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Abstract: In this paper, a class of variable-order fractional interval systems (VO-FIS) in which the
system matrices are affected by the fractional order is investigated. Firstly, the sufficient conditions
for robust stability of a VO-FIS with a unified order range of ν(σ) ∈ (0, 2) are proposed. Secondly, the
stabilization conditions of a VO-FIS subject to actuator saturation are derived in terms of linear matrix
inequalities (LMIs). Then, by using the proposed algorithm through an optimization problem, the
stability region is estimated. To summarize, the paper gives a stabilization criterion for VO-FIS subject
to actuator saturation. Finally, three numerical examples are proposed to verify the effectiveness of
our results.
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1. Introduction

In recent decades, there has been a continuing growth in the number of studies
on the engineering applications of fractional-order systems (FOS) [1–3], and this control
system has attracted more and more scholars’ attention [4–8]. This is principally because
numerous physical systems that have fractional properties in the real world are marked by
fractional-order state equations [9,10]. Stability is fundamental and important to all systems,
certainly including FOS [11,12]. A basic theorem for the stability of FOSs was first proposed
in [13]. Based on these previous works, many methods have been proposed to solve the
stability and stabilization problems of FOSs [14–16]. Among them, using LMI to stabilize
the FOS is an effective and systematic method. The fractional-order periods belonging
to (0, 1) and (1, 2) are two forms of the existing LMI criteria [17–20]. For instance, [12]
discussed the equivalent criterion for the stability of FOS with order ν in (0, 1). In [13], the
novel LMI-based stability conditions of FOS are proposed with order ν in (0, 1) and (1, 2),
respectively. An LMI criterion based on D-stability is proposed in [14], which describes the
stability and robust stability of FOS with order ν in (0, 1). In addition, for these two cases,
the admissibility and stability of a singular FOS are proposed in [20–23] by LMIs.

Studies on the stability of fractional-order interval systems (FOIS) have attracted much
attention [24,25]. However, because of the coupling uncertainty of the system matrix and the
fractional order, there are still numerous challenges in the stability of FOIS [26,27]. The main
reasons why stability research faces challenges include two aspects. First, the eigenvalues of
a system matrix should be restrained in the left half of the complex plane [28–30]. By using
the Matignon lemma [13], if the stability region satisfies |arg(λi(A))| > πν

2 , i = 1, · · ·, n,
then FOS is stable. It obvious that if the eigenvalue of the system matrix is positive,
the stability of the FOS is also guaranteed. Second, the bilinear matrix inequality (BMI)-
based stabilization criteria are extremely complex, and it is not easy to design a controller
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for them [31,32]. Some assumptions for the stability of FOIS have been put forward to
obtain a feasible solution, and these certainly lead to the conservatism.

Recently, variable-order fractional systems have seen significant development and
become an international hotspot [33,34]. Variable-order fractional systems can describe
many complex phenomena, such as complex diffusion in disordered porous media and
in highly heterogeneous fractures [35,36]. The main reason is that the variable-order
fractional operator in system modeling has a memory of previous appearances [37–40].
However, research on the stability of variable-order fractional systems is still a challenge
in view of the complexity and diversity of variable-order fractional operators. In [41],
the stability of variable-order fractional systems is examined using the Arzela–Ascoli
theorem . As far as the author knows, little detailed or systematic study has ever been
conducted on the stability of a system as follows:

Dv(σ)x(t) = Ax(t),

where σ ∈ Ω, and Ω is a compact set in R. Therefore, one of the innovations of this paper
is that it combines variable-order fractional systems and fractional-order interval systems
to study the stability of VO-FIS.

Actuator saturation will reduce the performance of the control system and even lead
to instability. The direct method to not cause such performance degradation is to hold
back actuator saturation by operating the control systems in the linear region of the actua-
tor [42–48]. In [49–51], the set invariance conditions are established, and the stabilization
of normal systems and singular systems under actuator saturation is discussed. The ad-
missibility criteria in [50] are extended to fuzzy singular systems in [52]. Although [53]
provides a method to stabilize FOS under input saturation, the algorithm given is to solve
the BMI problem, which is difficult to calculate. This paper overcomes this difficulty and
proposes an approach to estimate the stability domain directly by LMIs. In addition, many
contributions in the two cases of constant order ν ∈ (0, 1) and (1, 2) are available, but
unified results about the stability of VO-FIS in the case of ν(σ) ∈ (0, 2) have scarcely been
reported. Moreover, the stabilization issue of VO-FIS with order ν(σ) ∈ (0, 2) subject to
actuator saturation has not yet been reported. Therefore, it is very necessary to consider
this kind of system.

Motivated by the above-mentioned research, the stabilization of VO-FIS is considered.
The main contributions are as follows:

(i) In this paper, a new model of VO-FIS with order (0, 2) is proposed, and based on
this system, the stabilization criterion in terms of LMIs is given. In addition, the paper
considers the actuator saturation of the system, which expands the scope of application to
a certain extent.

(ii) The stability region is estimated by solving an optimization problem in terms of
LMIs according to the obtained stability conditions. At present, most studies have used
algorithms to solve this problem. However, it is difficult to calculate in the simulation
process.

(iii) Compared with the existing results in [28–30], our results are less conservative,
since the eigenvalues of the system matrix are restrained in the left half of the complex
plane of the references mentioned above. However, from the discussion of numerical
simulation in the paper, it is easy to see that the eigenvalues of the system matrix of system
(2) are restrained in the right half of the plane.

Notations: XT is the transpose of the matrix X. The symbols sym(X) and asym(X)
denote the expressions X + XT and X− XT , respectively, while ⊗ stands for the Kronecker
product. In addition, λi(X), (i = 1, · · ·, n) are the eigenvalues of X, and sν(σ) = sin(ν(σ)π

2 ),
cν(σ) = cos(ν(σ)π

2 ), and |x|∞ = max
s
|xs| for x ∈ Rn, where xs is the s-th row of x, and

s = 1, 2, · · ·, n. The symbol co(X) represents the convex hull of a set of X.
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2. Problem Formulation And Preliminaries

Consider an FOS subject to actuator saturation as follows:

Dν(σ)x(t) = Ax(t) + Bsat(u(t)), (1)

where σ ∈ Ω, and Ω is a compact set in R; x(t) ∈ Rn is the state of the system; u(t) ∈ Rm is
the control input; and A ∈ Rn×n and B ∈ Rn×m are known constant matrixes. The vector
valued standard saturation function sat: Rm → Rm is defined as:

sat(u) = [sat(u1) sat(u2) · · · sat(um)]
T ,

sat(us) = sign(us)min{|us|, 1}, s = 1, 2, · · ·, m.

The Caputo fractional derivative operator Dν(σ) is defined as follows:

Dν(σ) f (t) =
1

Γ(n− ν(σ))

∫ t

0
(t− τ)n−ν(σ)−1 f (n)(τ)dτ,

where n is an integer (n− 1 < ν(σ) < n), and Γ(·) is the gamma function. The descriptions
of the uncertain fractional order ν(σ) and uncertain matrix A are as follows:

ν(σ) ∈ [ν, ν], A = A0 + kν(σ)4 A ∈ [A(ν(σ)), A(ν(σ))],

where k is a given constant. Further, to deal with the uncertainty matrix4A, the following
notations are introduced [26,27]:

D ∆
= [
√

γ11en
1 · · ·

√
γ1men

1 · · ·
√

γn1en
n · · ·

√
γnmen

n]n×mn, E = DT ,

F , diag{δ11 · · · δ1m · · · δn1 · · · δnm}mn×mn, |δij| ≤ 1,

where γij are given constants, and en
i ∈ Rn represents the i-th column of the identity matrix

In. Then, system (1) is denoted as follows:

Dv(σ)x(t) = (A0 + kν(σ)DFE)x(t) + Bsat(u(t)), (2)

By the state feedback controller u(t) = Kx(t), K ∈ Rm×n, system (2) is described as

Dν(σ)x(t) = (A0 + kν(σ)DFE)x(t) + Bsat(Kx(t)). (3)

For convenience, replace x(t) with x in the following writing. Considering the rela-
tionship between sat(Kx) and Kx, for the matrices H ∈ Rn×n, the symmetric polyhedra is
defined as

L(H) = {x ∈ Rn : |Hx|∞ ≤ 1}.

In order to derive our main results, the following lemmas are adopted.

Lemma 1 ([49]). Letting K, H ∈ Rm×n, for x ∈ L(H),

sat(Kx) ∈ co{(ΛpK + Λ−p H)x : p = 1, 2, · · ·, 2m},

where Λp represents a diagonal matrix whose diagonal elements become 1 or 0, Λ−p = I − Λp.
Therefore, sat(Kx) is expressed as

sat(Kx) =
2m

∑
p=1

λp(ΛpK + Λ−p H)x,
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in which λp ≥ 0, ∑2m

p=1 λp = 1. Then, system (3) is described as

Dν(σ)x(t) =
2m

∑
p=1

λp(A + BΛpK + BΛ−p H)x(t). (4)

Lemma 2 ([53]). For ε > 0, if system (2) is stable, then there is δ > 0 subject to, for each initial
condition x0 contained in the closed ball Bδ = {x ∈ Rn : xTx ≤ δ}, the solution x(t, x0) located
in the closed ball.

Bε , {x ∈ Rn : xTx ≤ ε, ε > 0}. (5)

Lemma 3 ([7]). An FOS described by Dν(σ)x(t) = Ax(t) with order ν(σ) ∈ (1, 2) is stable iff
there exists X = XT > 0, X ∈ Rn×n such that

sym[θ ⊗ (AX)] < 0,

where θ =

[
sν(σ) −cν(σ)

cν(σ) sν(σ)

]
.

Lemma 4 ([19]). An FOS described by Dν(σ)x(t) = Ax(t) processing order ν(σ) ∈ (0, 1) is
stable if and only if there is X, Y ∈ Rn×n subject to[

X Y
−Y X

]
> 0, (6)

sym(sν(σ)X + cν(σ)Y) < 0.

Lemma 5 ([13]). An FOS described by Dν(σ)x(t) = Ax(t) with order ν(σ) ∈ (0, 2) is stable iff
|arg(λi(A))| > πν(σ)

2 , i = 1, · · ·, n.

Lemma 6. If system

Dνx(t) = Ax(t), (7)

is stable, then system Dν(σ)x(t) = Ax(t) is stable.

Proof. Since system (7) is stable, from Lemma 5, it is obtained that

|arg(λi(A))| > πν

2
, (i = 1, · · ·, n).

According to v(σ) ≤ v, one has

|arg(λi(A))| > πν̄

2
>

πν(σ)

2
, (i = 1, · · ·, n).

Therefore, system Dν(σ)x(t) = Ax(t) is stable.
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3. Main Results

The stability and stabilization theorems for VO-FIS with order ν(σ) ∈ (0, 2) are
obtained. The following theorem provides a sufficient condition which guarantees that
system (2) with u(t) = 0 is stable.

Theorem 1. System (2) with u(t) = 0 for the case 0 < ν < ν(σ) < ν < 2 is robustly stable if
there exist X, Y, ε1, ε2 ∈ Rn×n, such that (6) holds and

Θ(A, ν, X, Y) = Ω1(A, ν, X, Y) + Ω2(A, ν, X, Y)χ(ν) < 0, (8)

where,

Ω1(A, ν̄, X, Y) = I2 ⊗

 sym[A0(sv̄X + cv̄Y)] + (ε1 + ε2)k2v̄2DDT sν̄XET −cν̄YET

sν̄EX −ε1 I 0
cν̄EY 0 −ε2 I

.

Ω2(A, ν̄, X, Y) =
[

γ1 γ2
−γ2 γ1

]
,

γ1 =

 sym(−cν̄ A0Y)− ε2k2ν̄2DDT (1− sν̄)XET cν̄YET

(1− sν̄)EX 0 0
−cν̄EY 0 ε2 I

,

γ2 =

 −asym(cν̄ A0X) 0 0
0 0 0
0 0 0

, χ(v̄) ∆
=

{
0, 0 < v̄ < 1,
1, 1 ≤ v̄ < 2.

Proof. Let us prove this problem in three cases. In the first case, for ν(σ) ∈ [ν, ν] and

ν < 1, by using the Schur complement, χ(v̄) ∆
= 0 and Θ(A, ν, X, Y) = Ω1(A, ν, X, Y) can be

obtained from ν < 1. Therefore, the following inequality can be obtained:

sym[(A0 + kv̄DFE)(sv̄X + cv̄Y)] = sym[A0(sν̄X + cν̄Y)] + sym[kν̄DFE(sν̄X + cν̄Y)]

≤ sym[A0(sν̄X + cν̄Y)] + (ε1 + ε2)k2v̄2DDT + ε1
−1sv̄

2(EX)T(EX) + ε2
−1sv̄

2(EY)T(EY)

=

 sym[A0(sν̄X + cν̄Y)] + (ε1 + ε2)k2v̄2DDT sv̄XET −cv̄YET

sv̄EX −ε1 I 0
cv̄EY 0 −ε2 I

 < 0.

Therefore, it follows that

sym[(A0 + kνDFE)(sνX + cνY)] < 0.

From Lemma 3, it is obvious that Dνx(t) = (A0 + kνDFE)x(t) is stable. Then,
from Lemma 5, it follows that system (2) with u(t) = 0 is stable.

In the second case, for ν(σ) ∈ [ν, ν] and 1 < ν, one gets

Θ =


sym(sν̄ A0X) + ε1k2ν̄2DD2 XET −asym(cν̄ A0X) 0

EX −ε1 I 0 0
asym(cν̄ A0X) 0 sym(sν̄ A0X) + ε1k2ν̄2DD2 XET

0 0 EX −ε1 I

 < 0.

Pre- and post-multiplying Θ by


I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I

 and its transpose, respectively, where

I is an identity matrix of appropriate dimensions, it is obtained that
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Θ =

[
sym[θ̄ ⊗ (A0X)] + I2 ⊗ (ε1k2ν̄2DD2) I2 ⊗ (XET)

I2 ⊗ (EX) −I2 ⊗ (ε1 I)

]
< 0.

By using the Schur complement, it implies

sym{θ̄ ⊗ [(A0 + kν̄DFE)X]} = sym[θ̄ ⊗ (A0X)] + sym[I2 ⊗ (kν̄DFEX)]

≤ sym[θ̄ ⊗ (A0X)] + ε1k2ν̄2DDT + ε−1
1 (EX)T(EX)

=

[
sym[θ̄ ⊗ (A0X)] + I2 ⊗ ε1k2ν̄2DDT I2 ⊗ (XET)

I2 ⊗ (EX) −I2 ⊗ (ε1 I)

]
< 0.

Applying Lemma 3, it follows that Dνx(t) = (A0 + kνDFE)x(t) is stable, which
implies that system (2) is stable by Lemma 6.

In the third case, for ν(σ) ∈ [ν, ν] and ν < 1 < ν, when ν(σ) ∈ [ν, 1], it is similar to the
first case, when ν(σ) ∈ [1, ν], it is similar to the second case.

Remark 1. Theorem 1 considers the stability condition when the system has no controller, but in
practical application, there are few cases where the system can be stable without the controller.
Therefore, we consider the condition of designing the controller to stabilize the system when the
system is unstable.

Theorem 2. System (2) for the case 0 < ν < ν(σ) < ν < 2 is robustly stable if there are
X, Y ∈ Rn×n subject to (6), and

Θ̃p = Ω̃1k + Ω̃2kχ(ν) < 0, (9)

[
sym(sν̄X + cν̄Y)− εI ZT

2s
Z2s 1

]
+

[
sym[(1− sν̄)X− cν̄Y] 0

0 0

]
χ(ν̄) ≥ 0,

where the definition of χ(ν) is defined in Theorem 1 and

Ω̃1k = I2 ⊗

 Φ sν̄XET −cν̄YET

sν̄EX −ε1 I 0
cν̄EY 0 −ε2 I

, (10)

where,

Φ = sym[A0(sv̄X + cv̄Y)] + B(ΛpZ1(v̄) + Λp
−1Z2(v̄))] + (ε1 + ε2)k2v̄2DDT ,

Ω̄2k =

[
γ̃1k γ̃2k
−γ̃2k γ̃1k

]
,

γ̃1k =

 sym(−cν̄ A0Y)− ε2k2ν̄2DDT (1− sν̄)XET cν̄YET

(1− sν̄)EX 0 0
−cν̄EY 0 ε2 I



γ̃2k =

 asym{cv̄[A0X + B(ΛpZ1(v̄) + Λp
−1Z2(v̄))]} 0 0

0 0 0
0 0 0



Z1(ν̄)
∆
=

{
K(sv̄X + cv̄Y), 0 < v̄ < 1,

FX, 1 ≤ v̄ < 2,
Z2(ν̄)

∆
=

{
H(sv̄X + cv̄Y), 0 < v̄ < 1,

HX, 1 ≤ v̄ < 2.
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Then,

K =

{
Z1(v̄)(sv̄X + cv̄Y)−1, 0 < v̄ < 1,

Z1(v̄)X−1, 1 ≤ v̄ < 2,
H =

{
Z2(v̄)(sv̄X + cv̄Y)−1, 0 < v̄ < 1,

Z2(v̄)X−1, 1 ≤ v̄ < 2.

Proof. Let us prove this problem in three cases. In the first case, for ν(σ) ∈ [ν, ν] and ν < 1,
by using the Schur complement and K = Z1(ν)(sνX + cνY)−1, H = Z2(ν)(sνX + cνY)−1,
and by using the Schur complement lemma and the fact that 2XTY ≤ εXTX + ε−1YTY, the
following is deduced:

sym{[A0 + kνDFE + B(ΛpK + Λ−1
p H)](sνX + cνY)}

= sνsym(A0X) + cνsym(A0Y) + sνsym(kνDFEX) + cνsym(kνDFEY)

+sνsym[B(ΛpK + Λ−1
p H)X] + cνsym[B(ΛpK + Λ−1

p H)Y]

=

 sym[A0 + B(ΛpK + Λ−1
p H)] + (ε1 + ε2)k2ν̄2DDT sν̄XET −cν̄YET

sν̄EX −ε1 I 0
cν̄EY 0 −ε2 I

 < 0

Therefore, it is easy to get

sym{[A0 + kνDFE + B(ΛpK + Λ−1
p H)](sνX + cνY)} < 0. (11)

Letting Āp = A0 + kνDFE + B(ΛpK + Λ−1
p H), one has

sym[Āp(sνX + cνY)] < 0, p = 1, 2, · · ·, 2m.

Then,

sym[λp

2m

∑
p=1

Āp(sνX + cνY)] < 0, p = 1, 2, · · ·, 2m.

According to Lemmas 1, 4, and 6, system (2) is stable for any x0 ∈ Bδ ⊂ L(H).
Next, the stability region is estimated. It can be obtained from (10) that

sym(sνX + cνY)− εI − ZT
2s

Z2s ≥ 0.

Then, it is obtained that

1
ε
(sνX + cνY)T(sνX + cνY)− ZT

2s
Z2s ≥ 0. (12)

By Schur complement, (13) is equivalent to[ 1
ε (sνX + cνY)T(sνX + cνY) ZT

2s
Z2s 1

]
≥ 0.

Pre- and post-multiplying diag((sνX + cνY)−T , 1) and its transpose, respectively, it
follows that [ 1

ε I HT
s

Hs 1

]
≥ 0. (13)

By (14), one gets
1
ε

I ≥ HT
s Hs.

Then,
1
ε

xTx ≥ xT HT
s Hsx.
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From Lemma 2 and x ∈ Bε, it is not difficult to get

1 ≥ 1
ε

xTx ≥ xT HT
s Hsx.

that is,
x ∈ L(H).

Therefore, Bε is selected such that Bδ ⊂ Bε ⊂ L(H). Moreover, Bε is used to estimate
the stability region L(H).

In the second case, for ν(σ) ∈ [ν, ν] and 1 < ν, the proof is similar to ν(σ) ∈ [ν, 1].
In the third case, for ν(σ) ∈ [ν, ν] and ν < 1 < ν, it is deduced that when ν(σ) ∈ [ν, 1],

it is similar to the first case. When ν(σ) ∈ [1, ν], it is similar to the second case.
From Theorem 2, the stability domain is estimated through solving the following

optimization problem:
max ε

subject to (6), (8), (9).
(14)

4. Numerical Examples

In this section, three examples of stability and robust stabilization for VO-FIS are given.

Example 1. Consider unforced FOIS (2) where ν(σ) ∈ [0.4, 0.8], k = 1 and

A0 =

 −5 −1 0.3
2.3 0.4 3
2 −1 −1

, D =

 0.2 0.3 0.2
0 0.1 1

0.2 0.1 −1

,

E =

 0.2 0 0.2
0.3 0.1 1
0.2 1 −1

, F =

 cos(0.2πt) 0 0
0 sin(0.1πt) 0
0 0 sin(0.1πt)

.

By using LMI toolbox in MATLAB, a feasible solution of (6) and (8) is obtained, as follows:

X =

 3.5915 −0.9413 −1.6629
−0.9413 0.6735 0.3576
−1.6629 0.3576 1.1486

,

Y =

 0 0.0487 −0.4584
−0.0487 0 0.4989
0.4584 −0.4989 0

,

ε1 = 0.5003, ε2 = 0.1411.

Example 2. Consider FOIS (2) where ν(σ) ∈ [0.4, 0.8], k = 1 and

A0 =

 3.2 2.5 −7
2.3 1 1.2
1.9 0.4 2

, B =

 4 1 3
1 1 2
2 0.4 3

,

D =

 0.2 1 0
0 2 0.1
1 0.2 0.2

, E =

 0.2 0 1
1 2 0.2
0 0.1 0.2

,

F =

 cos(0.2πt) 0 0
0 sin(0.1πt) 0
0 0 sin(0.1πt)

.
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Then, by solving LMI (15), it follows ε = 0.0048 and

X =

 0.0672 −0.0317 −0.0208
−0.0317 0.0669 0.0581
−0.0208 0.0581 0.0796

,

Y =

 0 0.0579 0.0602
−0.0579 0 −0.0150
−0.0602 0.0150 0

,

K =

 0.6420 4.1018 5.3102
−2.4674 −4.3667 3.5311
−3.3331 −2.9345 −5.5303

,

H =

 −1.5496 0.2252 8.7944
−10.1473 −8.1212 7.9297
−0.6550 0.0621 −8.4099

,

ε1 = 0.0184, ε2 = 0.013.

Example 3. Consider FOIS (2) where ν(σ) ∈ [0.9, 1.4], k = 1 and

A0 =

 2.1 2.1 2
2.4 3.2 3.2
3.9 1.3 6

, B =

 −1 1 3
1.4 1 2.2
2.6 3 −2

,

D =

 0.1 0.4 0
0 2 −0.1
1 0.2 0.1

, E =

 0.1 0 1
0.4 2 0.2
0 −0.1 0.1

,

F =

 cos(0.2πt) 0 0
0 sin(0.1πt) 0
0 0 sin(0.1πt)

.

By solving LMI (15), it follows that ε = 0.0203 and

X =

 0.0716 −0.0013 −0.0585
−0.0013 0.0189 −0.0040
−0.0585 −0.0040 0.0835

,

K =

 −166.1826 −399.1456 −268.9191
−435.2862 −326.3777 −458.7671
−168.9720 −294.0463 −80.4705

,

H =

 −2.9176 −11.1581 −4.4470
−9.3734 −0.4442 −10.5791
−1.3668 −10.4345 −0.9516

, ε1 = 0.0181.

For unforced FOIS (2), Figure 1 shows the eigenvalue perturbed region. The purple and
green line are boundaries of order ν(σ) = 0.8 and ν(σ) = 0.4, respectively. The eigenvalue
perturbed region is within the stability boundaries. Therefore, system (2) in Example 1
is stable. Compared with the existing results in [28–30], our results are less conservative,
since the eigenvalues of system matrix are restrained in the left half of the complex plane
of [28–30]. However, from Figure 1, it is easy to see that the eigenvalues of the system
matrix of system (2) are restrained in the right half of the plane.
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Figure 1. Eigenvalue perturbed region of system (2) in Example 1 with ν(σ) ∈ [0.4, 0.8].

For system (2) with order ν(σ) = 0.6, the stability region Bε is depicted in Figure 2.
The simulation result of Example 1 with initial condition x(0) = [−0.03 − 0.03 0.03]T ∈ Bε

is depicted in Figure 3. System (2) is stabilized by the state feedback controller in about
0.2 s.
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Figure 2. Stability domain Bε in Example 2.
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Figure 3. The closed-loop FOS in Example 2.

For FOIS (2) with order α = 1.2, the simulation result of Example 2 with the initial
condition x(0) = [−0.01 − 0.01 0.01]T ∈ Bε is depicted in Figure 4. System (2) is stabilized
through the state feedback controller in about 0.4 s.
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Figure 4. The closed-loop FOS in Example 3.
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The eigenvalue perturbed region of FOIS (2) is shown in Figure 5. The purple and
green line are edges of order ν(σ) = 1.4 and ν(σ) = 0.9, respectively. The eigenvalue
domain perturbed is within the stability boundaries. Therefore, system (2) is stable.
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Figure 5. Eigenvalue perturbed region of system (2) in Example 1 with ν(σ) ∈ [0.9, 1.4].

Remark 2. In Example 3, the fractional order in [0.9, 1.4] is considered. It is worth emphasizing
that the LMI conditions in [28–30] are infeasible, and they fail to solve the robust stability problems.
However, in the paper, the LMI conditions in Theorem 2 are feasible. The stability of system (2) is
illustrated. Therefore, the whole simulation in this control procedure is explained by its effectiveness.

Remark 3. When the fractional order is ν(σ) ∈ (0, 1), compared to the results in [28,29], the value
range of the order of this manuscript is relatively large. For example, when ν(σ) = 0.5, the MATLAB
solution result in [28,29] is that the best value of t > 0. This means that the solution is invalid,
but in this manuscript, the equation has a feasible solution.

5. Conclusions

This paper’s contribution is to propose new sufficient LMI-based conditions for VO-FIS
with order ν(σ) ∈ (0, 2). The robust stabilization for VO-FIS subject to actuator saturation is
further discussed. According to the obtained stabilization conditions, the stability domain
by solving the optimization problem in terms of LMIs is estimated, since LMIs are calculated
directly through the MATLAB toolbox. The next work to be done is to develop the output
feedback control technique of FOIS and singular VO-FIS.
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