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Abstract: In the present paper, we establish two Erdélyi-type integrals for Saran’s hypergeometric
function Fg, which has applications in specific branches of applied physics and statistics (see below).
We employ methods based on the k-dimensional fractional integration by parts to obtain our main
integral identities. The first integral generalizes Koschmieder’s result and the second integral extends
one of Erdélyi’s classical hypergeometric integral. Some useful special cases and important remarks
are also discussed.
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1. Motivation and Objectives

One of the triple hypergeometric functions due to Saran ([1] p. 294, Equation (2.4); see
also [2]) is the Fx function which is defined by

Fxlar, a2, a2, B1, B2, B1; V1,72, 735 X, Y, 2]
- (“1)m(“2)n+p(ﬁl)m+p(.32)nﬁﬁi
P D M CA MR ®

il m! n! p!’

where (x,,z) € Dg := {(x,y,2) €C?: x| < 1|y <1 |z[ < (1—|x])(1 —|y|)}. It may
be noted that Dy is a complete Reinhardt domain (see [3] p. 104, Definition 2.3.12) since for
(x,y,z) € Dxand pj € C (|| <1,j=1,2,3), wehave |u1x| < |x[ <1, [uoy| < |y| < 1and

e < I
A pax)) (1~ [payl) = (T~ (T~ o)

thereby implying that (p1x, poy, usz) € Dg.

During the past few decades, the triple hypergeometric function defined by (1) has
been studied by many authors, e.g., Abiodun and Sharma [4], Deshpande [5], Exton [6,7],
Pandey [8] and Srivastava and Karlsson [9]. Recently, Luo and Raina [2] investigated some
new useful properties and also specifically mentioned the importance of this useful function
Fx by pointing out its applications in certain applied sciences. For example, Hutchinson [10]
used the Fx-function in his work on compound gamma bivariate distribution, and Kol and
Shir [11] used this function in their recent study of the propagator seagull diagram. For
more details about the applications of this function, one may refer to the paper [2]; see
also [12-16].

<1,
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The aim of the present paper is to obtain further new results related to the work
on Erdélyi-type integrals for the Fx function [2]. For a certain class of hypergeometric
functions, the Erdélyi-type integral often connects this class of functions (in terms of an
integral representation) to similar forms of functions.

A typical Erdélyi-type integral is given by the following (see [17] p. 178, Equation (11);
see also [18] p. 476, Equation (1.1)):

o || = [Ja-z R [P on [P CEE ), @

Xz

where R(y) > R(A) > 0, 2F; denotes the familiar Gauss hypergeometric function defined
by the following (see [19] p. 13):

za[ }—i @Bz (17 <),

(V)n

and pi,5(t), as a special case of the Dirichlet measure, is defined for t(a) > 0 and R(B) > 0
by (see [20] p. 52, Definition 3.11-1)

R r(“ +:B) a—1 B—1
dpap(t) : T(@)T(B) (1 —t)Pdt (©)]

Equation (2) was first derived by Erdélyi [17] by making use of the fractional inte-
gration by parts and was later rediscovered by Joshi and Vyas [21] by using the series
manipulation techniques. Additionally, Equation (2) has some important applications.
For example, it was used in solving a certain Abel-type integral equation involving the
Appell hypergeometric function F; in the kernel [22]. For the latest results concerning
the Erdélyi-type integral for hypergeometric functions of one variable, the reader may
refer to [18]. Hypergeometric functions of several variables have vastly been studied; see,
for example, Refs. [9,23-26]. Due to their importance in the theory and applications, it
is always useful and interesting to find new Erdélyi-type integrals associated with such
classes of hypergeometric functions.

In the present paper, we focus our investigations on the following two considerations.

Firstly, the authors in their Remark 4.5 of Ref. [2] mention that their main integral
identity [2] (p. 14, Theorem 4.1), though general in nature, does not contain Koschmieder’s
formula [2] (p. 17, Equation (55)) as a special case. However, it was also realized that a
more general integral identity may perhaps exist that contains Koschmieder’s result. We
now confirm by aiming to find such a general form of integral identity which contains
Koschmieder’s formula, for which we present two independent proofs.

Secondly, Sharma and Manocha [25] in their investigation make use of the familiar
methods of fractional integration by parts to establish a much involved integral identity for
another class of a triple hypergeometric function Fp; of Saran ([1] (p. 294, Equation (2.5);
see also [9] (p. 42, Equation (5)), which is defined by

Fur [a,a’, a:b b be,c,c; X,y,Z] — Z (ﬂ) (ﬂ )n-‘rri( )m-i-]ﬂ( )n x™ ' ]/' Z'
m,11,p=0 (©)m(c)n+p m.n.p:

where (x,y,z) € Dy := {(x,y,2z) € C3: |x] <1, |y| +|z| < 1}. Here, Dy is also a com-
plete Reinhardt domain. It was established in [25] (p. 243) that Saran’s function Fj,
possesses the following integral representation:

Fyla,a',a’;0,b,b;c,c, 5 x,y, 2] // (1—ovy)~ l—ux—vz) ¢

“Fmla—Ad —wad —u;edec— A —u,cd A

1-uw)x (A-9)y (1-0)z
—ux—vz’ 1—vy "1—ux—oz
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-Fmla,a',d',b—e b —d,b—e; A, p;ux, vy, 02| dpip e (u)d g,y (0), )
where R(c) > R(A) > 0and R(c') > R(x) > 0. In particular, Erdélyi’s Formula (2) can be
obtained by letting x = z = 0 in (4) and noting that

o, /. A . a,/b/.
FM[”/a/a Iblblblclclc roryro} *Zpl C/ /y .

Sharma and Manocha’s Formula (4) is an interesting result that depicts an important
fact that the Saran’s function Fj has also the Erdélyi-type integral relation. In this paper, we
show, by specializing a very general type of integral identity, that an integral representation
of the Erdélyi-type similar to the result (4) holds also for the Fx function defined above

by (1).

2. Some Preliminaries
2.1. Properties of Saran’s Fx-Function

The Fx-function has the triple integral representation given by ([2] Equation (3))
Fila1, a2, 2, B1, B2, B1; Y1 72, 735 X, Y, 2]
=C /01 /01 /01 ua (1 — )l 0)7275271Wﬁ1*1(1 - w)%ﬂsl*1
(1= ux)*2 P11 — ux — vy — wz + uoxy) " “*dudodw, (5)
where R(y1) > R(a1) > 0, R(y3) > R(B1) > 0, R(72) > R(B2) > 0and C is given by

Co— L)L (72)T(73)
" T(a)T(B)T(B2)T (v1 — )T (72 — B2)T (v3 — B1)

Alternatively, (5) can be written in a compact form as

(6)

Fxla1, a2, 22, B1, B2, B1; Y1, Y2, Y35 X, Y, 2]
1 1 41
= / / / (1-— ux)“z_/51 (1 —ux — vy — wz + uoxy) ™
0o Jo Jo
“day,yy—a (”)dyﬁzﬁzfﬁz (U)dyﬁlr%*ﬂl (w).

By using a simple substitution in (5), Saran [1] (p. 299, Equation (4.2)) derived the
following transformation which shall be used in our work below.

Fxlat, a2, 00, B1, B2, B1s Y1, 72, 73: %, Y,2) = (1 — x)fﬁ] (1- }/)7“2

x y z
'F _ _ . . . 7
K |71 — &1,02,42, B1,72 !32,/31,71,72,73,x_1,y_1, ) 7)

It is worth mentioning that Pandey [8] reproduced the transformation (7) by using a
contour integral representation of F.

2.2. Fractional Integration by Parts for Function of Several Variables

For convenience, we define the fractional derivative by the formal relation

dw T(p—v+1) ®

For functions of one variable (i.e., one-dimensional case), the formula of fractional
integration by parts can be found, for example, in [27] (p. 112, Equation (2.9.3)), [18] (p. 478,
Equation (2.3)) and [2]. However, for functions of several variables, we could not find in the
literature a formal theorem giving the fractional integration by parts of functions of several
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variables, though Chandel [28], Koschmieder [29,30], Manocha [24], Mittal [31], Manocha
and Sharma [25] and Luo and Raina [2] obtained results for the functions F;, F, F3, F4, Fa,
Fp, Fx and Fy by repeatedly using the fractional integration formula for one variable.

Here, for the clarity of presentation, we give a formal version of k-dimensional frac-
tional integration by parts.

Lemma 1 (k-dimensional fractional integration by parts). Let x := (x1,---,xg), V =
(v1,- -+, v) and u(x) and v(x) be functions of k-variables defined by

o0 k 00 k
u(x) =Y Am[J(xj—a)f ™™ and o(x) =Y Ba]](b; — xj)‘71+”f_1.
m=0  j=1 n=0 j=1
Additionally, let
141 Vi V1 Vk
DY = J J and DY := J J

by —x1)"" (b — xx)* A1 —a)' (g — )

Then
b b
/au(x)D‘iv(x)clx:/a v(x)DY u(x)dx, 9)

holds, provided that the integrals exist.

Proof. To prove (9), we note upon using an elementary fractional integral formula and
evaluations that

k avj (b o xj)U]'-‘rl’l]‘—l

D'o(x) =Y Ba]] a](b]- Sy

n=0 j=1
) k T(o: .
— 2 BnH (0] + Tl]) (bj _ xj)a]'fvfrn]vfl,
a0 o1 L@ = v+ )
so that
b
/ u(x)D" v(x)dx
a
= AmBn 1_,(]])/ ](x]' — a])p]+m/_1(b] - xj)af_vf+”f_1de
m—0n—0 =1 (05 = vj+n)) Ja,
_ i iA B ﬁ F(pf+mj)r<af+nf) (b,_a,)P]"hT]'*V]"Fm]"Fnjfl
N L iT(oj+pj—vi+mi+n)
m=0n=0 j=1 ] ] ] ] ]
X & ko T(oj+my) b e v
= Z BnAmHm/ (x]‘—aj)o']"”n] 1(b]_x])p] V]+m] 1dx/
n=0 m=0 j=1 L \Pj = Vj 1) Ja
b
:/ v(x)DY u(x)dx,
a

provided that R(c;) > 0, ®(o; —vj) > 0, R(p;) > 0and R(p; —v;) >0( =1,2,--- k).
This proves Lemma 1. [

2.3. Hypergeometric Function of Several Variables

In Section 4 below, we encounter the Srivastava—Daoust hypergeometric function
of several variables [9] (p. 37, Equation (21)); see also [26] (p. 64, Equation (18)). For
convenience and compactness’ sake, we adopt here slightly varied forms of notations for
the Srivastava—Daoust function [9].
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As usual, let (a) := (a1, -+, aa) be a A-dimensional row vector, and let (b) :=
(by, -+, bp) be a B-dimensional row vector. Next, let 00) .= (951), e, 951)) be a r-

dimensional row vector, where j is a positive integer and 6? ) >0 =1,---,r). Then,

is a Ar-dimensional row vector. Similarly, ¢ 0) .= (¢(] ) , 1p§7 )) is also a r-dimensional

row vector with lpéj) >0(=1,---,r),and

i (00, o, B — () gD, B )

is a Br-dimensional row vector. The Srivastava—Daoust hypergeometric function in r-
complex variables can then be defined as

A
1) )
pal@:0. o |_ i R A (10)
Bl) ™t 7 B my! ml
ml,...,m,‘:O H(b) . .
gy

where an empty product is interpreted to be 1.

The series (10) contains the usual definition of the Srivastava—Daoust hypergeometric
function as a special case. It is easy to see that it also contains many known multivariable
hypergeometric functions (e.g., Lauricella’s function, Srivastava’s triple hypergeometric
function, Saran’s functions, Kampé de Fériet’s function, etc.) as special cases. We demon-
strate here through a concrete example the advantage of our definition (10).

Whenr =2,
p(1) — — () = (1, 1),
p(p+1) — — plrtq) — (1, 0),
9(p+q+1) =...=04) =(0,1),
pi ==yt = (1,
w(ﬁrl) l,b l+m) (1’ 0),
l/)(ﬁ—i-m-&-l) _ l[J (©) — ( , 1)

A =p+qg+kand B = { + m+ n, the series in (10) becomes

.:!E

(])mﬁ-ml—[ p+j m1H p+q+]>mz My _my

i j=1 j=1 =1 4%
7 . ]’Tl1! mz.
=0
1,12 H(bj)m1+m2 H(b€+j)ml H(bé+m+j)m2
j=1 j=1 =1

which is the definition of the Kampé de Fériet function F, Ep HZ 1%,y (see [9] p. 27, Equation (28)).
This example shows that it is not necessary to make a deliberate distinction between factors,

such as (al-)m1 o) my0l) and (a j)ml ol in the notation of the function since those components

of 8() that are zero will determine the form of (a;) (i)
my6,’ +mo0,

It may be difficult to establish a general theorem about the convergence of the multiple
series (10), unless we impose a positivity condition on 6 and . However, for a specific series,
it is always possible to check its convergence by using the methods described in the book
of Srivastava and Karlsson [9]. For the convergence conditions of the Srivastava—Daoust
hypergeometric function defined in usual way, the interested reader may refer to [32].
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3. The First Integral

In this section, we establish a general integral identity that generalizes the Koschmieder’s
result (see Corollary 1 below). We use the fractional integration by parts to obtain our result
and also point out below that the integral identity can also be proved in an alternative way.

For max{R(n7), R(7y), R(n +v —a« — B)} > 0, we define the complex measure pi, g ,, by

At (1) = r((2)+(7)_?;7)+(177t1_[;))t" l1-17LE ["‘;Yﬁ;l—t}dt. (11)

By using [33] (p. 821, Equation (7.512.4))

Yot e L [0B ] gy - TOIT(T(y +p—a — B)
/0 sy ZH[’Y' ]d T Tlr+p—a)T(y+p—B)

(R(y) >0, R(p) >0, R(y+p—a—pB) >0),

it can be verified that y4 g ,,([0,1]) = 1. Evidently, the Dirichlet measure defined in (3) is a
special case of (11).

Theorem 1. For max{R(7y; + A; —vj — ), R(p;), R(vj) } > 0(j = 1,2,3), we have

FK[lxl/D‘Z/D‘Z/ﬁllﬁz’ﬁl;’yl”yzlvs;x y’Z]
_/ / / { az,ﬁhlxll)\l/ﬁ% A2; A3 ;U1X, U2y, U3z

-, — sV, H1,V2, U2, V3, U3

I—{ Hoj—viAj—vivi+A— ,uw]( ])
]_

where F®)[x,y,z] denotes Srivastava’s general triple hypergeometric function [9] (p. 44, Equa-
tion (14)).

Proof. Let us start with the integral representation [2] (p. 16, Corollary 4.2):
FK [“1/ xp,&p, ﬁl/ ﬁZI ,81/ Y1, V2,73, X, Y, ]

—/ / / Flay, a2, a2, B1, B2, B1; V1, V2, V3; U1 X, Uy, U3Z] Hd}i - (u5), (12)

where max{R(v;), R(v; —vj)} > 0(j = 1,2,3). Using the fractional derivative Formula (8),

we obtain
)\ 1 A—1 /\
v 22 3 FK[“l/‘XZ/ aZ/ﬁl/ ﬁzlﬁlll/llVZIVs/ uix,uzy, M3Z]
—A —A —A
— A oH1—A gHa—A2  gH3—A3 -1 s 1 H3 1
- —A —A —A 1 U,
auill 1 auﬂz 2 auﬂ3 3
- —,%2; P /)\ 7 /)\ /)\
) H ,3.1 1,A; B2, A2 As ulx,uzy,u3z} , (13)
— %=, —; — Vi, U1, V2, U2, V3, U3
where
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Hence, by using (13), the integral (12) can be written as

Fxlo, ap, a2, B1, B2, B1; Y1, Y2, 735 %, Y, 2]
1,1 ;1.3 A A A
o [ [T gy 2 0 OB e
—A —A —A
o Jo Jo j:1] auill 1augz zaugs 3

A Ba, Ao A
.p(3){ —ia2; Priaa, A Ba, A2i A S ULX, Uy, U z} duyduydus,
-, — 5 — rvll,ul/VZ/,MZIVCBII’l?) ! Zy 3 ! 2 3

where
3 (AL (7))

A= g aro; — o)

(14)
Now making use of the rule of the fractional integration by parts (9), we obtain

1 1 1
Fxloq, az, a2, B1, B2, B1; Y1, Y2, 73 X, Y, 2] Az/ // ult” m m

F(3) |: —r02; ‘Blllxll )Lll ,BZI /\2, )\3

. yU1X, Uy, uszz
- — ; — sV, U1, V2, U2, V3, U3 12y

) Hjik vi—Aj ;
- i 1 _ ry] d d d ,
]IIB 1—u j{ul ( u]) } uidupdug

where A; is given by (14). The result then follows immediately by using the formula [2]
(p. 15):

I Y
(1 — u)n=r {wrta—uwy

I'(y—v) —v—pt+A-1 A—v,y—v
= 1—u)’ VAL ' i1
F('y—v—y—k)\)( u) 217—1/—]4+)L

and the measure defined in (11). O

Remark 1.

(1)  The method of using fractional integration by parts is one way of proving Theorem 1. We can,
however, adopt a direct approach to establish the integral identity of Theorem 1. In fact, if
we first express the F®) function as a triple series, interchange the order of integration and
summation and then carry out elementary evaluations, we will arrive at the desired result.

(2) Let

= 2 Amz™ (z = F) and g Z Bmz™ Z € G)r

where z™ := z}"* - - - "%, then the Hadamard product (also called the convolution) of f(z)
and g(z) is defined by

(Frg)(2) = Y AmBmz™ (z € F#C).

m=0
It is easy to verify that
F(3) — X, ‘Bl/ X1, )\1/ ,BZ/ )\2/ )\3 sUq, Uy, 1/13:|
— =, —; — Vi, U1,V2, H2,V3, U3

= Fx[a1, a2, 00, B1, B2, B1; P, po, Ha; Uy, U, U3) * Hzﬁ[ v J; u]}
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In addition, since Dk and the polydisc D) := {(uq,uz,u3) € C*: |u;| <1,j=1,2,3} are
complete Reinhardt domains of holomorphy, it implies therefore from [34] (p. 22, Observa-
tion 5.1) that the region of convergence of F®) is

H)K £ I:H)K -D I:H)K,
where A-B = {ab:a € A,b € B}.

Now when x = 0, the Fx-function reduces to the function F, and the F (3)_function
reduces to

i (@2) my+m (B2)imy (A2)my (B1)ms (A3)my (42y)™ (u3z)™
iy, mz=0 2T (W2 (H2)my (V3)ms (3 )y 12! ms!
o : Ag; B1, A
_ pl2z|® B2, A2; B1, 3 oy, sz |,
022 — s vy, pp; v, U3 243

and, consequently, our Theorem 1 yields the following result due to Koschmieder [29] (p. 253,
Equation (10.6)).

Corollary 1 (Koschmieder [29]). Formax{R(y; 4+ Aj —v; — p;), R(pj), R(vj) } > 0(j = 2,3),
we have

ay 1 Bo, Ay; B1, Az,

Uuzy, usz
— Vg, o V3, U3 Y

e 1:2,2
Flaz, B2, B1; 72,73 Y, 2] :/0 /0 Fo:'z;'z[
3
T T b2 () (15)
2

Remark 2. Incidentally, after nearly three decades of the publication of Koschmieder’s result (15)
of [29] (p. 253), Mittal in his paper [31] (p. 104, Equation (14)) reproduced the same formula by
using similar methods as those mentioned above.

4. The Second Integral

In this section, we establish a new integral for the function Fx defined above by (1)
which evidently provides a generalization of the Erdélyi integral (2). The integral we
propose to establish here is quite general and is very different from the one we discussed in
Section 3 above.

We first need to prove the following two lemmas:

Lemma 2. Let max{|u|, |1 —ul,|v|, |1 —v|, |w|, |1 —w|} <1, max{|x]|, |y|} <1/2and
lz| < (1—2|x])(1—2|y|), then we have

1—u)" 1 =021 —w)" (1 —ux)2 (1 — ux — vy — (1 — w)z + uoxy) 2
=Di(1—-x) " (1-y) "

M~ a2 ts—H

(1 — )T (1 —v) 2 (1 — w)

{(1 —u)M T (1 — o) (1 — )t

1—u)x (1—v 1—w)z
- Fg 771,772,Uzrﬂllplz,]il;)\llAzl/\s;( )x | v ) y)]}, (16)

x—1 " y—=1"(1-x)(1-

where
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Proof. Let R denote the right-hand side of (16). Under the conditions stated with the
lemma, it is easy to see that

’(1—u)x

x—1

1 ’a—v)y‘ vl
<1, < <1 17
T— | 1 | <1y 17)

and

JRRCES S o
=0 —y)| = T= )T

<(-) () < (-5 - 15=3)

We can therefore express the Fx-function as a triple series and apply the fractional
derivative given in (8) term wise to obtain

_ )Rl ) e (771)111(772)71+p(}”1)m+p(}42)n
R=Di(1—x) "M (1—y)" m,;gzo SR e

'<xi1>m<y ) (o0 y))p 21— - )Tl -t

. 8/\2_’;2_ { oyt 1} Cs ’11 {(1w))\3+p1}
3(1_ ) 27 M2 a 3—H

= (1—w)" (1 o) (1 —w)17( )”1(1 y) "

B () () ()

We first sum the triple series in the right-hand side of (18) over the index-m and next
over the index-n under the same condition (17) to obtain

R=01-uw)""11-0)> 11 —w) 11 —ux) M (1—y)
S (Wz)n+p<(1—v)y>"( (1-w)z )p
gm0 P! y—1 (1—ux)(1—-y)
= (1—u)n" ( 0)"2 (1= w)!1 (1 — ) (1 - oy)
o (1-w)z P
; 2 ()
The last series can also be summed by noting that

(1-w)z 2| 2|

(1—ux><1—vy>’ SO-RDA—Ty) = T—2R)d—2y])

<1,

and thus

Ro= (L=u)" (1= 0) (1= w)! T (1= ) (1 - oy) (1 7(17(13357(‘;)%))_”2

= (1—u)" 1 —0)2 1 —w)" 1 — ux) (1 — ux — vy — (1 — w)z 4 uoxy)

This completes the proof. O
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Let us now define a function Qy . (u, v, w) involving the fractional derivative opera-
tors by
dM—m gra—m2 JAz—m 1
— 1=l Y%
Qryz(,0,W) JuM—m Jpra—H2 Jyrs—i {u (1—u)
P2 (1 — p) PPl (] — )P

(1 — ux)™2 TP (] — iy — oy — (1 — w)z + uoxy) 2R }

The following lemma gives an explicit evaluation of the function Qy . (u, v, w).
Lemma 3. For max{|u|, |v|, |w|, |1 —w|} < 1and (x,y,z) € Dk, we have

Qx,y,z(ur v,w) — Dzuﬂfl—)\1+771—1(1 _ u)%—)\l—alvﬁz—/\z-&-ﬂz—l(l _ z))’Yz—)\z—/gz

Lt —B1—As—1 (1- w)ﬁl*/\a}-x’y,z(ul v, W), (19)
h
R F(a)T(B2) (13— Bu)
277 Tlar — A+ 70T (B2 — A2+ )T (73 + 1 — 1 — As)
and
fx,y,z(ul 0, w) = i (a2 — 772)n+p(ﬁl - Vl)m+p(“1)1ﬂ(/32)n (ux)™ (vy)"

mipo (B1 = p)p(@1 = Ay +771)m(B2 — Ao+ p2)n mt !

) [(1—w)z]p21:1 71—)\1+m,771—)\1;u S ’Yz—/\z+ﬂ,ﬂz—/\2;v
p! v — A+ +m Po—Aa+pp+n

Y3 —Az+p 1 —As ]
F ;W . 20
{73+V1—51—/\3 20)

Proof. The key ingredient of the proof is the following expansion:

(1 — ux)*2 27 PIA (1 — yx — oy — (1 — w)z + uoxy) 2"

_ i (042 - 772)n+p(‘31 - ,ul)erp ﬁﬁi
m,n,p=0 (B1—m1)p m! n! p!

max{|ul, |v],|1 —w|} < 1; (x,y,z) € D).

u"o" (1 —w)P (21)

Let S denote the triple series in (21). By summing it over m, n and p (as in the proof of
Lemma 2), we obtain

S =(1—ux) Frm i w(vwn ((1—w)z)7’

Ip! —
=0 n!p! 1—ux

—(1— —Bitui (1 _ —az+12 - (az—ﬂz)p (1-w)z P
= (1 R oy ) T (=i

— —az+2
e A e T O e ),

=(1- ux)“z_'“_ﬁlﬂ” (1 —ux — vy — (1 —w)z + uoxy) “2*",
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In view of the expansion (21), we have

(@2 = 112)nrp(B1 — W) mp Xy 2P
Fry(wow)= ) ([Z - ) . pﬁ%?
m,n,p=0 1= HM)p Shep
oM ay+m—1 M- —m Nt pat+n—1 12=F2—H2
e {u 1 (1—u) }avAz—Vz {z; 2 (1-0) }
M3 —H1 a _
ST {w% B1 1(1 _ w)ﬁl 141+P}. (22)
It is easy to verify that
M- {u"‘ﬁml(l - u)““"”’“} _ T(a) (1) m
M- T(ag — A1 +11) (1 — A +171)m

=AMt Am=1 o\ r1—AM—a MM = Ay

u (1—u) 25[ e | e <), @
M2 {vﬁz+”1(l B v)”ﬁz’”} _ I'(2) (B2)n

o212 I(B2— A2+ p2) (B2 — A2+ p2)n

. /32—)\2+}42+Tl—1 1 72*/\2*52 E |:’)/2 /\2 n, ]’t )\2, :| 1 24
0 — 0 ;0 0| <
( ) 201 132 Ay o +n (| | ) (24)

and

oM~ L _ T'(ys—pB1) B A
13—B1—1(1 _ )P Hlﬂ’} _ B} 1 Y3t+pu1—P1—A3—1
owhs~i {w (1-w) T(7ys+ i1 —P1—As)

—Aat —A —|—p,‘ul—)\3
-1—wﬁl A3PFP3 3 ;w] w| <1). 25
( ) 211 73 1 ,Bl )\3 (| | ) ( )

Thus, (20) follows by substituting (23), (24) and (25) in (22). O

The following proposition gives an explicit representation of the function F y - (1, v, w)
defined by (20) in terms of the Srivastava—-Daoust function (10).

Proposition 1. For max{|u|, |v|, |w|, |1 —w|} < land (x,y,z) € D, the function Fy.y.(u, v, w)
defined by (20) can be expressed in terms of the Srivastava—Daoust function as follows:

a):0
Fayz(w,0,w) = P710 (a)

(©):

where (in terms of the symbolic representations as pointed out with the definition (10))

;u,0,w,ux,vy, (1 —w)z|, (26)

(a) = (v1 =M, 12— A2 B1— 1, @2 — 12, ¥3 — A3, 11 — A1, g2 — Ao, i1 — A3, aq, B2),
(b) = (a1 —A14m1, B2 — Ao+ 12, Y3+ 11— P1— A3, 11— A1, 12— A, B1— M1, 13— As),

=

o) = €] + ey, 003 = ey + eq, o0
0(2) = e, + es, o) — e5 + eq, 0(6

=estes 07 =e), 00 =e,
= ey, 6(8) = e3, 9(10) = es,

PV =e;+ey, 9& =e; PO =es,
1P(2) =er+ es, lp(4) = ey, lP(6) = 1P(7) = eg.

=

Here, as usual, e; :== (0, ---, 0,1, 0, ---, 0) is the 6-dimensional unit vector with 1 in the i-th
component, and 0 otherwise.
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Proof. The proof is quite simple. By interpreting each hypergeometric function occurring
in (20) defining the function F (1, v, w) in terms of a series, we easily obtain the sextu-
ple series

[0.9)

Z (')’1 - )\l)m1+M4(’YZ - /\2)m2+m5(,31 - Hl)m4+m6
wme=0 (01 = A7) myvmy (B2 — A2 + H2)mytms
) (@2 = 112) ms+mg (13 = A3)mytmg (11 — A )iy (B2 — A2)my (H1 — A3 )iy
(v3+ 11— B1 = A3)my (71 — M)y (72 — A2)ms (B1 — H1)mg
(@1)my (B2)ms u™ 02 W™ (ux)™ (vy)™s [(1 —w)z]™s
(93— A)mg mylmpl mal mgl ms! mel

]:x,y,z(u/ o, w) =

Thus by using (10), we obtain the desired form (26). O

When a; = 772 in (20), then after elementary calculations, the function Fy . (u,v,w)
reduces to the product of hypergeometric functions and the Kampé de Fériet function and

is given by
_ A pa—Ag, Y3 — Az, p1—As
FXry/Z(uIUIw) - 2F1|: ﬁZ _/\2+#2 ,U:|2F1 |:,)/3+#1 _,B] _/\Slw
X2=12
Cpl2n (M — A B — e — A
Fii% { @1 — A — A= ux,u|. (27)

Additionally, if we further let yv; = a7 + A in (27), we obtain

—LF Pz—)\z,}lz—?\z;v] Fl[ Y3 — A3, i1 — A3 w}

‘F 7 7 7
rya (1,0, ) P2 — A2+ 2 Y3tp—p1— A3

X2=1M2
T=e1tM

“Fia, B1— p1, 11 — Ay — Ay ux, ul,

where F; denotes the first Appell function [9] (p. 22, Equation (2)).
On the other hand, when y; = a1 + %1, 72 = B2 + 2 and y; = A3 in (20), then
Fry,z(1,0,w) becomes Saran’s Fg-function:

A— Ap—
Fay,z(u,0,w) b = (1—u)Mt (1 —p)t2 2
T2=PB2+H2

H1=A3

- Fx {061,112 — 12,02 — 112, p1 — A3, B2, f1 — As;
wp — A+ 171, B2 — Ao+ po, B1 — Az ux, vy, (1 — w)z] .
We now state and prove the next result.
Theorem 2. Let
max{R(ag — A1 +m),R(y1 —a1)} >0, max{R(Ba— Ax+ u2), R(y2—B2)} >0,
and max{R(ys + p1 — p1 — A3), R(B1)} > 0. Then we have

Fxlag, a2, a2, B1, B2, B1; Y1, Y2, Y35 X, Y, Z]

:D/Ol /01 /01(1_ux)im(l—W)fﬂzfx,y,z(u,v,w)
(1-wx 1-v)y  (1-w)z
1—ux’ 1—ovy " (1 —ux)(1—oy)

- Fg {/\1 — 11, M2, M2, Y1, A2 — M2, f1; A1, Ao, As;

) dy"‘l —M+i,m - (u)dyﬁz =AMtz 12— B2 (v)dﬂw +u1—P1—A3,1 (w), (28)



Fractal Fract. 2022, 6, 155 13 of 16

where Fyy(u,v,w) is defined by (20) and

Do T ()T (1) (p2) ﬁ r
T(y1 =AM +m)T(v2 — A2+ p2)T (73 — Az + 1) 73 T(Ae

Proof. We begin with the integral representation obtained by letting w — 1 — w in (5), that is,
Fxlar, a2, a2, B1, B2, B1; 71, V2, V35 %, Y, 2]
11 g1
=C / / / Pyy2(u,0,w)Qxy,2 (1, v, w)dudodw, (29)
Jo Jo JO
where

Paygc(it,0,w) i= 1t (1= )"~ o1 — )bl (1 g
(1 —ux) TP (] oy — oy — (1 — w)z + uoxy) 2T,
Quyz(u,v,w) = (1—u)" (1 =) (1 —w)" !
(1= ux)? M1 —ux —oy — (1 —w)z +uovxy) 7,
and the constant C is invariant and given by (6). It may be noted that the functions

Pyy,z(u,v,w) and Qy,y (1, v, w) involve four new free parameters 71, 172, p11 and py.
Next by applying Lemma 2 to (29), we obtain

Fx a1, a2, 00, B1, B2, B15 Y1, Y2, Y35 %, Y, 2]

1 1 1
:CDl(l—x)_”l(l—y)_’”/O /0 /o Pry,z(u,0,w)

A1—1 Ay —1io A3—H
oM~ d 0 1 {(1 71/[)/\171(1 70))\271(177/0)?\371

91— u)1 (1 —v) 22 g(1 — w)e M

1-uwx (1-0v)y (1-w)z
x—1 " y—-1 "(1-x)(1-y

“Fx 111, M2, 112, M1, B2, 1 M, A, Az )} }dudvdw. (30)

Making use of the transformation (7), the above integral (30) can be further ex-
pressed as

1 ,1 ,1
FK[“l/a2/aZIﬁll,BZ/ﬁl;r)/l/r)/Z/73;x1ylz] - CDl/O A /0 Px,y,Z(u/v/w)
oM—m 22 M~
(1 — )M M (1 — o)t 2 9(1 —w) M

{u—uyﬂlu—vﬂzwl—wﬂ31

(1 —ux) M (1 —oy) PFg [M — 11,12, M2, H1, A2 — M2, 15 A1, Ao, As;

(1—u)x (1—0)y (1—w)z
1—ux’ 1—ovy " (1—ux)(1— vy)} }dudvdw.

Applying next the rule of the fractional integration by parts (9), we obtain

Fx|o1, a0, 2, B1, B2, B1; Y1, Y2, V3: X%, Y, 2]

ooy [ [t oy - @) ) (o)

_ _ . (-wx (-0  (1-w)z
FK |:/\1 17]/ 772/ 7721 ]’ll//\z I/lZI ,Ml/ /\11/\2/ )\3/ 1_ux s 1_ oy s (1 — ux)(l — 'U]/)

M= gra—p2 A=
. JuM—1 gpra—H2 Jrs—i1

{Px,y,z (u,v,w) }dudvdw. (31)
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The fractional derivative of Py .(u, v, w) appearing in the integrand of (31) is equivalent
to Qy y,2(1, v, w) which can be evaluated by using Lemma 3, and we have, therefore,

Fxlag, a2, a2, B1, B2, B1; Y1, Y2, V35 X, Y, Z]
1 1 1
:(1%D2/ / /(1—uxyﬂw1—vw*W];%vaﬂw
0 JO JO

_ _ . (A—u)x (1-o)y (1-w)z
Fx [)\1 1,12, M2, W1, A2 — M2, H1; A1, Ag, Az; T—ux " 1—oy ' (—ux){1—oy)
yf—Mtm=lg u)%*“lflvﬁz—/\z-ﬁ-ﬂz—l(l _ v)“rz*ﬁrl

. w%ﬂh*ﬁl*)\S*l(l — w)ﬁl_ldudvdw.

(32)
We finally obtain (28) upon using (32) and (3). This completes the proof. [J

The following corollary may be looked upon as the most important and interesting
integral relation concerning the Fx-function.

Corollary 2. Let max{R(a; — A1 +11), R(71)} > 0, max{R(B2 — A2 + u2), R(42)} > 0,
and max{R(y3 — 1), R(B1)} > 0. Then we have
1 1 /1
Fylar, az, a2, B1, B2, Priar + 11, B2 + o, 3 %, Y, 2] = /0 /0 /o (1—ux) (1 —oy) ™"

Fx [061,062 — 12,82 — 12, B1 — A3, B2, B1 — Az; @1 — A1 + 11, B2 — Ax + o, B1 — Ag; ux, vy, wz}

_ o A (A—u)x (1-o)y wz
Fx [)\1 112,112, A3, A2 = P2, Agi A, Ao, Ags = = S oy ' =) (1= 0y)
“Aptag g (W) AHBy 254112, 0, (V) Al s, (0)-

(33)
Proof. By setting y1 = &1 + 11, 72 = B2 + 2 and y1 = A3 in (28) and letting w — 1 — w in
the resulting formula, we obtain

Lt A3 12
:D*/ / / 1—ux) (1 —vy)”
AR ACET R
- Fx [061/062 — 12,00 — 112, B1 — A3, B2, P1 — Az; a1 — Ay 4171, B2 — Az + p2, B1 — As;ux, vy, wz}
1—u)x (1—v

- Fx [/\1 — 1,12, M2, A3, A2 — M2, Az; A1, Ao, As; ( )x | )y

wz
1—ux’ 1—ovy " (1 —ux)(1—oy)
(1 - u)/\l_’h dyﬂél—/\1+171,771 (u) (1 - U)A2_‘u2d]’lﬁz—/\z+ﬂz,ﬂz (v)dyﬁl,’m—ﬂl( )'

where

Fxlay, a2, a2, B1, B2, B1; 01 + 11, B2 + 2, Y3, X, Y, Z]

* oL

()T ()T (p2)T (a1 +171)T (B2 + p2)

(g — Ay +271)T (B2 — Az +2p2) TT)—y T(Ag)
Then the Formula (33) follows by noting that

Aq— F()\l) F(ocl - )\1 +2771)
(1 - M) ! ,hd}’lt’él—/\l-i-?h,fh (M) = 1—-(171) r(ﬂC] +171) d.ule—/\1+l71,/\1 (Ll)

and

_ T(A2) T(B2 — Az +2p3)

1—o)2 "2dy. = dug,— .
( ’0) Vﬁz /\2+;42,y2(v) F(FZ) 1—-(’32 +ﬂ2) ,uﬁz /\2+;42,)\2(v)

O
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Remark 3.

(1) It may be noticed that the Fx functions involved in the integrand of (33) cannot be directly
expressed in terms of simpler functions. For the known reducible cases when the Fg-function
reduces to o Fy, Hy and F,, the interested reader may refer to Refs. [6] (p. 4, equation (4.7)),
[35] (p. 220, Equations (3.6) and (3.7)), [2] (p. 2, Equations (5) and (7)) and [36] (p. 58,
Equation (2.2)).

(2) Ifwelety =z = 0in (33), we easily obtain

1 — A3,
r [31,061;9(} :/ 1— ux)M.F {.Bl 3 1;ux]
21[061+171 o( ) h &1 — A+

Az, A —m (1—u)x
’2F1|: 3 /il ﬂl;l_blx]d]’ltxl/\lJr?]lﬂh(u)r

which is the known Erdélyi’s integral (2).

5. Conclusions

In this paper, we establish two Erdélyi-type integrals for Saran’s Fx function defined
by (1). Our method is based on the k-dimensional fractional integration by parts, which is
an effective tool and can be applied to Saran’s other functions. These integrals, especially
integral (33), are fascinating in their forms. More importantly, they can bring new insights
into the study of multivariable hypergeometric functions. Their potential connection with
the Hadamard convolution, as we pointed out in Remark 1, may be a new direction worth
exploring in the future. In fact, in the one-dimensional case, some further connections of the
Hadamard convolution with the monodromy formula were also noted by Pérez-Marco [37].
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