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Abstract: This work aims to present a study on the stability analysis of linear and nonlinear incom-
mensurate h-nabla fractional-order difference systems. Several theoretical results are inferred with
the help of using some theoretical schemes, such as the Z-transform method, Cauchy–Hadamard
theorem, Taylor development approach, final-value theorem and Banach fixed point theorem. These
results are verified numerically via two illustrative numerical examples that show the stabilities of
the solutions of systems at hand.
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1. Introduction

In recent years, fractional calculus has confirmed its significant role in modeling
and describing several modern control phenomena. In general, the stability analysis of
differential equations of fractional-order is often employed in many fractional controllers.
Nevertheless, it has been confirmed that the process of converting the traditional Lyapunov
stability outcomes into their fractional-order cases is extremely difficult [1]. This actually
backs the assertion that the fractional-order operator relies on its past values, and the fact
that the Leibniz law is extremely difficult, and may, in practice, be impossible [1].

Many works have recently dealt with the stability of fractional-order systems (FoSs).
In particular, an explicit stability result for the linear FoSs was established in [2]. In [3,4],
the direct Lyapunov approach of fractional-order was implemented for the FoSs. Recently,
one type of system, namely, the fractional-order difference system (FoDS), has received
considerable care. The fundamental concepts and main facts of the (q, h)-FoDSs are avail-
able in [5–11]. In [1], an adequate study on the stability of the (q, h)-nabla FoDSs has been
presented with the help of using a certain notion reported in [12]. In [13], certain stability
conditions of linear commensurate FoDSs have been established by utilizing several fea-
tures of the Z-transform method. In fact, the aforesaid study has taken into consideration
several theoretical results reported in [14]. Some new convenient results that could be used
to guarantee the stability of nonlinear incommensurate FoDSs were proposed in [15] using
the Z-transform method. In [16], some synchronization and control schemes of FoDSs
formulated by the Caputo h-difference operator were investigated and evolved. In [17,18],
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several dynamics of the FoDSs were explored and investigated in terms of their chaotic
phenomena. In [19], a specific stabilization of the chaotic dynamics of the FoDSs formulated
by the h-fractional-order difference operator was performed.

In this work, a study on the stability analysis of linear and nonlinear incommensurate
h-nabla FoDSs is presented. We present it because of the recent emergence of several
models of this type, and since one of the most important dynamic behaviors is stability, it
has become very important to develop theoretical results that allow it to be studied. To this
end, many theoretical tools, such as the Z-transform method, Cauchy–Hadamard Theorem,
Taylor development approach, final-value theorem and Banach fixed point theorem, were
employed in our investigation. The results were verified numerically via a MATLAB
program prepared for this purpose. However, the remainder of this paper is organized as
follows: Section 2 is devoted to presenting some fundamental facts and concepts connected
with the h-nabla fractional-order difference operator. Section 3 discusses the stability
analysis of linear and nonlinear incommensurate h-nabla FoDSs. Section 4 verifies the
results numerically, and finally, Section 5 summarizes the main conclusions inferred from
this work.

2. Preliminaries and Basic Facts

The aim of this section is to provide sufficient grounding for discrete fractional cal-
culus. It briefly introduces some preliminaries and basic facts connected with the h-nabla
fractional-order sum operators. It is worth mentioning the function f will be defined in all
upcoming definitions on the set Na,h = {a, a + h, a + 2h, · · · }, where a ∈ R.

Definition 1 ([20]). The left h-nabla fractional-order sum operator of order α > 0 for a function
f : Na,h → R is defined by:

a∇−α
h f (t) :=

1
Γ(α)

t/h

∑
s=a/h+1

(t− sh + h)α−1
h f (sh)h, fort ∈ Na,h, (1)

where Γ(·) is the Euler’s gamma function, a is the starting point and tα
h = hα Γ( t

h +α)

Γ( t
h )

.

Definition 2 ([20]). The RL left h-nabla fractional-order difference operator of order 0 < α ≤ 1
for a function f : Na,h → R is defined by:

a∇α
h f (t) :=

(
∇h a∇−(1−α)

h f
)
(t) =

1
Γ(1− α)

∇h

t/h

∑
s=a/h+1

(t− sh + h)−α
h f (sh)h, for t ∈ Na+h,h, (2)

where a is the starting point and ∇h f (t) = f (t)− f (t−h)
h .

Definition 3 ([20]). The left h-Caputo fractional-order difference operator of order 0 < α ≤ 1 for
the function f defined on the set Na,h is defined by:

C
a∇α

h f (t) :=
(

a∇−(1−α)
h ∇h f

)
(t) =

1
Γ(1− α)

t/h

∑
s=a/h+1

(t− sh + h)−α
h (∇h f )(sh)h, (3)

where t ∈ Na+h,h, 0 < h ≤ 1 and a is the starting point such that a ∈ R.

Lemma 1 ([21]). Let 0 < α < 1. Then,

(C
0∇α

h f )(t) =
1
hα

t/h

∑
s=0

(−1)t/h−s
(

α
t
h − s

)
f (sh) +

1
hα

(−1)t/h−1
(

α− 1
t
h

)
f (0), t ∈ Nh,h. (4)

where (α
β) =

α(α−1)(α−2)···(α−β+1)
Γ(β+1) is the general binomial coefficient.
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Lemma 2 ([13]). If αis are rational numbers such that 0 < αi < 1, for i = 1, 2, · · · , n. Let M be
the lowest common multiple between ui and vi such that αi =

vi
ui

, gcd(ui, vi) = 1, ui, vi ∈ Z+, for
i = 1, 2, · · · , n. Let γ = 1

M . Then, the following two statements are equivalent:

1. All roots z’s of the following characteristic equation:

det
(

diag
(
(1− 1

z
)α1 , (1− 1

z
)α2 , · · · , (1− 1

z
)αn

)
− HA

)
= 0, (5)

lie in the interior/exterior of the unit disk.
2. All root λs of the following characteristic equation:

det
(

diag
(

λMα1 , λMα2 , · · · , λMαn
)
− HJ

)
= 0, (6)

lie in the exterior/interior of the set:

Kγ =

{
z ∈ C : |z| ≤

(
2 cos

arg z
γ

)γ

and |arg z| ≤ γπ

2

}
.

3. Stability Analysis of the Incommensurate h-Nabla FoDSs

In this part, we aim to pave the way for the main results of this work by discussing
some additional arguments reported in [21]. These results will definitely demonstrate the
stability of solutions of linear and nonlinear FoDSs of incommensurate fractional-order
with the help of using some stability conditions that will be established here. For this
purpose, let us first consider the following linear incommensurate FoDS:

C
a∇ᾰ

hx(t) = f (x(t)), t ∈ Na+h,h, (7)

where x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ Rn, C
a∇ᾰ

hx(t) = (C
a∇

α1
h x1(k),Ca ∇

α2
h x2(k), · · · ,

C
a∇αn

h xn(k))T , 0 < αi < 1, for i = 1, 2, · · · , n, and where f = ( f1, f2, · · · , fn)T : Rn → Rn is
a constantly differentiable double function. However, for further simplification, we would
from now on consider a = 0. Now by using Lemma 1, we can get the following assertion:

1
hαi

xi(t) =
1

hαi

t/h−1

∑
s=0

(−1)t/h−s+1
(

αi
t
h − s

)
xi(sh) +

1
hαi

(−1)t/h
(

αi − 1
t
h

)
xi(0) + fi(x(t)),

where t ∈ Nh,h and 1 ≤ i ≤ n. Consequently, we have:

xi(t) =
t/h−1

∑
s=0

(−1)t/h−s+1
(

αi
t
h − s

)
xi(sh) + (−1)t/h

(
αi − 1

t
h

)
xi(0) + hαi fi(x(t)), t ∈ Nh,h.

⇔

xi(kh) =
k−1

∑
s=0

(−1)k−s+1
(

αi
k− s

)
xi(sh) + (−1)k

(
αi − 1

k

)
xi(0) + hαi fi(x(kh)), k = 1, 2, · · · .

Setting yi(k) = xi(kh) yields:

yi(k + 1) =
k

∑
s=0

(−1)k−s
(

αi
k + 1− s

)
yi(s) + (−1)k+1

(
αi − 1
k + 1

)
yi(0) + hαi fi(y(k + 1)), k = 0, 1, 2, · · · ,

for 1 ≤ i ≤ n and k = 0, 1, 2, · · · This system can be then written in a compact form
as follows:

y(k + 1) =
k

∑
s=0

B(k− s)y(s) + C(k)y(0) + H f (y(k + 1)), k = 0, 1, 2, · · · , (8)
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where

B(k) = diag
(
(−1)k

(
α1

k + 1

)
, (−1)k

(
α2

k + 1

)
, · · · , (−1)k

(
αn

k + 1

))
, (9)

C(k) = diag
(
(−1)k+1

(
α1 − 1
k + 1

)
, (−1)k+1

(
α2 − 1
k + 1

)
, · · · , (−1)k+1

(
αn − 1
k + 1

))
, (10)

and
H = diag(hα1 , hα2 , · · · , hαn). (11)

Thus, it can be noted that system (7) is equivalent to system (8) which will be taken
into consideration in the upcoming content.

3.1. Stability Analysis of Linear Incommensurate h-Nabla FoDSs

Herein, we assume that the function f reported in system (7) is linear. This, immedi-
ately, means that there exists a matrix A ∈ Rn×n in that system such that:

C
a∇ᾰ

hx(t) = Ax(t), t ∈ Na+h,h. (12)

Observe that if α1 = α2 = · · · = αn = α, then system (12) might be expressed in its
commensurate form, i.e.,

C
a∇α

hx(t) = Ax(t), t ∈ Na+h,h. (13)

In fact, Jan Cermák and Ludek Nechvatal [21] have recently established an efficient
asymptotically stable result related to system (14). We state this result below for completeness.

Theorem 1 ([21]). If det(I − hα A) 6= 0, where I denotes the identity matrix, then for any initial
vector x0 ∈ Rn, system (14) has a unique solution. In addition, the zero solution of the same system
is asymptotically stable if all eigenvalues of the matrix A are located in {z ∈ C : | arg z| > απ

2 or |z|
>
( 2

h cos arg z
α )α

}
.

In the following content, we will turn to investigate the solution of system (12) in
terms of its stability. To this end, we present the next results.

Lemma 3. Suppose (y(k))k∈N is a sequence in Rn. Let ỹ(z) be the Z-transform of y(k) with a
convergence radius ρ > 0. Then:

• If ρ < 1, then lim
k→∞

y(k) = 0.

• If ρ > 1, then lim
k→∞

y(k) = ∞.

Proof. Suppose first ρ < 1. Based on the final-value theorem that is associated with the
Z-transform scheme, one can obtain:

lim
k→∞

y(k) = lim
z→1

(z− 1)ỹ(z) = 0.

On the other hand, when dealing with the second part of this Lemma, one can observe
that there exists i0 that can make the convergence radius of the following series:

∞

∑
k=0

yi0(k)z
−k = ỹi0(z),

where 1 ≤ i0 ≤ n. Thus, by using the Cauchy–Hadamard theorem, we obtain:

lim
k→∞

sup k
√∣∣yi0(k)

∣∣ > 1.

Consequently, we can assert lim
k→∞

sup
∣∣yi0(k)

∣∣ = ∞.
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Theorem 2. Let det(I − HA) 6= 0. Then system (12) has a unique solution for any initial vector,
x0 ∈ Rn. In addition, we have:

• If all roots of the following characteristic equation:

det
(

diag
(
(1− 1

z
)α1 , (1− 1

z
)α2 , · · · , (1− 1

z
)αn

)
− HA

)
= 0, (14)

lie inside the unit disk, then the zero solution of system (12) is asymptotically stable.
• If there exists a zero, say z∗, of equality (14) such that |z∗| > 1, then the zero solution of

system (12) is not stable.

Proof. Actually, system (12) is equivalent to the following formula:

y(k + 1) =
k

∑
s=0

B(k− s)y(s) + C(k)y(0) + HA(y(k + 1)), k = 0, 1, 2, · · · . (15)

⇔

(I − HA)y(k + 1) =
k

∑
s=0

B(k− s)y(s) + C(k)y(0), k = 0, 1, 2, · · · .

Now, when one assumes det(I − HA) 6= 0, the following equality will be yielded:

y(k + 1) =
k

∑
s=0

(I − HA)−1B(k− s)y(s) + (I − HA)−1C(k)y(0), k = 0, 1, 2, · · · .

Accordingly, the resolvent matrix R(k) of (15) is defined as the unique solution of the
matrix equation:

R(k + 1) =
k

∑
s=0

(I − HA)−1B(k− s)R(s), R(0) = I, k = 1, 2, · · · .

Then, by the variation of constants formula [14], we can obtain:

y(k) = R(k)y(0) +
k−1

∑
s=0

R(k− s− 1)(I − HA)−1C(s)y(0), k = 1, 2, · · · .

Hence, the existence of solution of system (12) holds. At the same time, to study the
stability analysis of such a system, the Z-transform method is employed. To achieve this
goal, one might take the Z-transform as (8). This yields the following system:(

diag
(
(1− 1

z )
α1 , (1− 1

z )
α2 , · · · , (1− 1

z )
αn
)
− HA

)
ỹ(z) =(

diag
(
(1− 1

z )
α1−1, (1− 1

z )
α2−1, · · · , (1− 1

z )
αn−1

)
− HA

)
y(0),

where ỹ(z) indicates the Z-transform of y(k). In this regard, it should be noted that if all
roots of det

(
diag

(
(1− 1

z )
α1 , (1− 1

z )
α2 , · · · , (1− 1

z )
αn
)
− HA

)
= 0 lie inside the unit disk,

then we have:

ỹ(z) =
(

diag
(
(1− 1

z )
α1 , (1− 1

z )
α2 , · · · , (1− 1

z )
αn
)
− HA

)−1

×
(

diag
(
(1− 1

z )
α1−1, (1− 1

z )
α2−1, · · · , (1− 1

z )
αn−1

)
− HA

)
y(0),

for |z| ≥ 1. Consequently, in accordance with Lemma 3, we can get:

lim
k→∞

y(k) = 0.
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Note that if there exists a zero, say z∗, of (15) such that |z∗| > 1, then by Lemma 3
we have

lim
k→∞

y(k) = ∞.

In what follows, we will provide an additional theoretical result that discusses the
stability of the solution of system (12) in view of Lemma 2.

Corollary 1. Let αis be rational numbers between 0 and 1, for i = 1, 2, · · · , n. Let M be the
lowest common multiple between ui and vi so that αi =

vi
ui

with gcd(ui, vi) = 1 ("gcd" is the great
common multiple) and ui, vi ∈ Z+, for i = 1, 2, · · · , n. Set γ = 1

M . Then, we have:

• The zero solution of system (12) with initial value x0 = x(0) is asymptotically stable if and
only if any zero solution of the polynomial:

det
(

diag
(

λMα1 , λMα2 , · · · , λMαn
)
− HA

)
= 0, (16)

lies inside the set
C\Kγ,

where

Kγ =

{
z ∈ C : |z| ≤

(
2 cos

arg z
γ

)γ

and |arg z| ≤ γπ

2

}
. (17)

• If there is a zero λ of (16) with λ ∈ IntKγ ("Int" is the interior), the zero solution of (12) is
not stable.

Remark 1. In accordance with Corollary 1, it should be mentioned that if we have α1 = α2 =
· · · = αn = α, then the same result of Theorem 1 will be immediately gained.

3.2. Stability Analysis of Nonlinear Incommensurate h-Nabla FoDSs

In this subsection, we go back to system (7) in order to study the stability of its solution.
However, before beginning, we should note that if α1 = α2 = · · · = αn = α, then system (7)
can be expressed in its commensurate form as follows:

C
a∇α

hx(t) = f (x(t)), t ∈ Na+h,h, (18)

In regard to this system, Jan Cermák and Ludek Nechvatal have recently established
the next result.

Theorem 3 ([21]). Let 0 be an equilibrium point of system (18). If all eigenvalues of the Jacobian ma-
trix of f at 0 are located in

{
z ∈ C : |arg z| > απ

2 or |z| >
( 2

h cos arg z
α

)α
}

, then system (18) has a
unique solution for all initial vectors close enough to 0, and moreover, 0 is then asymptotically stable.

In order to deal with our investigation that concerns the stability of solution of sys-
tem (7), we introduce the next result.

Theorem 4. Let 0 be an equilibrium point of system (7). If all roots of the characteristic equation:

det
(

diag
(
(1− 1

z
)α1 , (1− 1

z
)α2 , · · · , (1− 1

z
)αn

)
− HJ

)
= 0, (19)

lie inside the unit disk, then system (7) has a unique solution for all initial vectors close enough to 0,
and moreover, 0 is asymptotically stable, where J is the Jacobian matrix of f at 0.
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Proof. To prove this result, let us start by studying the existence and uniqueness of solution
of system (7). Actually, this system is equivalent to the following form:

y(k + 1) =
k

∑
s=0

B(k− s)y(s) + C(k)y(0) + H f (y(k + 1)), k = 0, 1, 2, · · · . (20)

Using the Taylor development approach, formula (20) becomes:

y(k + 1) =
k

∑
s=0

B(k− s)y(s) + C(k)y(0) + HJy(k + 1) + Hg(y(k + 1)), (21)

where ‖g(y(k + 1))‖ = o(‖y(k + 1)‖), ‖·‖ is a norm equipped as needed over either Rn or
Rn×n with ‖I‖ = 1, or g(0) = g′(0) = 0 with g′(0) being the Jacobian matrix of g at 0. Now,
suppose that det(I − HJ) 6= 0 to get:

y(k + 1) =
k

∑
s=0

(I − HJ)−1B(k− s)y(s) + (I − HJ)−1C(k)y(0) + (I − HJ)−1 Hg(y(k + 1)) , k = 0, 1, 2, · · · . (22)

If the homogeneous part of (22) is taken into consideration, we get:

y(k + 1) =
k

∑
s=0

(I − HJ)−1B(k− s)y(s).

We have now (I − HJ)−1B(k) ∈
[
`1(N)

]n×n, and so the resolvent matrix R(k) of (21)
can be defined as the unique solution of the matrix equation:

R(k + 1) =
k

∑
s=0

(I − HJ)−1B(k− s)R(s), R(0) = I, k ∈ N,

where by Theorem 2 reported in [14], R(k) ∈
[
`1(N)

]n×n. This is actually because det(zI −
(I−HJ)−1B̃(z)) 6= 0, for |z| ≥ 1. Now, by the variation of constants formula, we can obtain:

y(k) = R(k)y(0) +
k−1

∑
s=0

R(k− s− 1)(I − HJ)−1(Hg(y(s + 1)) + C(s)y(0)), k = 1, 2, · · · , (23)

⇒
y(k) = Ty0 y(k), k = 1, 2, · · · ,

where Ty0 is an operator defined over any initial condition y(0) = y0 as follows:

Ty0 y(k) = R(k)y(0) +
k−1

∑
s=0

R(k− s− 1)(I − HJ)−1(Hg(y(s + 1)) + C(s)y(0)).

In the same regard, in order to prove the existence and uniqueness of the solution
of the system at hand, it is sufficient to prove that the operator Ty0 is a contraction on a
closed ball B̄(0, u) in a Banach space for u > 0 and Ty0 B̄(0, u) ⊆ B̄(0, u) (Banach fixed point
theorem). To this end, let y1, y2 ∈ [`∞(N)]n. Then we have:

∥∥Ty0 y1(k)− Ty0 y2(k)
∥∥ =

∥∥∥∥k−1
∑

s=0
R(k− s− 1)(I − HJ)−1H(g(y1(s + 1))− g(y2(s + 1)))

∥∥∥∥,

≤ C0
k−1
∑

s=0
‖R(k− s− 1)‖‖(g(y1(s + 1))− g(y2(s + 1)))‖,

≤ C0‖R‖`1(Rn×n)‖(g(y1)− g(y2))‖[`∞(N)]n ,
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where C0 =
∥∥(I − HJ)−1H

∥∥. Note that, for y1, y2 ∈ B̄(0, u) and u > 0, we have:

‖(g(y1)− g(y2))‖[`∞(N)]n ≤ max
y∈B̄(0,u)

∥∥g′(y)
∥∥‖y1 − y2‖[`∞(N)]n .

Since g′(y)→ 0 when y→ 0, then we can choose u satisfying:

max
y∈B̄(0,u)

C0
∥∥g′(y)

∥∥‖R‖
[`1(N)]

n×n = L < 1,

⇒ ∥∥Ty0 y1 − Ty0 y2
∥∥
[`∞(N)]n ≤ L‖y1 − y2‖[`∞(N)]n .

Thus, Ty0 is indeed a contraction mapping on B̄(0, u) ⊂ [`∞(N)]n. On the other hand,
for y ∈ B̄(0, u), we have:

∥∥Ty0 y(k)
∥∥ ≤ ‖R(k)y(0)‖+

k−1
∑

s=0

∥∥R(k− s− 1)(I − HJ)−1(Hg(y(s + 1)) + C(s)y(0))
∥∥,

≤ ‖R‖[`1(N)]n×n‖y(0)‖+
k−1
∑

s=0
C0‖R(k− s− 1)g(y(s + 1))‖+ A‖R(k− s− 1)C(s)y(0)‖,

≤ ‖R‖[`1(N)]n×n‖y(0)‖+ L‖y‖[`∞(N)]n + A‖R‖[`1(N)]n×n‖C(s)‖[`∞(N)]n×n‖y(0)‖,
≤
(

1 + A‖C‖[`∞(N)]n×n

)
‖R‖[`1(N)]n×n‖y(0)‖+ L‖y‖[`∞(N)]n ,

≤
(

1 + A‖C‖[`∞(N)]n×n

)
‖R‖[`1(N)]n×n‖y(0)‖+ Lu,

where A =
∥∥(I − HJ)−1

∥∥. Since L < 1, we can note that, for any y0 close enough to 0,
we have: ∥∥Ty0 y

∥∥
[`∞(N)]n ≤ u

This implies:
TB(0, u) ⊆ B(0, u),

for any y0 close enough to 0. This, however, completes the proof of existence and uniqueness
of solution of system (7). Now, we move to studying the stability of such system. For this
purpose, we can obtain, based on (23), the following inequality:

‖y(k)‖ ≤ ‖R(k)‖‖y(0)‖+C0

k−1

∑
s=0
‖R(k− s− 1)‖o(‖y(s + 1)‖)+ A

k−1

∑
s=0
‖R(k− s− 1)‖‖C(s)‖.

For a given 0 < ε < 1, there is δ > 0 such that o(‖y‖) < ε‖y‖ whenever ‖y‖ < δ.
Therefore, as long as ‖y(s + 1)‖ < δ, we have:

‖y(k)‖ ≤ ‖R(k)‖‖y(0)‖+ εC0

k−1

∑
s=0
‖R(k− s− 1)‖‖y(s + 1)‖+ A

k−1

∑
s=0
‖R(k− s− 1)‖‖C(s)‖

⇒

‖y(k)‖ ≤ ‖R(k)‖‖y(0)‖
(1− εC0)

+
εC0

(1− εC0)

k−2

∑
s=0
‖R(k− s− 1)‖‖y(s + 1)‖+ A

(1− εC0)

k−1

∑
s=0
‖R(k− s− 1)‖‖C(s)‖,

for k = 1, 2, · · · . At the same time, we can define w(k) as follows:

w(k + 1) = r(k + 1)w(0) + εC0

k−1

∑
s=0

r(k− s)w(s + 1) + A
k

∑
s=0

r(k− s)c(s), k = 0, 1, 2, · · · (24)

where

r(k) =
‖R(k)‖
(1− εC0)

, c(k) = ‖C(k)‖, w(0) = ‖y(0)‖.
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Consequently, we have:

‖y(k)‖ ≤ w(k), k = 0, 1, 2, · · · .

Obviously, it can be seen that r(k) ∈ `1(N). Accordingly, taking the Z-transform to
both sides of (24) gives:

z
(

1
(1− εC0)

− εC0r̃(z)
)

w̃(z) = (1− εC0)zr̃(z)w(0) + Ar̃(z)c̃(z),

with Rr ≤ 1 and Rc = 1, where Rr is the convergence radius of r̃(z) and Rc is the conver-
gence radius of c̃(z). Now, we choose ε, achieving the following assumption:(

1
(1− εC0)

− εC0r̃(z)
)
6= 0, |z| ≥ 1.

This option is possible because r̃(z) is bonded when |z| ≥ 1. In view of this assertion,
we can immediately get:

w̃(z) = z−1
(

1
(1− εC0)

− εC0r̃(z)
)−1

((1− ε)zr̃(z)w(0) + Ar̃(z)c̃(z)),

for |z| > 1. Consequently, we have:

lim
z→1

(z− 1)z−1
(

1
(1− εC0)

− εC0r̃(z)
)−1

(1− εC0)zr̃(z)w(0) = 0.

Based on the proof of Theorem 2 reported in [15], we can have:

lim
z→1

(z− 1)r̃(z)c̃(z) = 0.

Thus, by the final value theorem, we can infer the following assertion:

lim
k→∞

w(k) = lim
z→1

(z− 1)w̃(z) = lim
z→1

(z− 1)z−1
(

1
(1− εC0)

− εC0 r̃(z)
)−1

((1− εC0)zr̃(z)w(0) + Ar̃(z)c̃(z)) = 0.

This immediately implies lim
k→∞

y(k) = 0, which finishes the whole proof.

Next, in light of Lemma 2, we can deduce the following corollary that establishes the
local asymptotic stability of the zero solution of system (7).

Corollary 2. Suppose αis are rational numbers between 0 and 1, for i = 1, 2, · · · , n. Let M be the
lowest common multiple between ui and vi so that αi =

vi
ui

with gcd(ui, vi) = 1 and ui, vi ∈ Z+,
for i = 1, 2, · · · , n. Set γ = 1

M . Then, the zero solution of system (7) with initial value x0 = x(0)
is locally asymptotically stable if any zero solution of the polynomial equation:

det
(

diag
(

λMα1 , λMα2 , · · · , λMαn
)
− HJ

)
= 0, (25)

lies inside the set
C\Kγ,

where

Kγ =

{
z ∈ C : |z| ≤

(
2 cos

arg z
γ

)γ

and |arg z| ≤ γπ

2

}
.

and J is the Jacobian matrix of f at 0.
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Remark 2. In view of Corollary 2, we can observe that if α1 = α2 = · · · = αn = α, then the same
result of Theorem 3 will be inferred.

4. Illustrative Numerical Examples

In the interests of verifying the theoretical stability results of the solutions of the
incommensurate h-nabla FoDSs, two numerical examples are provided in the forthcom-
ing content.

Example 1. Consider the following system: C
0∇

1
2
1 x1(k) = −1.01 sin(x1(k)) + 0.98 sin(x2(k)),

C
0∇

1
4
1 x2(k) = 0.48x2(k) cos(x1(k))− 0.56x1(k) cos(x2(k)).

(26)

One can verify that the origin represents an equilibrium point of the above system. In addition,
the Jacobian matrix J of this system can be obtained to be in the following form:

J =
∂ f (0, 0)

∂x
=

(
∂ f1(0,0)

∂x1

∂ f1(0,0)
∂x2

∂ f2(0,0)
∂x1

∂ f2(0,0)
∂x2

)
=

(
−1.01 0.98
−0.56 0.48

)
.

In this case, we can obtain M = 4, and therefore

det
((

λ2 0
0 λ

)
−
(
−1.01 0.98
−0.56 0.48

))
= 0,

⇔
λ3 − 0.48λ2 + 1.01λ + 0.064 = 0. (27)

Consequently, the solution of the above equation will be as follows:

λ1 = −6.1349× 10−2,
λ2 = 0.27067− 0.98486i,
λ3 = 0.27067 + 0.98486i.

Clearly, it can be inferred that λi ∈ C\K 1
4 , for 1 ≤ i ≤ 3. Therefore, in light of Corollary 2, we

can conclude that the zero solution of system (26) is locally asymptotically stable. For the purpose of
demonstrating the accuracy of this result, we plot Figure 1, which confirms that the states of the
solution of system (26) are indeed convergent to the origin, asserting that such solution is stable.

Example 2. Consider the following system:
C
0∇

1
2
1 x1(k) = −0.98 sin(x1(k))− 0.2 sin(x3(k)),

C
0∇

1
3
1 x2(k) = 0.2x1(k)− 1.01x2(k) + 0.02x3(k),

C
0∇

2
3
1 x3(k) = 0.4 sin(x1(k)) +

x2
2(k)

1+x2
2(k)
− sin(x3(k)).

(28)

To deal with the above system, it should be noted that the origin (0, 0, 0) represents an
equilibrium point. Furthermore, the Jacobian matrix J of such a system can be obtained as follows:

J =

 −0.98 0 −0.2
0.2 −1.01 0.02
0.4 0 −1

.
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Figure 1. The stability of the trivial solution of system (26) with x1(0) = x2(0) = 1.

Herein, M = 6 and so

det

 λ3 0 0
0 λ2 0
0 0 λ4

−
 −0.98 0 −0.2

0.2 −1.01 0.02
0.4 0 −1

 = 0,

⇔
λ9 + 1.01λ7 + 0.98λ6 + λ5 + 0.9898λ4 + 1.01λ3 + 1.06λ2 + 1.070 6 = 0. (29)

It follows that the solution of (29) has the form:

λ1 = −1.0065
λ2 = −1.0050i
λ3 = 1.0050i
λ4 = 0.48524− 0.88198i
λ5 = 0.48524 + 0.88198i
λ6 = 0.72916 + 0.69826i
λ7 = 0.72916− 0.69826i
λ8 = −0.71118− 0.71688i
λ9 = −0.71118 + 0.71688i.

Accordingly, we can conclude that λi ∈ C\K 1
6 , for 1 ≤ i ≤ 9. Again, based on Corollary 2,

we can conclude that the zero solution of system (28) is locally asymptotically stable. To verify this
inference, we plot Figure 2, which demonstrates the stability of that solution at zero.



Fractal Fract. 2022, 6, 158 12 of 13

0 20 40 60 80 100 120 140 160
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

k

x
1
,x

2
,x

3

 

 

x
1

x
2

x
3

Figure 2. The stability of the trivial solution of system (28) with x1(0) = −1.2, x2(0) = 2.4, x3(0) = −2.1.

5. Conclusions

In the presented work, a study on the stability analysis of linear and nonlinear in-
commensurate h-nabla fractional-order difference systems has been provided. Numerous
stability results regarding these systems have been inferred and then verified numerically
via two illustrative numerical simulations.
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