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Abstract: We provide a detailed description of a numerical approach that makes use of the shifted
Chebyshev polynomials of the sixth kind to approximate the solution of some fractional order
differential equations. Specifically, we choose the fractional Fisher–Kolmogorov–Petrovskii–Piskunov
equation (FFKPPE) to describe this method. We write our approximate solution in the product
form, which consists of unknown coefficients and shifted Chebyshev polynomials. To compute the
numerical values of coefficients, we use the initial and boundary conditions and the collocation
technique to create a system of equations whose number matches the unknowns. We test the
applicability and accuracy of this numerical approach using two examples.

Keywords: fractional Fisher–Kolmogorov–Petrovskii–Piskunov equation; collocation scheme; sixth-
kind Chebyshev polynomials; convergence analysis

1. Introduction

A study of generalized derivatives and integrals has gained considerable popularity in
the last few years, mainly due to its attractive applications in numerous diverse fields such
as fluid flow [1], finance [2] and physics [3]. These generalized derivatives and integrals are
called fractional derivatives and integrals, respectively [4–6]. They are more flexible for real-
world applications since they can have both integer and noninteger operators. Fractional
derivatives are well-known for their utility in describing the memory and heredity features
of a variety of materials and processes [7–10]. Nikan et al. [11] considered the fractional
nonlinear sine-Gordon and Klein–Gordon models arising in relativistic quantum mechanics.
Babaei et al. [12] introduced a class of time-fractional stochastic heat equations driven
by Brownian motion. Numerical solution of time fractional convection–diffusion-wave
equation based on RBF method is described in [13,14]. Zaky et al. [15] applied some
pseudospectral methods for solving the Riesz space-fractional Schrödinger equation. Lately,
countless researchers are contributing to new models based on fractional equations. Among
which, the generalized Fisher–Kolmogorov–Petrovskii–Piskunov equation has substantial
attention [16–19].
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In this paper, we introduce the FFKPPE in the form

0D
η
t u(x, t) = µ∆u(x, t) + β∇u(x, t) +

κ

ζ

∫ t

0
e−

t−s
ζ ∆u(x, s)ds +F (x, t, u), (1)

where (x, t) ∈ ΩL ×ΩT, with the following initial and boundary conditions

u(x, 0) = u0(x), x ∈ ΩL, (2)

g(u(0, t)) = ρ0(t), t ∈ ΩT, (3)

θ̂u(L, t) + δ̂ux(L, t) = ρL(t), t ∈ ΩT, (4)

where ∆ := ∂2

∂x2 is the Laplace operator and ∇ := ∂
∂x . Further, µ, β, κ, ζ 6= 0, θ̂ and δ̂

are given real constants. Moreover, ΩL := [0, L], ΩT := [0, T], the nonlinear source term
F (x, t, u) ∈ C1(ΩL ×ΩT ×R) fulfills the Lipschitz condition in terms of u and u0(x), ρ0(t)
and ρL(t) are regarded as known continuous functions. In addition, the nonlinear function
g of u(0, t) is given and the operator 0D

η
t [·] denotes the Caputo fractional derivative of

order η ∈ (0, 1) defined as [20]:

0D
η
t u(x, t) =

1
Γ(1− η)

∫ t

0
(t− s)−ηus(x, s)ds, (5)

in which Γ(·) denotes the Gamma function. The generalized FFKPPE (1), belongs to the
class of reaction–diffusion equations. It is commonly used to represent practical situations
that often arise in physics, chemistry and biology [18,19,21]. A more specific example is in
the modeling of genetic behavior in the growth of micro-organisms [22].

In the literature, the problem (1)–(4) has been considered analytically and numerically.
For instance, Araújo et al. [23] investigated the stability of the model represented by (1),
while also investigating the qualitative features of its solutions obtained under Dirichlet
boundary conditions. Splitting methods were created for purposes of numerically studying
the qualitative nature of the solutions. A list of numerical approaches has been proposed
and studied for different cases of the Equation (1). Branco et al. [16] studied the approach
of method of lines for the numerical solution to integro-differential equation of type (1).
In their work, Araújo et al. [24] developed the famous Fisher equation by investigating
the qualitative features of the numerical traveling wave solutions of integro-differential
equations. The hyperbolic equation equivalence was used to replace the integro-differential
equation, allowing for the numerical quantification of the velocity of traveling wave
solutions. While studying the effects on memory factors in phenomena of diffusion [25]
developed approximation methods for computing integro-differential equations. Barbeiro
and Ferreira [26] provided mathematical models to describe medication absorption through
the skin. The development of these models involved extending the traditional Fick’s
law by incorporating a memory term. This replaces the classical models of advection–
diffusion equations with integro-differential equations. The well-posedness of model was
investigated using Neumann, Dirichlet and natural boundary conditions. The methods for
computing numerical solutions were proposed. In addition, their stability and convergence
were studied, while including a presentation of numerical simulations to illustrate the
behavior of the model. Khuri and Sayfy proposed a numerical scheme to solve a generalized
Fisher integro-differential equation using finite differences and spline collocation in [17].
To manage the numerical integration, a composite weighted trapezoidal rule was used,
resulting in a closed-form difference scheme. To assess the method’s accuracy, multiple test
examples were solved. The scheme’s convergence and stability were also explored. Babaei
et al. sets up a numerical technique that makes use of the Chebyshev polynomials of the
sixth kind with the main purpose of approximating the solutions of integro-differential
equations of variable order [27]. The sixth-kind Chebyshev polynomials are a special case
of the general nonsymmetric class mentioned in [28,29].
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We subdivide our research under different headings as follows. In the next section,
we focus on fundamental mathematical concepts that lay important groundwork for the
subsequent sections. Section 3 outlines the methodology that we use to conduct our research
and in the fourth section we study the convergence of this methodology. In Section 5, we
apply the methodology to specific examples. We mention our findings and give suggestions
in the last section of this manuscript.

2. Preliminaries

For use in sequel, this section presents the basic properties of the sixth-kind Chebyshev
polynomials and related necessary definitions.

Definition 1. We define the Riemann–Liouville fractional integral with order η ∈ (0, 1) as [20]

Iη
t u(x, t) =

1
Γ(η)

∫ t

0
u(x, s)(t− s)η−1ds.

Definition 2 ([12]). The following recurrence relation is used to obtain the sixth-kind Chebyshev
polynomials φ̂q(t)

φ̂0(t) = 1, φ̂1(t) = t,

φ̂q+1(t) = t φ̂q(t) + $qφ̂q−1(t), q = 2, 3, . . .,

where

$q :=
−(q + 1− (−1)q)(q + 2− (−1)q)

4(q + 1)(q + 2)
.

Definition 3 ([29]). Considering the interval [0, T], then the shifted sixth-kind Chebyshev polyno-
mials are written as

φq(t) = φ̂q((2/T)t− 1), q = 0, 1, 2, . . .

In analytical format, these polynomials are presented as [29]

φq(t) =
q

∑
k=0

Lk,qtk, (6)

where

Lk,q =



22k−q

(2k+1)!Tk

q
2
∑

p=b k+1
2 c

(−1)
q
2+p+k(2p + k + 1)!
(2p− k)!

, q even,

22k−q+1

(2k+1)!(q+1)Tk

q−1
2
∑

p=b k
2 c

(−1)
q+1

2 +p+k(p + 1)(2p + k + 2)!
(2p− k + 1)!

, q odd.

Let L2
v(ΩL ×ΩT) represent a space that consists of square integrable functions having

variables (x, t) and the weight function v(x, t) = w(x)w(t) with w(x) =
√

x− x2(2x− 1)2.

Theorem 1. We assume that f (x, t) ∈ L2
v(ΩL ×ΩT) satisfies the expansion [12]

f (x, t) =
∞

∑
p=0

∞

∑
q=0

cp,qφp(x)φq(t).

Suppose
∥∥∥ ∂6 f (x,t)

∂x3∂t3

∥∥∥
2
≤ ĉ and ĉ > 0. The inequality |cp,q| < ĉ

p3q3 for all p, q > 3, is satisfied
for the expansion coefficients. Further, if

f (x, t) ' fn,m(x, t) =
n

∑
p=0

m

∑
q=0

cp,qφp(x)φq(t), (7)



Fractal Fract. 2022, 6, 160 4 of 13

is an estimate for f (x, t), then

| f (x, t)− fn,m(x, t)| < ĉ
2n+m ,

∣∣∣∇ f (x, t)−∇ fn,m(x, t)
∣∣∣ < σ

n
2n+m−2 ,∣∣∣∆ f (x, t)− ∆ fn,m(x, t)

∣∣∣ < σ̂
n3

2n+m−8 ,

where σ, σ̂ > 0.

Definition 4. Suppose Pp+1(t) is Legendre polynomial of order p + 1 on [−1, 1]. The Legendre–
Gauss quadrature formula for g(t) ∈ C[a, b] is defines as:

∫ b

a
g(t)dt =

b− a
2

M

∑
r=0

wr g(
b− a

2
ςr +

b + a
2

),

in which distinct nodes {ςr}M
r=0 are the zeros of PM+1(t) and {wr}M

r=0 are the corresponding
weights [30]

wr =
2

(1− ς2
r)(P′M+1(ςr))2 .

3. Numerical Method

In this section, we describe numerical technique for solving (1)–(4) on the basis of
the shifted sixth-kind Chebyshev polynomials. We obtain the numerical approximation of
Equation (1) by considering an approximation of the fractional derivative of the unknown
function as:

0D
η
t u(x, t) ' 0D

η
t un,m(x, t) =

n

∑
p=0

m

∑
q=0

cp,qφp(x)φq(t) = Φ(x)TCΦ(t), (8)

in which

Φ(x) = [φ0(x), φ1(x), . . ., φn(x)]T, (9)

Φ(t) = [φ0(t), φ1(t), . . ., φm(t)]T, (10)

and
C =

[
cp,q

]
(n+1)×(m+1)

, p = 0, . . ., n, q = 0, . . ., m,

represent a matrix with unknown entries whose numerical values are to be computed.
According to Definition 1 and the initial condition (2)

u(x, t) ' Iη
t

(
Φ(x)TCΦ(t)

)
+ u0(x) = Φ(x)TC Iη

t Φ(t) + u0(x).

By applying Definition 1 and shifted SKCPs (6), for q = 0, . . ., m

Λη
q (t) := Iη

t φq(t) =
q

∑
k=0

Lk,qIη
t (t

k) =
q

∑
k=0

L
η

k,qtk+η ,

where L
η

k,q := Lk,q
Γ(k+1)

Γ(k+1+η)
, thus, we let

u(x, t) ' un,m(x, t) = Φ(x)TCΦη
t (t) + u0(x), (11)
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such that

Φη
t (t) :=

[
Λη

0(t), Λη
1(t), . . ., Λη

m(t)
]T

. (12)

According to (1) and (11)

R(x, t) := Φ(x)TCΦ(t)− µ
(

Φxx(x)TCΦη
t (t) + u′′0 (x)

)
− β

(
Φx(x)TCΦη

t (t) + u′0(x)
)

− κ

ζ

∫ t

0
e−

t−s
ζ

(
Φxx(x)TCΦη

s (s) + u′′0 (x)
)

ds

−F
(

x, t, Φ(x)TCΦη
t (t) + u0(x)

)
, (13)

with

Φx(x) =
[
φ′0(x), φ′1(x), . . ., φ′n(x)

]T, (14)

Φxx(x) =
[
φ′′0 (x), φ′′1 (x), . . ., φ′′n (x)

]T. (15)

In addition, from Equation (11) and the initial and boundary conditions (2)–(4),
we define

Ψ(x) := Φ(x)TCΦη
t (0) + u0(x), (16)

Π1(t) := g
(

Φ(0)TCΦη
t (t) + u0(0)

)
− ρ0(t), (17)

Π2(t) := θ̂
(

Φ(L)TCΦη
t (t) + u0(L)

)
+ δ̂
(

Φx(L)TCΦη
t (t) + u′0(L)

)
− ρL(t). (18)

Let x0 = 0, xn = L. We denote the roots of φn−1(x) and φm(t) to be {xp : p =
1, . . ., n− 1} and {tq : q = 1, . . ., m}, respectively. If we evaluate (16)–(18) at the respective
collocation points (xp, tq), p = 1, . . ., n− 1, and q = 1, . . ., m, then

R(xp, tq) = Φ(xp)
TCΦ(tq)− µ

(
Φxx(xp)

TCΦη
t (tq) + u′′0 (xp)

)
− β

(
Φx(xp)

TCΦη
t (tq) + u′0(xp)

)
− κ

ζ

∫ tq

0
e−

tq−s
ζ

(
Φxx(xp)

TCΦη
s (s) + u′′0 (xp)

)
ds︸ ︷︷ ︸

Ep,q

−F
(

xp, tq, Φ(xp)
TCΦη

t (tq) + u0(xp)
)

. (19)

Due to Definition 4, Ep,q can be approximated as

Ep,q =
∫ tq

0
e−

tq−s
ζ

(
Φxx(xp)

TCΦη
s (s) + u′′0 (xp)

)
ds

=
tq

2

M

∑
r=0

wr

(
e−

tq−sr,q
ζ

(
Φxx(xp)

TCΦη
t (sr,q) + u′′0 (xp)

))
, (20)

where sr,q =
tq
2 ςr +

tq
2 . Thus, replacing (20) in (19) and considering (16)–(18) at the colloca-

tion points (xp, tq), yield



Fractal Fract. 2022, 6, 160 6 of 13

R(xp, tq) = 0, p = 1, . . ., n− 1, q = 1, . . ., m, (21)

Π1(tq) = 0, q = 1, . . ., m, (22)

Π2(tq) = 0, q = 1, . . ., m, (23)

Ψ(xp) = 0, p = 0, . . ., n. (24)

The relations (21)–(24) imply that we deduce an (n + 1)× (m + 1) system of nonlinear
equations that can be solved through a numerical approach, such as the Newton iteration
technique, to achieve the numerical values of cp,q, p = 0, 1, . . ., n, q = 0, . . ., m. The given
method in this section is listed as Algorithm 1.

Algorithm 1: Algorithm of presented method in Section 3

Input: L, T, µ, β, κ, ζ, θ̂, δ̂ and n, m, M ∈ Z+, η ∈ (0, 1) and functions F, g, u0, ρ0 and
ρL.

Step 1: Compute the shifted sixth-kind Chebyshev polynomials φi(x) on the
interval [0, L] and φj(t) on the interval [0, T].

Step 2: Compute the vector of shifted sixth-kind Chebyshev polynomials Φ(x)
and Φ(t) from Equations (9) and (10).

Step 3: Compute the vectors Φη
t (t) from (12) and Φx(x), Φxx(x) from Equations

(14) and (15).
Step 4: Compute the collocation points xp and tq.
Step 5: Compute the collocation points sr,p and wr.
Step 10: Solve the nonlinear system (21)–(24) and obtain the unknown vector C.
Step 12.4: Let un,m(x, t) = Φ(x)TCΦη

t (t) + u0(x).
Step 13: Post-processing the results.

Output: The approximate solution: u(x, t) ' un,m(x, t).

4. Convergence Analysis

To further explore the behavior of the obtained numerical solution, this section presents
a discussion of how the numerical solution un,m(x, t) converges towards the exact solution
u(x, t).

Theorem 2. Let un,m(x, t) be the approximate solution of (1), u(x, t) be its exact solution and
Rn,m(x, t) be the residual error. Then,

sup
(x,t)∈ΩL×ΩT

|Rn,m(x, t)| ≤ ρ̂
n3 + n + m + 1

2n+m−8 ,

where ρ̂ is a positive constant.

Proof. Since un,m(x, t) is the numerical solution of (1), thus

0D
η
t un,m(x, t) = µ∆un,m(x, t) + β∇un,m(x, t) +F (x, t, un,m(x, t))

+
κ

ζ

∫ t

0
e−

t−s
ζ ∆un,m(x, s)ds +Rn,m(x, t). (25)

With reference to Equations (1) and (25), we have

|Rn,m(x, t)| ≤ |0D
η
t en,m(x, t)|+ |µ||∆en,m(x, t)|+ |β||∇en,m(x, t)|

+
∣∣∣F (x, t, u(x, t))−F (x, t, Un,m(x, t))

∣∣∣
+ |κ

ζ
|
∣∣∣ ∫ t

0
e−

t−s
ζ ∆en,m(x, s)ds

∣∣∣ (26)

where en,m(x, t) := u(x, t)− un,m(x, t). Using (5) and Theorem 1, results
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|0D
η
t en,m(x, t)| ≤ 1

Γ(1− η)

∫ t

0
|(t− s)−η |

∣∣∣∂en,m

∂s
(x, s)

∣∣∣ds

≤ b1

Γ(1− η)

∫ t

0
sup

(x,t)∈ΩL×ΩT

∣∣∣∂en,m

∂t
(x, t)

∣∣∣ds

≤ λ̂
m

2n+m−2 , (27)

where λ̂ = σb1T
Γ(1−η)

and b1 is a positive constant depended on η and T. The function F

fulfills the Lipschitz condition in terms of u, hence∣∣∣F (x, t, u(x, t))−F (x, t, un,m(x, t))
∣∣∣ ≤ ξF|en,m(x, t)|,

where ξF > 0. From Theorem 1∣∣∣F (x, t, u(x, t))−F (x, t, un,m(x, t))
∣∣∣ < ĉ ξF

2n+m . (28)

Moreover, ∣∣∣ ∫ t

0
e−

t−s
ζ ∆en,m(x, s)ds

∣∣∣ ≤ ∫ t

0

∣∣∣e− t−s
ζ

∣∣∣|∆en,m(x, s)|ds

≤ b2

∫ t

0
sup

(x,t)∈ΩL×ΩT

|∆en,m(x, s)|ds

≤ b2Tσ̂
n3

2n+m−8 , (29)

where b2 is a positive constant depended on T. Thus, from relations (26)–(29) and Theorem 1,
we obtain

|Rn,m(x, t)| ≤ λ̂m + |β|σn
2n+m−2 + (|µ|σ̂ + |κ

ζ
|b2Tσ̂)

n3

2n+m−8 +
ĉ ξF

2n+m

≤ λ̂m + |β|σn
2n+m−8 + (|µ|σ̂ + |κ

ζ
|b2Tσ̂)

n3

2n+m−8 +
ĉ ξF

2n+m−8

≤ ρ̂
n3 + n + m + 1

2n+m−8 ,

in which ρ̂ = max{λ̂, |β|σ, |µ|σ̂ + | κζ |b2Tσ̂, ĉ ξF}. As a result

sup
(x,t)∈ΩL×ΩT

|Rn,m(x, t)| ≤ ρ̂
n3 + n + m + 1

2n+m−8 .

5. Numerical Example

Herein, we implement the described method for solving some numerical examples to
investigate the applicability and practical computational efficiency. To assess the accuracy
of the scheme, let n = m, and the l∞-norm error be given as

‖E n‖∞ = max
(νp ,τq)

∣∣∣u(νp, τq)− un(νp, τq)
∣∣∣, (30)

where un(νp, τq) is an approximate solution of u(x, t) at the designated collocation nodes
x = νp, t = τq and p, q = 1, . . ., n. In which case, convergence order (CO) with respect to the
l∞-norm is as given by
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CO = log n1
n2

‖E n1‖∞

‖E n2‖∞
. (31)

For numerical computations, a personal computer with a 1.70 GHz processor was
used. In addition the computational software of choice was MatLab.

Example 1. Solve the following FFKPPE

0D
η
t u(x, t) = uxx(x, t)− ux(x, t) + sin(u(x, t)) +

1
5

∫ t

0
e−

t−s
5 uxx(x, s)ds + f (x, t),

with ΩL = ΩT = [0, 1] and

u(x, 0) = 0, x ∈ ΩL,

u2(0, t) = u(L, t) = 0, t ∈ ΩT.

Here, the problem’s exact solution is

u(x, t) = 10t2x3(1− x).

Figure 1 displays the exact (a) and numerical (b) solutions of u(x, t) for η = 0.75, M = 5
and n = 8. Where as, Figure 2 shows the absolute error and their respective contour plots
for u(x, t) given by n = 8 and n = 10 when η = 0.5 and M = 7. In addition, Table 1 presents
convergence results for the numerical solution of u(x, t). These include the convergence
order, l∞-norm errors and CPU-time (sec.) for different values of n when M = 7.

0

1

0.2

0.4

1

u
(x

,t
) 0.6

0.8

t

0.8

0.5 0.6

x

1

0.4
0.2

0 0

(a)

0

1

0.2

0.4

1

u
n
(x

,t
) 0.6

0.8

t

0.8

0.5 0.6

x

1

0.4
0.2

0 0

(b)

Figure 1. A diagrammatic comparison of the exact and numerical solutions for Example 1 with
η = 0.75. (a) Exact solution; (b) Numerical solution.

Table 1. Convergence analysis results for different values of n for Example 1.

η = 0.25 η = 0.75

n ‖E n‖∞ CO ‖E n‖∞ CO CPU-Time

3 4.0670× 10−2 – 3.6422× 10−2 – 2.277
6 1.6720× 10−3 4.6042 5.4643× 10−4 6.0586 7.534
9 4.0740× 10−5 9.1613 1.0513× 10−5 9.7436 33.884
12 5.0991× 10−7 15.2277 1.1055× 10−07 15.8333 76.46
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Figure 2. Plots indicating absolute errors and error contours for u(x, t), given n = 8 and n = 10, with
η = 0.5 in the domain Ω for Example 1. (a) Absolute error with n = 8; (b) Error contour with n = 8;
(c) Absolute error with n = 10; (d) Error contour with n = 10.

Example 2. Solve the following FFKPPE

0Dη
t u(x, t) = −uxx(x, t) + u2(x, t) +

∫ t

0
e−(t−s)uxx(x, s)ds + f (x, t),

where ΩL = ΩT = [0, 1] and

u(x, 0) = 0, x ∈ ΩL,

u(0, t) = 0, x ∈ ΩT,

−u(1, t) + ux(1, t) = 2πt, t ∈ ΩT.

Here, the problem’s exact solution is given by

u(x, t) = tx sin(2πx).

Figure 3 displays plots for the exact (a) and numerical (b) solutions of u(x, t) when
η = 0.5, M = 5 and n = 8. Whereas the Figure 4 shows plots for the absolute errors and
their respective contour plots for u(x, t) given n = 4 and n = 8, when η = 0.65 and M = 7.
In addition, Table 2 presents convergence results for the numerical solution of u(x, t). These
include l∞-norm errors, the convergence order as well as CPU run time in seconds (s) for
different values of n when M = 6.
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Figure 3. A diagrammatic comparison of the exact and numerical solutions for Example 2 with
η = 0.5. (a) Exact solution; (b) Numerical solution.
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Figure 4. Plots indicating absolute errors and error contours for u(x, t) with n = 12 and n = 15
when η = 0.65 in Ω for Example 2. (a) Absolute error with n = 12; (b) Error contour with n = 12;
(c) Absolute error with n = 15; (d) Error contour with n = 15.

Table 2. Convergence analysis results for different values of n for Example 2.

η = 0.25 η = 0.75

n ‖En‖∞ CO ‖En‖∞ CO CPU-Time

3 6.3855× 10−1 − 3.7469× 10−1 − 2.34
6 3.4551× 10−2 4.2080 8.2972× 10−2 5.4969 4.215
9 2.5097× 10−3 6.4673 1.8042× 10−4 9.4419 15.116
12 7.2113× 10−5 12.3389 5.2019× 10−6 12.3271 70.638

Example 3. Solve the following generalized Fisher–Kolmogorov–Petrovskii–Piskunov [17]

ut(x, t) = − 1
2π2 uxx(x, t) + u2(x, t) +

∫ t

0
e−

(t−s)
2 uxx(x, s)ds + f (x, t),
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where (x, t) ∈ (0, 1)× (0, 1] and

u(x, 0) = sin(πx), x ∈ [0, 1],

u(0, t) + ux(0, t) = πe−t/2, t ∈ (0, 1],

u(1, t) + ux(1, t) = −πe−t/2, t ∈ (0, 1].

Here, the problem’s exact solution is given by

u(x, t) = e−t/2 sin(πx).

Figure 5 displays plots for the exact (a) and numerical (b) solutions of u(x, t) when
M = 7 and n = 12. Figure 6 shows plots for the absolute error and contour plot for u(x, t),
when n = 12 and M = 7.

Table 3 shows the relative errors of the results obtained by the proposed method in
comparison with the results of the spline collocation method [17], at time-level t = 1.0 for
different values of n and M = 8.
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Figure 5. A diagrammatic comparison of the exact and numerical solutions for Example 3 with
n = 12. (a) Exact solution; (b) Numerical solution.
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Figure 6. Plots indicating absolute errors and error contours for u(x, t) with n = 12 for Example 3.
(a) Absolute error; (b) Error contour.

Table 3. Maximum absolute errors at time-level t = 1.0 for different values of n for Example 3.

B-Spline Method [17] Proposed Method

n Max|Error| n ‖En‖∞ CPU-Time

20 1.3× 10−2 3 2.4155× 10−1 2.124
30 7.4× 10−3 6 3.0031× 10−3 5.461
40 5.4× 10−3 9 2.2521× 10−4 17.36
50 4.4× 10−3 12 2.4747× 10−6 66.871
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6. Conclusions

Shifted Chebyshev polynomials of the sixth-kind form the backbone of the numerical
scheme that we have discussed in this research. Through these polynomials, we were able
to construct a differential matrix and write an equation that approximates the solution of
a differential equation with fractional order. The role of the collocation technique in our
solution procedure is to augment the number of equations created from the initial and
boundary conditions. Graphical comparisons of the results attained from this numerical
scheme and the known exact solutions indicate that this scheme has a high level of accuracy.
We also note that, as we increase the number of polynomials used, the accuracy and
convergence rates also improve although this is accompanied by more intensive labor.
Fortunately, it is clear from the results that we need a few polynomials to reach accepted
level of accuracy.
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