

The solution of

Dα
t u(x, t) = ∆u(x, t), x ∈ D; t ≥ 0

u(x, t) = 0, x ∈ ∂D; t ≥ 0

u(x, 0) = f (x), x ∈ D;

(2)

is given by

u(x, t) =
∞

∑
n=1

f̄ (n)Eα(−A2
ntα)φn(x).

Indeed, assuming that u(x, t) solves (2), and using Green’s second identity, it is possible to
verify [47] that φn(x) is the eigenfunction corresponding to eigenvalue A2. Since u is uniformly
continuous and hence uniformly bounded on its domain, we have by dominated convergence that

lim
t→0

∫
D

u(x, t)φn(x)dx = f̄ (n).

Proof. Supposing that u(x, t) = G(t), F(x) is the solution of Equation (2). By coupling it to
the referred partial differential equation, one obtains

F(x)Dα
t G(t) = G(t)∆F(x)

so that
Dα

t G(t)
G(t)

=
∆F(x)
F(x)

= −A2, where A = const.

Therefore, to find the solution for Equation (2), one must solve

Dα
t G(t) = −A2G(t), t ≥ 0, (3)

∆F(x) = −A2F(x), x ∈ D; F(x)
∣∣∣
∂D

= 0. (4)

One can notice that Equation (3) yields

G(t) = Eα(−A2
ntα).
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Furthermore, the autovalue problem in Equation (4) may be solved by means of an
infinite pair series (un, φn), n ≥ 1, where φn is a sequence of functions that form a complete
orthonormal set in the considered domain. Hence, the function F(x) can be represented as

F(x) =
∞

∑
n=1

f̄ (n)φn(x),

where f̄ (n) is chosen to satisfy the initial condition of the considered problem.
Therefore, if u(x, t) = G(t)F(x), then

u(x, t) =
∞

∑
n=1

f̄ (n)Eα(−A2
ntα)φn(x).

For details, one may refer to [48].

Proposition 2 ([49]). An analytical solution of problem (6) will be attempted by means of the
separation of variables method. We first solve the corresponding homogeneous equation (by making
the source term in (6) null). Let Θ(x, y, t) = X(x)Y(y)T(t) be the solution of the corresponding
homogeneous equation in (6). We obtain a fractional ordinary differential equation for T(t) and two
ordinary second-order differential equations for X(x) and for Y(y) with their boundary conditions.

The fractional ordinary differential equation can be integrated and its solution requires the
Mittag–Leffler function. To obtain the solution of second-order equations, let A2

mn also be the
eigenvalues (or the separation constant).

According to Definition 4, the Sturm–Liouville problem has eigenvalues

A2
mn =

m2π2

b2 +
n2π2

c2 , m, n = 1, 2, 3, . . .

and corresponding eigenfunctions

φmn = Xm(x)Yn(y) = sin
mπx

b
sin

nπy
c

, m, n = 1, 2, 3, . . .

Afterwards, we seek a solution of the nonhomogeneous problem (6) of the form

Θ(x, y, t) =
∞

∑
m=1

∞

∑
n=1

Cmn(t) sin
mπx

b
sin

nπy
c

.

We assume that the series can be differentiated term-by-term. In order to determine Cmn(t),
we expand the function as two Fourier series by the eigenfunction φmn. Since Θ(x, y, t) satisfies the
initial conditions, we can apply them and hence we obtain an analytical solution of problem (6).

3. Mathematical Model

This section deals with homogeneous and non-homogeneous fractional differential
equations by considering the dynamics of the action potential in cardiac tissue involving
both unidimensional (1-D) and bidimensional (2-D) spatial analysis.

The mathematical model of the 2-D action potential in cardiac tissue with membrane
potential Vm proposed in this work is governed by the following fractional partial-time
differential equation (see [50–54])

Dt
αVm = k

(
∂2Vm

∂x2 +
∂2Vm

∂y2

)
− Iion

Cm
(5)

where Vm = Vm(x, y, t) defines the potential of the membrane at location x, y and time
t, k denotes a constant coefficient. The terms Cm and Iion represent the membrane tissue
capacitance and ionic electric currents involved in the process, respectively. They work as a
sink term in the dynamic model and were inspired in the Beeler–Reuter model [51–54].
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If

∆ = ∇2 =
∂2

∂x2 +
∂2

∂y2

is the Laplace operator and

− Iion
Cm

= U(t),

then Equation (5) takes the form

Dt
αVm = k∆Vm + U(t). (6)

Equation (6) is a type of fractional diffusion-wave equation that has been widely
used in many branches of science and engineering. The time-fractional diffusion-wave
equation is obtained from the classical diffusion or wave equation by replacing the first-
or second-order time derivative by a fractional derivative of order α with 0 < α < 1 or
1 < α < 2, respectively.

In accordance with the exposed definitions, the solution of a fractional differential
equation can be obtained from the solution of the corresponding homogeneous equation
subject to initial conditions added to a particular solution of Equation (6). In the follow-
up, a particular function characterizing a nonhomogeneous fractional 1-D differential
equation is considered. Afterwards, the 2-D case is also solved for both homogeneous and
nonhomogeneous case.

3.1. Fractional Differential Equation (1-D)

For the sake of clarity, we begin with the fractional 1-D and homogeneous case.
Physically, this case occurs whenever Iion has a sufficiently small value and, in turn, the Cm
value is not insignificant. In those cases, the function U(t) is closer to zero and it can
be neglected.

3.1.1. Homogeneous Case

The fractional unidimensional and homogeneous case

Dt
αVm = k

∂2Vm

∂x2 (7)

with 0 < x < b, t > 0 and k a constant is evaluated along boundary conditions given by
Vm(0, t) = 0, Vm(b, t) = 0 and Vm(x, 0) = f (x).

In order to apply the separation of variables method, we assume that Vm(x, t) = X(x)T(t).
Thus, one can write

Dα
t T(t) + kA2T(t) = 0, t ≥ 0

X′′ + A2X = 0
(8)

The two ordinary differential equations obtained from Equation (8) have the following
solutions, respectively

T(t) = T0Eα

(
−A2ktα

)
X(x) = C1 cos Ax + C2 sin Ax

(9)

where Eα denotes the Mittag–Leffler function and C1, C2 and A are constant.
After applying the aforementioned boundary conditions, one can obtain the final

solution given by

Vm(x, t) =
∞

∑
n=1

2
b

∫ b

a
f (ξ) sin

(nπ

b
ξ
)

dξ Eα

(
−n2π2

b2 ktα

)
sin
(nπ

b
x
)

. (10)
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3.1.2. Nonhomogeneous Case

In the follow-up, this section deals with fractional unidimensional and nonhomogeneous
case represented by

Dt
αVm = k

∂2Vm

∂x2 + U(t), (11)

with 0 < x < b, t > 0 and k a constant subject to the same boundary conditions considered
in previous Section 3.1.1, i.e., Vm(0, t) = 0, Vm(b, t) = 0 and Vm(x, 0) = f (x). Function U(t)
is assumed to be a continuous function of t.

The solution of the homogeneous equation associated with (11) was obtained in
Section 3.1.1 and shown by Equation (10). It can be rewritten as

Vm(x, t) =
∞

∑
n=1

Bn(t) sin
(nπ

b
x
)

, (12)

where Bn(t) =
2
b

∫ b
a f (x) sin

( nπ
b x
)
dx Eα

(
−n2π2

b2 ktα
)

.
Assuming that Equation (12) can be differentiated term-by-term and by observing

Equation (11), one can note that

∞

∑
n=1

[
Dα

t Bn(t) + k
(nπ

b

)2
Bn(t)

]
sin
(nπ

b
x
)
=

∞

∑
n=1

2[1− (−1)n]

nπ
U(t) sin

(nπ

b
x
)

. (13)

The coefficients in both sine series, i.e., on the left and right side of Equation (13),
should be the same so that

Dα
t Bn(t) + k

(nπ

b

)2
Bn(t) =

2[1− (−1)n]

nπ
U(t). (14)

If we use the initial condition Vm(x, 0) = f (x), then

∞

∑
n=1

Bn(0) sin
(nπ

b
x
)
= f (x), (15)

which yields

Bn(0) = bn =
2
b

∫ b

0
f (x) sin

(nπ

b
x
)

dx, (16)

where bn are Fourier coefficients.
For each value of n ∈ N, Equations (14) and (16) make up a fractional value problem

and hence,

Bn(t) = bnEα

(
−n2π2

b2 ktα

)
+
∫ t

0
τα−1Eα

(
−n2π2

b2 ktα

)
2[1− (−1)n]

nπ
U(t− τ)dτ, (n = 1, 2, · · · ). (17)

Substituting Equations (16) and (17) in (12), one can write the final solution,

Vm(x, t) =
2
b

∞

∑
n=1

[
Eα

(
−n2π2

b2 ktα

) ∫ b

0
f (ξ) sin

(nπ

b
ξ
)

dξ

]
sin
(nπ

b
x
)

+
∞

∑
n=1

[
2[1− (−1)n]

nπ

∫ t

0
τα−1Eα

(
−n2π2

b2 ktα

)
U(t− τ)dτ

]
sin
(nπ

b
x
)

.
(18)

3.2. Fractional Differential Equation (2-D)

This section presents the solution of Equation (6) in two-dimensional space, i.e., in the
bounded domain R2 of spatial variables x, y and time variable t for both homogeneous and
nonhomogeneous cases.
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3.2.1. Homogeneous Case

We first solve the corresponding homogeneous equation of (6), together with the boundary
conditions, by using the separation of variables method. Let Vm(x, y, t) = X(x)Y(y)T(t) be
the solution of the associated homogeneous equation of (6), i.e, the solution of Equation (6)
when we consider U(t) = 0.

In other words, we search the solution of the equation

Dt
αVm = k∆Vm, (19)

with 0 < x < b, 0 < y < c, and t > 0, subject to the following conditions:

Vm(0, y, t) = 0;

Vm(x, 0, t) = 0;

Vm(b, y, t) = 0;

Vm(x, c, t) = 0;

Vm(x, y, 0) = f (x, y).

(20)

Substituting Vm(x, y, t) = X(x)Y(y)T(t) in Equation (19), we obtain

Dα
t T

kT
=

X′′

X
+

Y′′

Y′
= −A2, (21)

where A is a constant.
Consequently, we have two ordinary differential equations in the space variables x

and y, and one fractional order differential equation in the time variable t so that

Dα
t T(t) + kA2T(t) = 0,

X′′ + µ2X = 0,

Y′′ +
(

A2 − µ2
)

Y = 0

(22)

The solutions of Equation (22) are given, respectively, by:

T(t) = T0Eα

(
−A2ktα

)
,

X(x) = k1 cos µx + k2 sin µx,

Y(y) = k3 cos
√

A2 − µ2 y + k4 sin
√

A2 − µ2 y

(23)

where again Eα denotes the Mittag–Leffler function.
Therefore,

Vm(x, y, t) = X(x)Y(y)T(t) = T0Eα

(
A2ktα

)
[k1 cos µx + k2 sin µx][k3 cos

√
A2 − µ2 y + k4 sin

√
A2 − µ2 y] (24)

is the general solution of Equation (19).
By applying the first four conditions of (20) and using the superposition principle, one

can write

Vm(x, y, t) =
∞

∑
m=1

∞

∑
n=1

Bmn Eα

((
m2π2

b2 +
n2π2

c2

)
ktα

)
sin

mπ

b
x sin

nπ

c
y. (25)

Now, by applying the last conditions of (20), one can obtain the Fourier coefficient
given by

Bmn =
4
bc

∫ c

0

∫ b

0
f (x, y) sin

mπ

b
x sin

nπ

c
y dx dy. (26)
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Therefore, the final solution for the homogeneous equation can be written as

Vm(x, y, t) =
∞

∑
m=1

∞

∑
n=1

(
4
bc

∫ c

0

∫ b

0
f (ξ, χ) sin

mπ

b
ξ sin

nπ

c
χ dξ dχ

)
Eα

((
m2π2

b2 +
n2π2

c2

)
(−k)tα

)
sin

mπ

b
x sin

nπ

c
y.

(27)

3.2.2. Nonhomogeneous Case

Since Equation (6) is nonhomogeneous, in this subsection, we search its analytical
solution. One can note that the corresponding homogeneous Equation (19) has a solution
given by (27) obtained in Section 3.2.1, which can be rewritten as

Vm(x, y, t) =
∞

∑
m=1

∞

∑
n=1

Cmn(t) sin
mπ

b
x sin

nπ

c
y, (28)

where Cmn(t) =
(

4
bc

∫ c
0

∫ b
0 f (ξ, χ) sin mπ

b ξ sin nπ
c χ dξ dχ

)
Eα

((
m2π2

b2 + n2π2

c2

)
(−k)tα

)
.

Once again, assuming that Equation (28) can be differentiated term-by-term, and by
observing that the nonhomogeneous term in Equation (5) is represented by the function
U(t), one can write

∞

∑
n=1

[
Dα

t Cmn(t) + k
[(

m2π2

b2 +
n2π2

c2

)]
Cmn(t)

]
sin
(nπ

b
x
)

sin
(nπ

c
y
)

=
∞

∑
n=1

2[1− (−1)n]

nπ
U(t) sin

(nπ

b
x
)

sin
(nπ

c
y
)

.
(29)

Hence, taking into account the orthogonality relations, one can also write that

Dα
t Cmn(t) + k

(
m2π2

b2 +
n2π2

c2

)
Cmn(t) =

2[1− (−1)n]

nπ
U(t). (30)

From Equations (26) and (30), we obtain

Cmn(t) =Bmn Eα

((
m2π2

b2 +
n2π2

c2

)
(−k)tα

)
+

+
∫ t

0
τα−1Eα

((
m2π2

b2 +
n2π2

c2

)
ktα

)
2[1− (−1)n]

nπ
U(t− τ)dτ. (n = 1, 2, · · · ).

(31)

Therefore, substituting Equations (26) and (31) in Equation (28), one can obtain the
final solution.

4. Numerical Simulations

In this section, numerical simulations are presented which aim at the virtualization of
hypothetical scenarios involving the potential membrane of cardiac tissues, herein modeled
by the derived analytical solutions. All simulations were conducted using the software
Mathematica, version 12. Integrals, special functions (such as Mittag–Leffler), and sums
were numerically solved using the standard configurations in the built-in tools of the
aforementioned software, which include black-box algorithms to identify and implement
the fastest and most reliable numerical schemes for each integral and summations. In this
context, Figure 1 presents a scheme illustrating the typical fast response of action potential
in contractile myocytes.
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Figure 1. Typical membrane fast action potential of a ventricular myocyte (modified from [55,56]).

Overall, Phases 0 and 1 depict a quick depolarization where the membrane potential
rapidly rises from around −90 mV, which is the rest potential, to the peak value of 20 mV
(effectively starting muscle contraction). Next, the much longer Phase 2 represents a slight
drop in potential followed by an almost entirely neutral potential due to equilibrium
between calcium and potassium channels (plateau). Phase 3 concerns the start of cardiac
muscle relaxation when calcium channels close and potassium channels open again, causing
repolarization just before the restart of the cycle at Phase 4 [55].

In order to explore different possibilities while still employing most of the obtained
solutions, three different scenarios are suggested: (i) 1-D homogeneous; (ii) 1-D nonhomo-
geneous; and (iii) 2-D homogeneous dynamics. The idea here is that each of these scenarios
modeled through fractional derivatives may correctly describe the behavior of at least some
parts of the action potential process. The time domain analyzed in each numeric simulation
depends on the duration of the particular phase being modeled.

4.1. 1-D Homogeneous Case

In this scenario, the length of cardiac tissue simulated is generically chosen as 1 mm,
imposing the spatial domain as 0 < x < 1 mm. We assume that at the moment t = 0,
the considered 1-D system is starting muscle contraction, i.e., immediately at the transition
between Phases 0 and 1 in the membrane potential process, after a rapid depolarization
caused by opening of voltage-gated fast sodium channels (refer to Figure 1).

In relation to the initial electrical spatial distribution, we assume that the central point
x = 0.5 mm of our domain is where the highest membrane potential occurs. This is also
referred to as peak point and is approximately 20 mV for the action potential process,
occurring at the Phase 0–1 transition [55,56]. An initial condition f (x) = 20 sin(πx) mV is
therefore suggested to describe the phenomena at this point, with the sinusoidal function
added to provide a gradual distribution of electricity throughout the tissue.

Referred to as myocardium diffusivity, the parameter k refers to the capacity of the
cardiac tissue to conduct or diffuse electricity during the action potential process, admitting
that the phenomenon occurs homogeneously throughout space and time. In [57], the au-
thors conduct an extensive ECG analysis in order to characterize this and other diffusivity
parameters though machine learning techniques. Although it can vary significantly from
patient to patient, the authors used the equivalent to k = 1× 10−1 mm2/ms as a reference
value for several tests, thus guiding our choice for this parameter value.

Figures 2–4 present the results after the depolarization scenario modeled through
Equation (10) for α = 1 (i.e. traditional case), α = 0.5, and α = 0.25, respectively. This refers
to the drop in potential through the first moments of Phase 2, just after the peak point. One
can notice from the obtained results that the surface formed by the solution agree with
the expected behavior of Phase 2 depolarization (i.e., a plateau caused by the opening of
calcium channels and partial closure of those that admit potassium exchange). The results
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also show that the fractional order α enables the model to admit an extra degree of freedom
compared to the traditional approach. This additional parameter may be used to control
the drop in membrane potential from Phase 1, thus acting as modulator or “turning knob”
for the model, with a slower electric conduction for smaller values of α, thus potentially
allowing a more refined phenomenon modeling or even the description of other types of
cardiac impulse (e.g., sinoatrial or atrial progressions). In fact, as the simulation covers
the first 50 ms after the point of peak potential, smaller values of α seem to enable a better
description of this part of the process, since α = 1 depicts a sudden drop in potential, which
does not seem to be the case considering Figure 1.
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Figure 2. One-dimensional homogeneous solution describing the potential plateau after depolariza-
tion: Equation (10) with α = 1.
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Figure 3. One-dimensional homogeneous solution describing the potential plateau after depolariza-
tion: Equation (10) with α = 0.5.
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Figure 4. One-dimensional homogeneous solution describing the potential plateau after depolariza-
tion: Equation (10) with α = 0.25.

4.2. One-Dimensional Nonhomogeneous Case

The one-dimensional nonhomogeneous case can be simulated by using the same pa-
rameters from Section 4.1 in Equation (18). In this case, U(t) must be considered to capture
the dynamics between electric current and capacitance of the membrane tissue. Following
from Figure 1, one might use this scenario to represent Phases 2 and 3 of the membrane
potential cycle, imposing U(t) (which is negative by definition) to cause repolarization.
This behavior considers the abrupt change during said phase of the action potential process,
where there is a closure of calcium channels with an increasing exit of potassium from the
myocyte cells, thus causing muscle contraction. Hence, in order to ensure continuity while
still fulfilling that role, U(t) is empirically defined as a sigmoidal function

U(t) =
−3.2 sin(πx)

1 + exp(−0.07(t− 250))
mV/ms. (32)

In this context, Figures 5–7 present Equation (18) for α = 1 (i.e., integer-order case),
α = 0.5 and α = 0.25, respectively.
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Figure 5. One-dimensional nonhomogeneous solution describing repolarization after the potential
plateau: Equation (18) with α = 1.
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Figure 6. One-dimensional nonhomogeneous solution describing repolarization after the potential
plateau: Equation (18) with α = 0.5.
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Figure 7. One-dimensional nonhomogeneous solution describing repolarization after the potential
plateau: Equation (18) with α = 0.25.

From analyzing the results obtained, one can conclude that this solution may indeed be
used for modeling Phases 2 and 3 of the membrane potential process, with smaller values
of α acting as a smoothing factor in the dynamics of the electricity throughout cardiac
tissue. Accordingly, models with α close to one provide a faster diffusion of electricity
and, for that reason, the change in polarity caused by U(t) is dismissed more quickly.
Smaller values of α (in particular, α = 0.25), on the other hand, enable the model to
achieve a more significant drop, closer to the −90 mV mark, which is the actual value
for the polarized state of the myocardium membrane [55]. One can also see that for
t ≥ 300 ms, Vm will continue to drop, not stabilizing as the membrane potential after Phase
3, thus indicating that the nonhomogeneous solution should be used carefully to model the
aforementioned phenomena.

4.3. Two-Dimensional Homogeneous Case

The 2-D homogeneous solution given by Equation (27) is analogous to the one ex-
pressed by Equation (10) and numerically simulated in Section 4.1 with an extended spatial
variable y. For that reason, it will be employed to virtualize only Phase 2 of the mem-
brane potential process. The spatial domain is chosen as 0 < x < 1 mm and 0 < y < 1
mm. The initial condition is chosen as f (x, y) = 20 sin(πx) sin(πy) mV to model the peak
potential after polarization.

Once again, Figures 8–10 present the virtualized scenarios for α = 1 (integer-order
case), α = 0.5, and α = 0.25. Each subfigure represents the system at a determined times-
tamp. In line with previous results, this model can be used to represent Phase 2 of the
membrane potential, depicting the slight potential decrease right after the depolarization
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peak. One can see that in this case, the phenomenon occurs faster than expected. Accord-
ingly, smaller values of α can impose a model where the diffusion of electricity throughout
the tissue is slower, implying that this parameter can be used to fine-tune the model to
describe a slower progression into the plateau phase if required.
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Figure 8. Two-dimensional homogeneous solution describing the potential plateau after depolar-
ization: Equation (27) with α = 1 (integer order case). (a) t = 0 µs, (b) t = 250 µs, (c) t = 500 µs,
(d) t = 1000 µs.



Fractal Fract. 2022, 6, 149 15 of 21

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

Vm

1.8
3.6
5.4
7.2
9.0
10.8
12.6
14.4
16.2
18.0

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

Vm

1.8

3.6

5.4

7.2

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

Vm

1.8

3.6

5.4

(c)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

Vm

1.8

3.6

(d)

Figure 9. Two-dimensional homogeneous solution describing the potential plateau after depolarization:
Equation (27) with α = 0.5. (a) t = 0 µs, (b) t = 250 µs, (c) t = 500 µs, (d) t = 1000 µs.
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Figure 10. Two-dimensional homogeneous solution describing the potential plateau after depolariza-
tion: Equation (27) with α = 0.25. (a) t = 0 µs, (b) t = 250 µs, (c) t = 500 µs, (d) t = 1000 µs.
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4.4. The Role of the Fractional Order α and the Diffusivity Parameter k

Although both k and fractional order α can be used at the modeler’s discretion to
control the behavior of the model, thus adjusting it to fulfill a desired goal, they have
very different roles. In this paper, we have opted to restrict the customizable aspect of
the model exclusively to α, as a means of focusing on the effects of a fractional time
operator. Nevertheless, in order to further explore the model and succinctly discuss the
differences between the effects of those two parameters, in this section we conduct some
brief exploratory simulations on that matter.

By neglecting the spatial aspect of the proposed model, we explore temporal curves for
the 1-D homogeneous (Figure 11), 1-D nonhomogeneous (Figure 12), and 2-D homogeneous
(Figure 13) cases. The curves were obtained by employing Equations (10) and (18) with
x = 0.5, and Equation (27) with x = y = 0.5, for different values of α. As part of the
exploratory approach, we repeated the simulations for different values of k around the
reference given in [57].
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Figure 11. Time plots for Equation (10) with x = 0.5. Exploratory comparison between different
values of α and k. (a) k = 1× 10−2 mm2/ms, (b) k = 5× 10−2 mm2/ms, (c) k = 1× 10−1 mm2/ms,
(d) k = 5× 10−1 mm2/ms.

By looking at the figures, one can see that the variation of α and k affects the model
quite differently. While k is related to conduction velocity and how quickly a signal travels,
the arbitrary (or fractional) order α regards how a signal (or information) lingers against
time. This later effect concerns the memory effect, a feature present in fractional models.
Even if these concepts seem similar, and effectively translate to how fast electricity diffuses
through tissue, they are not the same and they do not yield the same results, as one can
see in these temporal simulations. We believe that the curves shown in Figures 11–13
encourage the fractional approach even more since it suggests that different α values could
allow the model to describe behaviors not possible by changing only k (with the integer
version of the model).
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Figure 12. Time plots for Equation (18) with x = 0.5. Exploratory comparison between different
values of α and k. (a) k = 1× 10−2 mm2/ms, (b) k = 5× 10−2 mm2/ms, (c) k = 1× 10−1 mm2/ms,
(d) k = 5× 10−1 mm2/ms.

α=1.00 α=0.75 α=0.50 α=0.25

0 10 20 30 40 50

0

5

10

15

20

t

V
m

α=1.00 α=0.75 α=0.50 α=0.25

0 10 20 30 40 50

0

5

10

15

20

t

V
m

(a) (b)
α=1.00 α=0.75 α=0.50 α=0.25

0 10 20 30 40 50

0

5

10

15

20

t

V
m

α=1.00 α=0.75 α=0.50 α=0.25

0 10 20 30 40 50

0

5

10

15

20

t

V
m

(c) (d)

Figure 13. Time plots for Equation (27) with x = y = 0.5. Exploratory comparison between different
values of α and k. (a) k = 1× 10−2 mm2/ms, (b) k = 5× 10−2 mm2/ms, (c) k = 1× 10−1 mm2/ms,
(d) k = 5× 10−1 mm2/ms.
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5. Final Remarks

In this paper, we investigate the dynamics of a class of fractional time-partial dif-
ferential equations modeling the dynamics of some phases of the fast action potential in
cardiac tissue. As main contributions, analytical solutions were derived and proposed
for homogeneous and nonhomogeneous cases. Both one-dimensional and bidimensional
spatial variations were considered. In the models, the time-fractional derivative order α
can be interpreted as a “tuning knob” to modulate how the processes are described, func-
tioning as an additional parameter to improve the capabilities of the model to reproduce
the aforementioned phenomena.

We conducted numerical simulations by employing the obtained solutions to model
particular phase dynamics of the membrane action potential of the ventricular myocyte.
Overall, the results indicate that the investigated equations can model the conduction of
the action potential through the cardiac membrane, particularly regarding Phases 2 and 3
of the aforementioned impulse progression, with values below α = 0.5 apparently enabling
the model to achieve a better description of the typical −90 to 20 mV range of the process.

Accordingly, while there is not a fixed range or optimal order identified, overall
fractional models with smaller values of α seem to provide an extra tool to control the
modeling dynamics of electrical impulses, with the potential of being used to describe
attenuated electrical diffusion in the tissue or to represent other cardiac signal progressions.
Simulations also highlight the differences and underlining physical distinctness of the effect
α on the model in comparison to other parameters such as diffusivity k.

While the results obtained here are encouraging, further studies should be conducted.
Firstly, more information and data are needed to factually assess the performance of derived
models, including experimental and clinical comparison or a benchmarking with other
formal cardiac models. Secondly, by means of this comparison, one can try to identify
which α value is more suitable for each action potential phase, or even develop a variable
α(t) that could, in theory, model the entire phenomenon. Last but not least, there is also
the possibility of investigating the implementation of the model herein discussed as an
additional tool in cardiac pacemaker and rhythm control models.
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