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Abstract: In this study, an efficacious method for solving viscoelastic dynamic plates in the time
domain is proposed for the first time. The differential operator matrices of different orders of
Bernstein polynomials algorithm are adopted to approximate the ternary displacement function.
The approximate results are simulated by code. In addition, it is proved that the proposed method
is feasible and effective through error analysis and mathematical examples. Finally, the effects
of external load, side length of plate, thickness of plate and boundary condition on the dynamic
response of square plate are studied. The numerical results illustrate that displacement and stress
of the plate change with the change of various parameters. It is further verified that the Bernstein
polynomials algorithm can be used as a powerful tool for numerical solution and dynamic analysis
of viscoelastic plates.

Keywords: viscoelastic plate; Bernstein polynomials algorithm; fractional constitutive model; opera-
tor matrix; numerical analysis

1. Introduction

Plate and plate structure are widely used in many realms of mechanical, building and
aerospace [1]. In addition, the plate is also a key component in aerospace engineering,
which bears strong and sudden power including vibration. They are usually combined with
viscoelastic materials to reduce the applied vibration and have the effect of damping [2].
In order to apply plate structure more widely in real life, many scholars are committed
to the research of plate vibration. Early scholars analyzed the linear vibration of plates.
Ziaee [3] used the Ritz method to study linear vibration of nanoplates. The effects of
different parameters on polysilicon microplate were discussed. Cadou et al. [4] considered
the linear vibration of the plate and testified availability of the method used for calculating
eigenvalues of linear problems. Gradually, the research direction of some scholars began to
change to nonlinear plate. Based on the semi-analytical method, Babahammou et al. [5]
researched linear and nonlinear vibration of plates under the condition of full line or
partial line support. Cho [6] proposed an algorithm for analyzing nonlinear vibration
problems. The parameters of nonlinear free vibration characteristics of composite plates
were discussed. Quan et al. [7] established the governing equation of sandwich plate
vibration by using shear deformation theory and analyzed the nonlinear vibration of plate
by Galerkin method and fourth-order Runge Kutta method. Although there have been a
lot of research results, there are still problems in viscoelastic plates.

Viscoelastic materials have both elasticity and viscosity and are widely used for passive
vibration isolation in engineering structures and applications owing to their light weight
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and high intensity. Therefore, it is essential to model viscoelastic materials properly [8,9].
In recent years, scholars have proposed various models to describe viscoelastic material.
In order to simulate the elastic and viscous properties of materials at the same time, the frac-
tional viscoelastic model is replaced by the classical viscoelastic model. The behavior of
the system cannot only be appropriately described by fractional order model with less
parameters but also fitted by fractional order operator [10]. Therefore, fractional order has
a wide range of applications, especially in control systems. Using the multi-switch synchro-
nization method, Pan et al. [11] considered the sliding-mode combinatorial synchronization
of fractional-order chaotic systems under double random disturbances. Zhang et al. [12]
introduced fractional order into sliding mode control of the system. The nonlinear term is
estimated by using radial basis function neural network. Zhang et al. [13] provided a set of
criteria for fractional order systems stability and verified the efficiency of controllers with
numerical examples. With the development of viscoelastic material structure, some scholars
gradually use fractional order to model viscoelastic plate. Rouzegar et al. [14] derived the
governing equations of viscoelastic plate with Voigt viscoelastic model. The variation of am-
plitude and frequency of fractional viscoelastic plates under external excitation was given.
Permoon et al. [15] discussed the natural frequency and characteristics of viscoelastic plate.
Three constitutive models were compared by fitting a curve. Praharaj et al. [16] employed
fractional damping derivative model to simulate plate structure. How the different orders
of fractional order affect the vibration response of the plate was considered by combining
the two methods to solve the differential equations. Ai et al. [17] established the finite
element equations of stiffened plate by using fractional merchant model. The influences of
altitude and overall arrangement on time-varying behavior of plates were analyzed.

The research on the numerical solution of viscoelastic plates is equivalent to the solu-
tion of fractional governing equation. In other words, numerical analysis of the viscoelastic
plates not only needs to establish the material behavior equation but also an effective
numerical method to approximate fractional governing dynamic equations. The common
methods for solving the mentioned equations include Laplace transform [18], Fourier
transform [19], Galerkin method [20], meshless method [21], multi-scale method [22] and
variational iteration method [23]. Due to the large amount of calculation and difficulty to
obtain the inverse transform, these methods are very difficult for obtaining solutions of this
kind of equation directly in the time domain. However, plate differential governing equa-
tions take critical part in the wide application of engineering science. So, in recent years,
polynomial approximation method has been widely used in solving fractional differential
equations. Wang et al. [24] used shifted Legendre polynomials to approximate variable
fractional differential equations. The dynamic response of viscoelastic pipe conveying
fluid was analyzed. Hashim et al. [25] proposed shifted Chebyshev polynomials of the
second kind to solve approximate solutions of time-delay variable fractional differential
equations. Cao et al. [26] studied a significant method based on fractional rheological
model to solve viscoelastic column problems. The fractional differential equation was
solved by shifted Chebyshev wavelet function. Compared with the above polynomials,
Bernstein polynomials have the advantages of simple structure and perfect properties.
Therefore, it is widely used in solving differential equations and practical engineering
applications [27]. More and more scholars use Bernstein polynomials to solve all kinds
of differential equations. By using Bernstein polynomials, Khan et al. [28] obtained the
calculation results of fractional constitutive equation. In this method, the coupled system
is transformed into algebraic equations by operator matrix. Heydari et al. [29] proposed
Bernstein polynomials to approximate advection diffusion reaction equation with fractal
fractional derivative. Chen et al. [30] utilized Bernstein polynomials to solve a series of
variable fractional order differential equations. Different Bernstein polynomials matrices
were derived and used to transform initial equations into discrete nonlinear equations.
However, the above studies are limited to solving fractional differential equations using
Bernstein polynomials. Few studies directly solve such equations in time domain and
analyze the dynamic behavior combined with three-dimensional plates.
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For these reasons, it is necessary to combine the fractional order model with a new
calculation method to settle the above problem. Therefore, the Bernstein polynomials
algorithm is proposed to numerically simulate differential equations of the plate and
analyze the effects of parameters on the numerical solutions of the displacement and stress.
This algorithm has good applicability to calculate the fractional governing equation of three-
dimensional plates in the time domain. It is also fit for dynamic analysis of viscoelastic
plates. In addition, this technology will supply a new approach for the numerical study of
viscoelastic plates.

The paper is structured as follows: The preliminary knowledge of Caputo derivative is
recommended in Section 2. Section 3 presents the governing equation of three-dimensional
viscoelastic plate by using the fractional constitutive model. Section 4 derives the matrices
of Bernstein polynomials. Demand problem is expressed by various orders differential
operator matrices. In Section 5, the availability of the proposed algorithm is verified by
two methods. Section 6 discusses displacements of plate under various conditions. Finally,
conclusions of this paper are obtained in Section 7.

2. Preliminaries

Next, several properties and mathematical preliminaries of fractional calculus are
given, which will be applied in the following sections.

Definition 1. The fractional Caputo derivative of order α is defined as [31]

(Dα
t f )(t) =

 1
Γ(r−α)

[∫ t
0

f (r)(τ)
(t−τ)α+1−r dτ

]
, −1 ≤ α < r,

dr

dtr f (t), α = r.
(1)

where Dα
t is Caputo fractional differential operator, 0 < α ≤ 1 is fractional order, f is integrable

and continuous on (0,+∞), Γ(·) is Gamma function and has Γ(z) =
∫ ∞

0 e−ttz−1dt.
Based on the Caputo derivative, we have

Dα
t tr =

{
0, r = 0

Γ(r+1)
Γ(r+1−α)

tr−α, r = 1, 2, 3, . . .
(2)

Three properties of Caputo fractional differential are as follows, for λ, µ ∈ R, 0 < α ≤ 1, C is
a constant, and f (t) ∈ C1(R) [26,32]

(1) Dα
t C = 0

(2) Dα
t (C f (t)) = CDα

t f (t)
(3) Dα

t [λ f (t) + µg(t)] = λDα
t f (t) + µDα

t g(t)
(3)

3. Governing Equation of Fractional Viscoelastic Plate

In this part, a fractional viscoelastic plate shown in Figure 1 with sides of a and b,
thickness of h is studied. This rectangular plate is fixedly supported on four sides. The
motion equation of the plate is as follows [33]

ρh
∂2u
∂t2 + ηDα

t u + D∇4u− h
(

∂2ψ

∂y2
∂2u
∂x2 +

∂2ψ

∂x2
∂2u
∂y2 − 2

∂2ψ

∂x∂y
∂2u

∂x∂y

)
= F(x, y, t) (4)

where ρ is mass density, η is constant damping for the fractional derivative element model,
∇4 = ∂4

∂x4 + ∂4

∂y4 + 2 ∂4

∂x2∂y2 is biharmonic operator, D = Eh3

12(1−v2)
is flexural stiffness, E is

Young’s modulus, v is the Poisson’s ratio, ψ is the Airy stress function and F(x, y, t) is
transverse force excitation.
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Figure 1. The geometric figure of four sides fixed support viscoelastic plate.

From the above formulas, the governing equation of fractional viscoelastic plate is
expressed as [34,35]

ρh
∂2u
∂t2 + ηDα

t u +

(
Eh3

12(1− v2)
− h
)(

∂4u
∂x4 +

∂4u
∂y4

)
+ 2
(

Eh3

12(1− v2)
+ h
)

∂4u
∂x2∂y2 = F(x, y, t) (5)

The boundary conditions of plate with four fixed edges are

u(x, y, t)|x=0,a = ∂u(x,y,t)
∂x |x=0,a = 0

u(x, y, t)
∣∣∣y=0,b = ∂u(x,y,t)

∂y

∣∣∣y=0,b = 0
(6)

4. Numerical Algorithm for Bernstein Polynomials

In this section, Bernstein polynomials algorithm is introduced to approximate un-
known functions. The governing equations are transformed from differential operator
matrices into algebraic equations.

4.1. Bernstein Polynomials

Definition 2. The definition of Bernstein polynomials of degree m in [0, 1] is [36]

Bi,m(x) =
(

m
i

)
xi(1− x)m−i, 0 ≤ i ≤ m. (7)

The following formula is written as

Bi,m(x) = (1− x)Bi,m−1(x) + xBi−1,m−1(x), i = 0, 1, . . . , m. (8)

Expand the binomial (1− x)m−i to obtain the following formula

Bi,m(x) =
(

m
i

)
xi(1− x)m−i =

m−i
∑

k=0
(−1)k

(
m
i

)(
m− i

k

)
xi+k, i = 0, 1, . . . , m. (9)

For expanding the scope of x, Bernstein polynomials in [0, R] is written as

Bi,m(x) =
(

m
i

)
xi(R− x)m−i

Rm =
m−i

∑
k=0

(−1)k
(

m
i

)(
m− i

k

)
xi+k

Ri+k (10)

where R is any positive integer.
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A matrix ϕ(x) consisted by Bernstein polynomials is

ϕ(x) = [B0,m(x), B1,m(x), . . . , Bm,m(x)]T = HK(x) (11)

where

H =
[
hi,j
]m

i,j=0, hi,j =


(−1)j−i

(
m
i

)(
m− i
j− i

)
Rj , j ≥ i

0, j < i

(12)

K(x) = [1, x, . . . , xm]T (13)

4.2. Function Approximation

For the displacement function u(x, y, t) of Equation (5), it is expressed as [37]

u(x, y, t) = u(x, y)u(t) (14)

where u(x, y) ∈ L2([0, R]× [0, S]) and u(t) ∈ L2([0, T]).
For any continuous function u(x) ∈ L2([0, R]) with one variable, it can be expressed

by Bernstein polynomials as

u(x) =
∞

∑
i=0

niBi,m(x) ≈
m

∑
i=0

niBi,m(x) = NT ϕ(x) (15)

where NT = [n0, n1, . . . , nm].
The inner product is calculated as〈

u(x), ϕT(x)
〉
= NT

〈
ϕ(x), ϕT(x)

〉
= NT[oi,j

]m
i,j=0 = NTO (16)

where oi,j =
∫ R

0 Bi,m(x)Bj,m(x)dx, NT =
〈
u(x), ϕT(x)

〉
O−1.

Similarly, the function of two variables u(x, y) ∈ L2([0, R]× [0, S]) can be approxi-
mated as

u(x, y) =
∞

∑
i=0

∞

∑
j=0

wi,jBi,m(x)Bj,m(y) ≈
m

∑
i=0

m

∑
j=0

wi,jBi,m(x)Bj,m(y) = ϕT(x)Wϕ(y) (17)

where W =
[
wi,j
]m

i,j=0.
The function of t is approximated as

u(t) =
∞

∑
k=0

nkBk,m(t) ≈
m

∑
k=0

nkBk,m(t) = NT ϕ(t) (18)

where ϕ(t) = [B0,m(t), B1,m(t), . . . , Bm,m(t)]
T.

Taking Equations (17) and (18) into Equation (14), the displacement function is writ-
ten as

u(x, y, t) = u(x, y)u(t) = ϕT(x)Wϕ(y)NT ϕ(t) (19)

4.3. Differential Operator Matrix of Bernstein Polynomials
4.3.1. Integer Differential Operator Matrix

Definition 3. G1
x satisfaction ϕ′(x) = G1

x ϕ(x) is the 1th operator matrix of Bernstein polynomials.
The derivation procedure is as follows

ϕ′(x) = (HK(x))′ = HK′(x) = HPK(x) = HPH−1 ϕ(x) = G1
x ϕ(x) (20)

where P =
[
pi,j
]m

i,j=0, pi,j =

{
i, i = j + 1
0, i 6= j + 1

, and G1
x = HPH−1.
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Definition 4. G2
x satisfaction ϕ′′(x) = G2

x ϕ(x) is the 2th operator matrix of Bernstein polynomi-
als. The derivation procedure is as follows

ϕ′′(x) = (HK(x))′′ = H
(
K′(x)

)′
=
(

HPH−1 ϕ(x)
)′

= HPH−1(ϕ(x))′ =
(

HPH−1
)(

HPH−1
)

ϕ(x) = G2
x ϕ(x) (21)

where G2
x =

(
HPH−1)2.

According to Equations (20) and (21), the matrices of integer order differential operator are
obtained

ϕm(x) = (ϕ(x))m =
(

HPH−1
)m

ϕ(x) = Gm
x ϕ(x) (22)

ϕm(y) = (ϕ(y))m =
(

HPH−1
)m

ϕ(y) = Gm
y ϕ(y) (23)

ϕm(t) = (ϕ(t))m =
(

HPH−1
)m

ϕ(t) = Gm
t ϕ(t) (24)

The items in Equation (5) are written as

∂2u(x, y, t)
∂t2 ≈

∂2(ϕT(x)Wϕ(y)NT ϕ(t)
)

∂t2 = ϕT(x)Wϕ(y)NT ∂2 ϕ(t)
∂t2

= ϕT(x)Wϕ(y)NT
(

HPH−1
)2

ϕ(t) (25)

∂4u(x, y, t)
∂x4 ≈

∂4(ϕT(x)Wϕ(y)NT ϕ(t)
)

∂x4 =
∂4 ϕT(x)

∂x4 Wϕ(y)NT ϕ(t)

= ϕT(x)
(
(HPH−1)T

)4
Wϕ(y)NT ϕ(t) (26)

∂4u(x, y, t)
∂y4 ≈

∂4(ϕT(x)Wϕ(y)NT ϕ(t)
)

∂y4 = ϕT(x)W
∂4 ϕ(y)

∂y4 NT ϕ(t)

= ϕT(x)W
(

HPH−1
)4

ϕ(y)NT ϕ(t) (27)

∂4u(x, y, t)
∂x2∂y2 ≈

∂4(ϕT(x)Wϕ(y)NT ϕ(t)
)

∂x2∂y2 =
∂4(ϕT(x)Wϕ(y)

)
∂x2∂y2 NT ϕ(t)

= ϕT(x)
(
(HPH−1)T

)2
W
(

HPH−1
)2

ϕ(y)NT ϕ(t) (28)

4.3.2. Fractional Differential Operator Matrix

Definition 5. Gα
t satisfaction Dα

t ϕ(t) = Dα
t HK(t) = HDα

t K(t) = HQH−1 ϕ(t) = Gα
t ϕ(t) is

the αth operator matrix of Bernstein polynomials.

where Q =
[
qi,j
]m

i,j=0, qi,j =

{
Γ(i+1)

Γ(i+1−α)
t−α, i = j, i ≥ 1

0, else
, and Gα

t = HQH−1.

The partial differential term in Equation (5) is formulated as

Dα
t u(x, y, t) = Dα

t

(
ϕT(x)Wϕ(y)NT ϕ(t)

)
= ϕT(x)Wϕ(y)NTDα

t ϕ(t)

= ϕT(x)Wϕ(y)NT
(

HQH−1
)

ϕ(t) (29)
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4.4. Discretization Governing Equation

The governing equation can be expressed by various orders differential operator
matrices as

ρhϕT(x)Wϕ(y)NT(HPH−1)2
ϕ(t) + ηϕT(x)Wϕ(y)NT(HQH−1)ϕ(t)

+
(

Eh3

12(1−v2)
− h
)(

ϕT(x)
((

HPH−1)T
)4

Wϕ(y)NT ϕ(t)
)

+
(

Eh3

12(1−v2)
− h
)(

ϕT(x)W
(

HPH−1)4
ϕ(y)NT ϕ(t)

)
+ 2
(

Eh3

12(1−v2)
+ h
)

×
(

ϕT(x)
((

HPH−1)T
)2

Wϕ(y)
(

HPH−1)2NT ϕ(t)
)
= F(x, y, t)

(30)

The boundary conditions are converted into

ϕT(x)Wϕ(y)NT ϕ(t)|x=0,a = 0
ϕT(x)Wϕ(y)NT ϕ(t)

∣∣∣y=0,b = 0

ϕT(x)
(

HPH−1)Wϕ(y)NT ϕ(t)|x=0,a = 0
ϕT(x)W

(
HQH−1)ϕ(y)NT ϕ(t)

∣∣x=0,b = 0

(31)

Configure variable (x, y, t) as discrete variable
(

xi, yj, tk
)
. Matrices W and N are gained

by MATLAB software. Thus, the initial equation is solved.

5. Error Analysis and Mathematical Example

For the sake of proving accuracy and effectiveness of the mentioned Bernstein polyno-
mials algorithm, the following error analysis is carried out.

5.1. Error Bound

Theorem 1. If u(t) ∈ Cm+1[0, T] and u0(t) ∈ Y is the best approximation of u(t). {B0,m(x),
B1,m(x), B2,m(x), . . . , Bm,m(t)} ⊂ L2([0, T]),

Y = span{B0,m(x), B1,m(x), B2,m(x), . . . , Bm,m(x)}. Then the expression of the error is [38,39]

‖u(t)− u0(t)‖2 =
∥∥∥εu(t)

∥∥∥
2
<

V
(m + 1)!

T
2m+3

2√
(2m + 3)

(32)

where V = max(t)∈[0,T]

∣∣∣ ∂m+1u(t)
∂tm+1

∣∣∣.
Proof. The Taylor expansion of u1(t) is

u1(t) = u(0) +
(

t
∂

∂t

)
u(0) +

1
2!

(
t

∂

∂t

)2
u(0) + . . . +

1
m!

(
t

∂

∂t

)m
u(0) (33)

where u1(t) ∈ Y
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Because u0(t) is the best approximation of u(t), there is∥∥∥εu(t)

∥∥∥
2
= ‖u(t)− u0(t)‖2 ≤ ‖u(t)− u1(t)‖2

=

∫ T

0


(

t ∂
∂t

)m+1
u(ξ)

(m + 1)!


2

dt


1
2

=


∫ T

0


m+1
∑

k=0

(
m + 1

k

)
∂m+1u(ξ)

∂tm+1 tm+1

(m + 1)!


2

dt


1
2

(34)

≤ V
(m + 1)!

(∫ T

0
t2m+2dt

) 1
2

≤ V
(m + 1)!

T
2m+3

2
√

2m + 3

where ξ ∈ [0, t] and k = 0, 1, 2, . . . , m + 1.
Therefore, Theorem 1 is proved. Similarly, when u(x, y) ∈ Cm+1[0, R]× [0, S], it can

be proved in the same way based on Bernstein polynomials. The results show that the
proposed algorithm is precise and efficacious for approximating unknown functions of
three variables.

5.2. Mathematical Example

The accuracy of the algorithm is verified by a mathematical example. It is represented
by the following equation. The parameters in the mathematical example can be any values
and have no realistic significance. The specific equation is as follows

0.1
∂2u
∂t2 + 0.6Dα

t u + 0.01
(

∂4u
∂x4 +

∂4u
∂y4

)
+ 0.06

∂4u
∂x2∂y2 = F(x, y, t) (35)

The boundary conditions are

u(x, y, t)|x=0,1 = ∂u(x,y,t)
∂x |x=0,1 = 0

u(x, y, t)
∣∣y=0,2 = ∂u(x,y,t)

∂y

∣∣y=0,2 = 0
(36)

where α = 0.75, x ∈ [0, 1], y ∈ [0, 2] and t ∈ [0, 1].
The exact solution is

u(x, y, t) = x2(1− x)2y2(2− y)2t2 (37)

Substituting exact solution into Equation (35), mathematical equation is derived as

F(x, y, t) = 0.1
(

x2(1− x)2y2(2− y)2
)
+ 0.6 Γ(3)

Γ(3−α)
t2−α

(
x2(1− x)2y2(2− y)2

)
+0.01

(
24y2(2− y)2t2 + 24x2(1− x)2t2

)
+ 0.06

(
12x2 − 12x + 2

)(
12y2 − 24y + 8

)
t2

(38)

The Bernstein polynomials algorithm with the number of items m = 4 is used to solve
the proposed mathematical example. The numerical solution is un(x, y, t). The absolute
error en is

en(x, y, t) = |un(x, y, t)− u(x, y, t)| (39)

Figure 2a,b is the analytical and numerical solutions, respectively, at t = 1. It can be
seen that numerical solution and analytical solution are remarkably unanimous. Figure 2c
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shows absolute error and its minimum order of magnitude can reach 10−5. It can be proved
that this method is high accuracy and its availability for simulating governing equations of
fractional viscoelastic plates.

(a) (b) (c)

Figure 2. The mathematical example results for (a) analytical solution, (b) numerical solution and
(c) absolute error at different points.

6. Numerical Analysis

The equation of the fractional quadrilateral clamped square plate is numerically
analyzed. The plate displacement under external load is being investigated. The effect
of different side lengths of the square plate on plate displacement is analyzed. Dynamic
behavior of fractional plate with three boundary conditions is studied. In addition, the effect
of thickness of the plate on the stress is also studied. In all subsequent studies, the time
parameter is always considered as t = 1 s. Table 1 shows geometric characteristics of
viscoelastic plate materials in dynamic analysis.

Table 1. Geometric properties of viscoelastic plate materials [8].

Physical Quantity Symbol Value Dimension

Fractional order α 0.75 1
Length a 2 m
Width b 2 m

Thickness h 0.02 m
Density of the plate ρ 7850 kg ·m3

Poisson’s ratio v 0.3 1
Young’s modulus E 2.1× 105 MPa

Damping coefficient η 5× 10−3 1

6.1. Influence of Different Simple Harmonic Loads on Plate Displacement

When taking the parameters in Table 1 for research, different simple harmonic loads
are exerted to clamped square plate. Its form is F = ϑ sin(0.01t). Figure 3 is the dynamic
response of a square plate. It can be found that the displacement of plate is symmetric at
x = y = 1 m and reaches the maximum at the center point. With an increase in simple
harmonic load coefficient ϑ, the displacement of square plate also increases. Furthermore,
when the load condition is F = ϑ cos(π

4 t), the results of Table 2 are obtained through fixed
width y = 1 m. Displacement also increases with load and is symmetrical at the midpoint
of the length.
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(a) (b) (c)

Figure 3. Plate displacements under three simple harmonic loads for (a) F = 0.08 sin(0.01t). (b) F =

0.4 sin(0.01t). (c) F = 0.8 sin(0.01t).

Table 2. Displacement numerical solutions under simple harmonic loads.

u(x, y, t) x = 0 x = 0.5 x = 1 x = 1.5 x = 2

F = 0.002 cos(π
4 t) 0 0.01463 0.02522 0.01463 0

F = 0.004 cos(π
4 t) 0 0.03052 0.05262 0.03052 0

F = 0.006 cos(π
4 t) 0 0.04653 0.08024 0.04653 0

6.2. Influence of Side 0 of the Plate on Plate Displacement

In this part, the influences of different side lengths of square plates on plate displace-
ment are studied. Figure 4 is the change of displacement with side length of the plate under
load F = 0.08 sin(0.01t).

(a) (b) (c)

Figure 4. Displacements under external load F = 0.08 sin(0.01t) at different side lengths for
(a) a× b = 2 m× 2 m. (b) a× b = 6 m× 6 m. (c) a× b = 10 m× 10 m.

It can be seen that the displacement of the square plate increases with side length.
This is consistent with the results of Reference [40], but this paper can use the proposed
algorithm to solve the problem directly in the time domain. In Reference [40], a weak formal
equation was constructed based on Hamilton’s principle and a four node rectangular
plate element was used to discretize the region. When different external loads were
used, the vibration response of the laminated plate was studied by refined plate theory
finite element approach. The results indicate that Bernstein polynomials algorithm is an
efficacious tool for solving fractional differential equations of three-dimensional plates.
Displacement solution obtained by this algorithm has high accuracy.

6.3. Influence of Boundary Conditions on Plate Displacement

Figure 5 is about the influence of three boundary conditions on displacement of vis-
coelastic plates. CCCC, SSCC and SSSS denote completely simply supported plate, simply
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supported clamped plate and completely clamped plate in proper order. The expressions
for the three of them are

u(x, y, t)|x=0,a = ∂u(x,y,t)
∂x |x=0,a = 0

u(x, y, t)
∣∣∣y=0,b = ∂u(x,y,t)

∂y

∣∣∣y=0,b = 0
(40)

u(x, y, t)|x=0,a = ∂2u(x,y,t)
∂x2 |x=0,a = 0

u(x, y, t)
∣∣∣y=0,b = ∂u(x,y,t)

∂y

∣∣∣y=0,b = 0
(41)

u(x, y, t)|x=0,a = ∂2u(x,y,t)
∂x2 |x=0,a = 0

u(x, y, t)
∣∣∣y=0,b = ∂2u(x,y,t)

∂y2

∣∣∣y=0,b = 0
(42)

(a) (b) (c)

Figure 5. Displacements of the plate under external load F = 0.08 sin(0.01t) at different bound-
ary conditions for (a) CCCC. (b) SSCC. (c) SSSS.

As summarized from the figures, the square plate with the minimum constraints
has the largest displacement, and the displacement of plate decreases with increase in
constraints. This is consistent with the findings in Reference [40]. In this paper, the three-
dimensional diagram is used to more intuitively show the change of displacement with
constraints. This means that the displacement of the plate can be reduced by increasing the
constraint of boundary conditions. Therefore, the proposed algorithm provides a theoretical
basis for study of vibration analysis of viscoelastic plates.

6.4. Influence of Plate Thickness on Stress

The variation of stress with plate thickness will be analyzed. The expression for
stress is

σ(x, y, t) = ηDα
t

∂2u(x, y, t)
∂x2 (43)

The stress distribution of the viscoelastic plate under external load F = 0.08 sin(0.01t)
is shown in Figure 6. The displacement of the plate will increase by the thickness of the
plate. The conclusion is consistent with Reference [2]. By using the generalized multi-
axial Maxwell model and Hamilton’s principle, they obtained the viscoelastic constitutive
equation and proposed an effective equal geometric analysis formula for solving the
nonlinear vibration problem of the viscoelastic plate. This verifies correctness of the
numerical results. Therefore, the proposed algorithm is suitable for solving and studying
stress problems of viscoelastic plates.
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(a) (b) (c)

Figure 6. Stress of the plate under external load F = 0.08 sin(0.01t) at different plate thickness for
(a) h = 0.02 m. (b) h = 0.04 m. (c) h = 0.06 m.

7. Conclusions

A new method for calculating fractional differential equations is presented in this
paper. The differential operator matrices of Bernstein polynomials are used to approximate
the displacement function directly in the time domain. The governing equations are trans-
formed into algebraic equations for the solution. Error analysis and numerical results prove
the correctness and effectiveness of the mentioned algorithm. In addition, the dynamic
response of the three-dimensional viscoelastic plate is analyzed.

1. The displacement of viscoelastic plate is gained directly in the time domain by
Bernstein polynomials algorithm. The unknown function is approximated by the operator
matrix form of the mentioned polynomials.

2. The displacement of plate increases with the increase in the simple harmonic load
coefficient and side length of square plate. The smaller the boundary condition constraints,
the larger the viscoelastic plate displacement.

3. The effect of the plate thickness on stress is discussed. As the thickness of the plate
increases, the stress value also increases.

4. The proposed algorithm can be applied to more complex differential governing
equations, such as variable fractional viscoelastic plates and shells.

Author Contributions: Conceptualization, S.J. and J.X.; methodology, S.J.; software, S.J. and J.Q.;
formal analysis, Y.C.; data curation, Y.C.; writing—original draft preparation, S.J.; project adminis-
tration, Y.C.; funding acquisition, J.X. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (Grant
No.52005360) and Technological innovation Programs of Higher Education Institution in Shanxi
(2021L403).

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Zhang, D.P.; Lei, Y.J.; Shen, Z.B. Semi-analytical solution for vibration of nonlocal piezoelectric Kirchhoff plates resting on

viscoelastic foundation. J. Appl. Comput. Mech. 2018, 4, 202–205. [CrossRef]
2. Shafei, E.; Faroughi, S.; Rabczuk, T. Nonlinear transient vibration of viscoelastic plates: A NURBS-based isogeometric HSDT

approach. Comput. Math. Appl. 2018, 84, 1–15. [CrossRef]
3. Ziaee, S. Linear free vibration of micro-/nano-plates with cut-out in thermal environment via modified couple stress theory and

Ritz method. Ain Shams Eng. J. 2018, 9, 2373–2381. [CrossRef]
4. Cadou, J.M.; Ounis, H.; Boutyour, E.H.; Potier-Ferry, M. Asymptotic numerical method and Padé approximants for eigen-

value.Application in linear vibration of plates and shells. Mech. Res. Commun. 2020, 106, 103538. [CrossRef]
5. Babahammou, A.; Benamar, R. Linear and nonlinear vibrations of isotropic rectangular plates resting on full or partial line

supports. Mater Today Proc. 2022, in press. [CrossRef]
6. Cho, J.R. Nonlinear free vibration of functionally graded CNT-reinforced composite plates. Compos. Struct. 2022, 281, 115101.

[CrossRef]

http://doi.org/10.22055/jacm.2017.23096.1149
http://dx.doi.org/10.1016/j.camwa.2020.12.006
http://dx.doi.org/10.1016/j.asej.2017.05.003
http://dx.doi.org/10.1016/j.mechrescom.2020.103538
http://dx.doi.org/10.1016/j.matpr.2022.01.037
http://dx.doi.org/10.1016/j.compstruct.2021.115101


Fractal Fract. 2022, 6, 150 13 of 14

7. Quan, T.Q.; Ha, D.T.T.; Duc, N.D. Analytical solutions for nonlinear vibration of porous functionally graded sandwich plate
subjected to blast loading. Thin Wall Struct. 2022, 170, 108606. [CrossRef]

8. Datta, N.; Praharaj, R.K. Dynamic response of fractionally damped viscoelastic plates subjected to a moving point load. J. Vib.
Acoust. 2020, 142, 041002. [CrossRef]

9. Katsikadelis, J.T.; Babouskos, N.G. Post-buckling analysis of viscoelastic plates with fractional derivative models. Eng. Anal.
Bound. Elem. 2010, 34, 1038–1048. [CrossRef]

10. Fan, W.P.; Jiang, X.Y.; Qi, H.T. Parameter estimation for the generalized fractional element network Zener model based on the
Bayesian method. Physica A 2015, 427, 40–49. [CrossRef]

11. Pan, W.Q.; Li, T.Z.; Wang, Y. The multi-switching sliding mode combination synchronization of fractional order non-identical
chaotic system with stochastic disturbances and unknown parameters. Fractal Fract. 2022, 6, 102. [CrossRef]

12. Zhang, X.F.; Lin, C.; Chen, Y.Q.; Boutat, D. A unified framework of stability theorems for LTI fractional order systems with
0 < α < 2. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3237–3241. [CrossRef]

13. Zhang, X.F.; Huang, W.K. Adaptive neural network sliding mode control for nonlinear singular fractional order systems with
mismatched uncertainties. Fractal Fract. 2020, 4, 50. [CrossRef]

14. Rouzegar, J.; Vazirzadeh, M.; Heydari, M.H. A fractional viscoelastic model for vibrational analysis of thin plate excited by
supports movement. Mech. Res. Commun. 2020, 110, 103618. [CrossRef]

15. Permoon, M.R.; Farsadi, T. Free vibration of three-layer sandwich plate with viscoelastic core modelled with fractional theory.
Mech. Res. Commun. 2021, 116, 103766. [CrossRef]

16. Praharaj, R.K.; Datta, N. On the transient response of plates on fractionally damped viscoelastic foundation. Comput. Appl. Math.
2020, 39, 256. [CrossRef]

17. Ai, Z.Y.; Jiang, Y.H.; Zhao, Y.Z.; Mu, J.J. Time-dependent performance of ribbed plates on multi-layered fractional viscoelastic
cross-anisotropic saturated soils. Eng. Anal. Bound. Elem. 2022, 137, 1–15. [CrossRef]

18. Sene, N.; Fall, A.N. Homotopy perturbation ρ-Laplace transform method and its application to the fractional diffusion equation
and the fractional diffusion-reaction equation. Fractal Fract. 2019, 3, 14. [CrossRef]

19. Zainal, N.H.; Kiliçman, A. Solving fractional partial differential equations with corrected Fourier series method. Abstr. Appl. Anal.
2014, 2014, 958931. [CrossRef]

20. Qiu, W.L.; Xu, D.; Chen, H.F.; Guo, J. An alternating direction implicit Galerkin finite element method for the distributed-order
time-fractional mobile–immobile equation in two dimensions. Comput. Math. Appl. 2020, 80, 3156–3172. [CrossRef]

21. Nikan, O.; Avazzadeh, Z.; Machado, J.A.T. Numerical study of the nonlinear anomalous reaction–subdiffusion process arising in
the electroanalytical chemistry. J. Comput. Sci.-Neth. 2021, 53, 101394. [CrossRef]

22. Mohamadi, A.; Shahgholi, M.; Ghasemi, F.A. Free vibration and stability of an axially moving thin circular cylindrical shell using
multiple scales method. Meccanica 2019, 54, 2227–2246. [CrossRef]

23. Cherif, M.H.; Ziane, D. Variational iteration method combined with new transform to solve fractional partial differential equations.
Univ. J. Math. Appl. 2018, 1, 113–120. [CrossRef]

24. Wang, Y.H.; Chen, Y.M. Dynamic analysis of the viscoelastic pipeline conveying fluid with an improved variable fractional order
model based on shifted Legendre polynomials. Fractal Fract. 2019, 3, 52. [CrossRef]

25. Hashim, I.; Sharadga, M.; Syam, M.I.; Al-Refai, M. A reliable approach for solving delay fractional differential equations. Fractal
Fract. 2022, 6, 124. [CrossRef]

26. Cao, J.W.; Chen, Y.M.; Wang, Y.H.; Zhang, H. Numerical analysis of nonlinear variable fractional viscoelastic arch based on shifted
Legendre polynomials. Math. Method Appl. Sci. 2021, 11, 8798–8813. [CrossRef]

27. Wang, J.S.; Liu, L.Q.; Chen, Y.M.; Ke, X.H. Numerical solution for fractional partial differential equation with Bernstein
polynomials. J. Electron. Sci. Technol. 2014, 12, 331–338. [CrossRef]

28. Khan, H.; Alipour, M.; Jafari,H.; Khan, R.A. Approximate analytical solution of a coupled system of fractional partial differential
equations by Bernstein polynomials. Int. J. Appl. Comput. Math. 2016, 2, 85–96. [CrossRef]

29. Heydari, M.H.; Avazzadeh, A.; Yang, Y. Numerical treatment of the space-time fractal-fractional model of nonlinear advection-
diffusion-reaction equation through the Bernstein polynomials. Fractals 2020, 28, 2040001. [CrossRef]

30. Chen, Y.M.; Liu, L.Q.; Liu, D.Y.; Boutat, D. Numerical study of a class of variable order nonlinear fractional differential equation
in terms of Bernstein polynomials. Ain Shams Eng. J. 2018, 9, 1235–1241. [CrossRef]

31. Yi, M.X.; Huang, J. Wavelet operational matrix method for solving fractional differential equations with variable coefficients.
Appl. Math. Comput. 2014, 230, 383–394. [CrossRef]

32. Chen, Y.M.; Sun,Y.N.; Liu, L.Q. Numerical solution of fractional partial differential equations with variable coefficients using
generalized fractional-order Legendre functions. Appl. Math. Comput. 2014, 244, 847–858. [CrossRef]

33. Malara, M.; Spanos, P.D. Nonlinear random vibrations of plates endowed with fractional derivative elements. Probabilist. Eng.
Mech. 2018, 54, 2–8. [CrossRef]

34. Timos̃enko, S.P. Theory of Plates and Shells; McGraw-Hill: New York, NY, USA, 1964.
35. Jiang, Q.; Zhou, Z.D.; Yang, F.P. The method of fundamental solutions for two-dimensional elasticity problems based on the Airy

stress function. Eng. Anal. Bound. Elem. 2021, 130, 220–237. [CrossRef]
36. Khataybeh, S.N.; Hashim, I.; Alshbool, M. Solving directly third-order ODEs using operational matrices of Bernstein polynomials

method with applications to fluid flow equations. J. King Saud Univ. Sci. 2019, 31, 822–826. [CrossRef]

http://dx.doi.org/10.1016/j.tws.2021.108606
http://dx.doi.org/10.1115/1.4046485
http://dx.doi.org/10.1016/j.enganabound.2010.07.003
http://dx.doi.org/10.1016/j.physa.2015.02.037
http://dx.doi.org/10.3390/fractalfract6020102
http://dx.doi.org/10.1109/TCSII.2020.2978869
http://dx.doi.org/10.3390/fractalfract4040050
http://dx.doi.org/10.1016/j.mechrescom.2020.103618
http://dx.doi.org/10.1016/j.mechrescom.2021.103766
http://dx.doi.org/10.1007/s40314-020-01285-6
http://dx.doi.org/10.1016/j.enganabound.2022.01.006
http://dx.doi.org/10.3390/fractalfract3020014
http://dx.doi.org/10.1155/2014/958931
http://dx.doi.org/10.1016/j.camwa.2020.11.003
http://dx.doi.org/10.1016/j.jocs.2021.101394
http://dx.doi.org/10.1007/s11012-019-01062-8
http://dx.doi.org/10.32323/ujma.396941
http://dx.doi.org/10.3390/fractalfract3040052
http://dx.doi.org/10.3390/fractalfract6020124
http://dx.doi.org/10.1002/mma.7306
http://dx.doi.org/10.3969/j.issn.1674-862X.2014.03.017
http://dx.doi.org/10.1007/s40819-015-0052-8
http://dx.doi.org/10.1142/S0218348X20400010
http://dx.doi.org/10.1016/j.asej.2016.07.002
http://dx.doi.org/10.1016/j.amc.2013.06.102
http://dx.doi.org/10.1016/j.amc.2014.07.050
http://dx.doi.org/10.1016/j.probengmech.2017.06.002
http://dx.doi.org/10.1016/j.enganabound.2021.05.021
http://dx.doi.org/10.1016/j.jksus.2018.05.002


Fractal Fract. 2022, 6, 150 14 of 14

37. Kiasat, M.S.; Zamani, H.A.; Aghdam, M.M. On the transient response of viscoelastic beams and plates on viscoelastic medium.
Int. J. Mech. Sci. 2014, 83, 133–145. [CrossRef]

38. Wang, J.; Xu, T.Z.; Wang, G.W. Numerical algorithm for time-fractional Sawada-Kotera equation and Ito equation with Bernstein
polynomials. Appl. Math. Comput. 2018, 338, 1–11. [CrossRef]

39. Kadkhoda, N. A numerical approach for solving variable order differential equations using Bernstein polynomials. Alex. Eng. J.
2020, 59, 3041–3047. [CrossRef]

40. Rouzegar, J.; Davoudi, M. Forced vibration of smart laminated viscoelastic plates by RPT finite element approach. Acta Mech. Sin.
2020, 36, 933–949. [CrossRef]

http://dx.doi.org/10.1016/j.ijmecsci.2014.03.007
http://dx.doi.org/10.1016/j.amc.2018.06.001
http://dx.doi.org/10.1016/j.aej.2020.05.009
http://dx.doi.org/10.1007/s10409-020-00964-1

	Introduction
	Preliminaries
	Governing Equation of Fractional Viscoelastic Plate
	Numerical Algorithm for Bernstein Polynomials
	 Bernstein Polynomials
	 Function Approximation
	Differential Operator Matrix of Bernstein Polynomials
	Integer Differential Operator Matrix
	Fractional Differential Operator Matrix

	[id=4]Discretizationdiscretization Governing Equation

	Error Analysis and Mathematical Example
	Error Bound
	Mathematical Example

	Numerical Analysis
	Influence of Different Simple Harmonic Loads on Plate Displacement
	Influence of Side 0 of the Plate on Plate Displacement
	Influence of Boundary Conditions on Plate Displacement
	Influence of Plate Thickness on Stress

	Conclusions
	References

