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Abstract: Developing mathematical models of fractional order for physical phenomena and construct-
ing numerical solutions for these models are crucial issues in mathematics, physics, and engineering.
Higher order temporal fractional evolution problems (EPs) with Caputo’s derivative (CD) are numeri-
cally solved using a sextic polynomial spline technique (SPST). These equations are frequently applied
in a wide variety of real-world applications, such as strain gradient elasticity, phase separation in
binary mixtures, and modelling of thin beams and plates, all of which are key parts of mechanical
engineering. The SPST can be used for space discretization, whereas the backward Euler formula
can be used for time discretization. For the temporal discretization, the method’s convergence and
stability are assessed. To show the accuracy and applicability of the proposed technique, numerical
simulations are employed.

Keywords: higher-order partial differential equations (PDEs); evolution problems; Caputo time
fractional derivative; sextic spline polynomials; collocation method

MSC: 39A14; 5M06; 65M12; 65M70; 65N06; 65N12

1. Introduction

Fractional derivatives (FD) and Fractional integrals (FI) are no longer a novel concept.
FDs gain considerable attention, because of its non-local property, in few decades. FDs
are the leading tool for description of problems in biology, physics, chemistry and in
many other areas. FDs may also be used to describe the memory and heredity features
of different materials and processes. Non-integer order derivatives and integrals are
demonstrably more effective than classical models for expressing some electrochemical
difficulties. Extensions of the wave and diffusion equations are also done with the FD
and FI operators. The brief history and detailed analysis of this area are provided by
Podlubny [1] and Oldham and Spanier [2].

At the same time, applications of the fourth order differential equations are reported
in various real life problems. Floor systems, bridge slabs, aeroplane wings, and window
panes, for example, may be modelled as plates with various types of boundary supports
which can be governed by 4th-order PDEs.

A higher-order EP with time-fractional CD is examined in this study, as follows:

Fractal Fract. 2022, 6, 170. https://doi.org/10.3390/fractalfract6030170 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract6030170
https://doi.org/10.3390/fractalfract6030170
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-0491-1528
https://orcid.org/0000-0002-8889-3768
https://doi.org/10.3390/fractalfract6030170
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6030170?type=check_update&version=2


Fractal Fract. 2022, 6, 170 2 of 20

∂γχ

∂tγ
+ η

∂4χ

∂s4 = g(s, t), s ∈ Λ = [0, b], t ∈ (0, T], (1)

subject to the initial condition (IC)

χ(s, 0) = v0(s), 0 ≤ s ≤ b,

and boundary conditions (BCs){
χ(0, t) = χ(b, t) = 0,
χss(0, t) = χss(b, t) = 0, t ∈ (0, T].

(2)

where γ (0 < γ < 1) denotes the order of the FDs in the Caputo sense, η denotes the
ratio of the beam’s flexural stiffness to its mass per unit length, and χ denotes the beam’s
transverse displacement. The g(s, t) represents dynamic driving force per unit mass, and
v0(s) is a continuous function. Berdyshev et al. [3] discussed the existence and uniqueness
of the solution of suggested problem as a special case where the authors applied the
separation-variables method to prove the unique solvability of direct and inverse problems
for a fourth-order mixed type equation, which coincides with suggested problem for
t > 0. As hereditary properties and memory of various materials can be depicted more
precisely using the time-fractional derivatives, thus they are useful tool for modeling of
different processes.

Several descriptions for the notion of fractional operators, e.g., Caputo, Riemann–
Liouville and He’s are presented in the last few years. For any discontinuous problems, it is
appropriate to use He’s fractal derivative [4–6]. Also, with the help of two-scale transform,
the differential equations of fractional order can be converted into classical differential ones,
which can be solved easily [7,8]. In this work, the Caputo’s fractional derivative will be
used because of its suitability to describe physical systems in the real-world as it guarantees
to allow the classical IC and BCs in the mathematical modeling of the system. In this work,
for description of fractional derivative, the Caputo derivative is used. The time-fractional
CD of order γ is defined as:

∂γχ(s, t)
∂tγ

=


1

Γ(1−γ)

∫ t
0

∂χ(s,p)
∂p

dp
(t−p)γ , 0 < γ < 1,

∂χ(s,t)
∂t , γ = 1.

(3)

When γ = 1, Equation (1) provides 4th-order PDE

∂χ

∂t
+ η

∂4χ

∂s4 = g(s, t), s ∈ Λ = [0, b], t ∈ (0, T]. (4)

The analytical results of many FDEs cannot be obtained using the existing solutions
techniques. Therefore, various numerical techniques have been proposed for the approxi-
mate solutions of fractional order differential equations.

A numerical technique for solving 4th-order integro PDE with a weakly singular
kernel developed by Yang et al. [9]. Liu et al. [10] constructed a computational scheme
using the mixed finite element scheme to obtain numerical solution of fractional order
fourth-order differential equation. Khan et al. [11] utilized variational iteration technique
to obtain the numerical solution of FDEs of order four. Moghaddam et al. [12] presented a
integro quadratic spline scheme to obtain the approximate solution for the class of fractional
order problems. Roul et al. [13] constructed a collocation approach for fractional order
diffusion equation. They used L1 scheme for the time-discretization, whereas the space
discretization was observed using sextic B-spline. Abdeljawad et al. [14] proposed some
fixed point results to determine the numerical solutions of fractional differential equations.
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El-Sayed et al. [15] introduced a new numerical approach based on Jacobi polynomials for
multi term variable order FDEs.

Fractional Bagely-Torvik equation solved numerically using a non-polynomial spline
technique [16]. Pedas and Vikerpuur [17] discussed the spline collocation method for multi-
term fractional integro-differential equations with weakly singular kernels. Youssri [18]
constructed orthonormal ultraspherical operational matrix algorithm for fractal-fractional
Riccati equation via generalized Caputo fractional derivative. Cardone et al. [19] discussed
the Nordsieck GLM collocation methods for ordinary differential equations, and on two-
step spline collocation methods for fractional differential equations. A predictor-corrector
method introduced for the approximate solutions of uncertain FDEs [20]. The fractional
Drinfeld-Sokolov-Wilson equation was investigated using a novel numerical computational
method [21]. Approximate solution of the fractional stochastic Tricomi-type equation was
investigated using a finite difference scheme with Caputo’s derivative [22]. Legendre
wavelet method was implemented successfully for the numerical computations of the
solution of a system of fractional order Volterra integral-differential equations [23]. It is
well-known that there is a wide range of effective and robust tools for the solutions of
fractional differential equations, namely, the Chun-Hui He’s iteration method [24], the
Fourier spectral method [25], reproducing kernel method [26], the variational method [27],
spline method [28], the He-Laplace method [29], Integral balance methods [30], lower and
upper solutions method [31], and Li-He method [32]. Although existing tools are useful for
solving these problems, the expansion of applications and the introduction of new-found
and generalized forms for existing equations can be considered the best reason to explore
new, useful, and more effective tools.

The main goal of this work to achieve the numerical solution of 4th-order time-
fractional boundary value problem using a spline technique based on sextic polynomials.
In order to solve PDEs, a sextic spline is broadly applied. If the numerical solutions of
FPDE are required at several knots within a particular region, spline solutions ensure that
the information about spline interpolation between mesh points is provided. The proposed
method uses the piecewise defined spline functions over the spatial domain and it offers a
continuous differentiable approximation to the solution with great accuracy but despite
any insight into generalizations are not guaranteed. Also, its straightforward applicability
provides a reliable base for utilizing it in the framework of numerical solutions for partial
differential equations.

The following is how the paper is structured: Section 2 presents materials and meth-
ods including some preliminary, a brief overview of SPST, the consistency relations (CR)
between the values of the spline and its derivatives at knots are derived using derivative
continuities at knots, temporal discretization of the given problem, the first order backward
Euler technique, the topic of temporal discretization’s stability and error analysis and the
SPST for spatial discretization. In Section 3, numerical results are presented to demonstrate
the method’s efficacy. The closing remarks are noted in Section 4.

2. Materials and Methods
2.1. Preliminary Results

Definition 1. The inner product and norm of L2(Λ) can be defined as follows:

〈φ, ψ〉 =
∫

Λ
vwds, ‖ψ‖0 = 〈ψ, ψ〉

1
2 ,

where the L2(Λ) is the space of measurable functions whose square is Lebesgue integrable in Λ.

In order to verify the accuracy of the proposed method, the maximum norm errors and
L2 norm errors between numerical and exact solutions are given by the following definitions:

Definition 2. The maximum norm error is defined as follows:
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‖eK‖∞ = max
0≤i≤N

|χ(si, tK)−ØK
i |.

Definition 3. The L2 norm error is defined as follows:

‖eK‖2 =
1
N

( N

∑
i=0
|χ(si, tK)−ØK

i |2
) 1

2

.

2.2. Sextic Polynomial Spline Functions

The interval [0, b] is uniformly partitioned into the subintervals [sj−1, sj] defined on
the grid points sj = jρ (j = 0, 1, . . . , k, ρ = b

k , k > 0). It is assumed that the function u(s) is
a differentiable function on given domain [0, b] which is to be approximated by a SPS, P(s).
Each SPS segment Tj(s) is considered, as:

Tj(s) = aj(s− sj)
6 + bj(s− sj)

5 + cj(s− sj)
4 + dj(s− sj)

3 + ej(s− sj)
2 + gj(s− sj)+ vj, (5)

j = 0, 1, . . . , k, along with the requirement that

• Tj(s) ∈ C5[0, b],
• P(s) = Tj(s), ∀s ∈ [sj, sj+1], j = 0, 1, . . . , k− 1.

To determine the CR between the values of a spline and its derivatives at knots, the
following relations must exist

T j(sj) = Pj, Tj(sj+1) = Pj+1, T(1)
j (sj) = Zj,

T(2)
j (sj) = Sj, T(2)

j (sj+1) = Sj+1, T(4)
j (sj) = Gj,

T(4)
j (sj+1) = Gj+1.

It should be noted that the spline P can be stated in terms of Pj’s and any three
derivatives at the subinterval precincts. The coefficients introduced in Equation (5) to
express the spline in positions of Pj’s, Sj’s, Zj’s, and Gj’s are determined as follows:

aj =
1

3ρ6 (Pj+1 − Pj)−
1

3ρ5 Zj −
1

18ρ4 (Sj+1 + 2Sj) +
1

1080ρ2 (7Gj+1 + 8Gj),

bj = −
1
ρ5 (Pj+1 − Pj) +

1
ρ4 Zj +

1
6ρ3 (Sj+1 + 2Sj)−

1
360ρ

(4Gj+1 + 11Gj),

cj =
1

24
Gj,

dj =
5

3ρ3 (Pj+1 − Pj)−
5

3ρ2 Zj −
1

18ρ
(2Sj+1 + 13Sj) +

ρ

216
(Gj+1 − 4Gj),

ej =
1
2

Sj,

gj = Zj,

vj = Pj.

At the knots, the 1st, 3rd, and 5th derivative continuities are applied, i.e., T(ξ)
j (sj) =

T(ξ)
j−1(sj), ξ = 1, 3 and 5, yield the following relations:

Zj + Zj−1 =
2
ρ
(Pj − Pj−1) +

ρ

6
(Sj − Sj−1)−

ρ3

360
(Gj − Gj−1), (6)
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Zj + Zj−1 =
1
ρ
(Pj+1 − Pj−1)−

ρ

30
(2Sj+1 + 21Sj + 7Sj−1) +

ρ3

360
(Gj+1 − 9Gj + 2Gj−1), (7)

Zj + Zj−1 =
1
ρ
(Pj+1 − Pj−1)−

ρ

6
(Sj+1 + 3Sj + 2Sj−1) +

ρ3

360
(4Gj+1 + 21Gj + 5Gj−1), (8)

From Equations (6) and (7), we get

Pj+1 − 2Pj + Pj−1 =
ρ2

15
(Sj+1 + 13Sj + Sj−1)−

ρ4

360
(Gj+1 − 8Gj + Gj−1). (9)

Equations (6) and (8) yield

Pj+1 − 2Pj + Pj−1 =
ρ2

6
(Sj+1 + 4Sj + Sj−1)−

ρ4

180
(2Gj+1 + 11Gj + 2Gj−1). (10)

Using Equations (9) and (10), the following relations are obtained

ρ2Sj = Pj+1 − 2Pj + Pj−1 −
ρ4

360
(Gj+1 + 28Gj + Gj−1), (11)

ρ4Gj = 20(Pj+1 − 2Pj + Pj−1)−
2ρ2

3
(Sj+1 + 28Sj + Sj−1). (12)

Eliminating Si, i = j− 1, j, j + 1, from Equation (9) using Equation (11) to obtain the
following CR in positions of the 4th-order derivative of Gj and Pj, as:

Pj+2 − 4Pj+1 + 6Pj − 4Pj−1 + Pj−2 =
ρ4

360
(Gj+2 + 56Gj+1 + 246Gj + 56Gj−1 + Gj−2),

j = 2, 3, . . . , k− 2. (13)

In the (k− 1) unknowns, the system (13) generates (k− 3) linear algebraic equations.
Two further equations (end conditions) are required for (Pj, j = 1, 2, . . . , k − 1). Taylor
series and the technique of undetermined coefficients can be used to derive the two end
conditions. Following two end equations are used for unique solution

− 2P0 + 5P1 − 4P2 + P3 = −ρ2S0 +
ρ4

360
(28G0 + 245G1 + 56G2 + G3), (14)

and

Pk−3 − 4Pk−2 + 5Pk−1 − 2Pk = −ρ2Sk +
ρ4

360
(Gk−3 + 56Gk−2 + 245Gk−1 + 28Gk). (15)

An alternative derivation of Equation (13) is given in Appendix A.

2.3. Temporal Discretization

In this section, we discretize the Caputo time-fractional derivative using the Backward
Euler scheme. Let us consider tn = n∆t, n = 0, 1, . . . , K, where ∆t = T

K is called the time
step size. The Caputo FD at time t = tn+1, can be taken as:
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∫ tn+1

0

∂χ(s, ψ)

∂ψ
(tn+1 − ψ)−γdψ =

n

∑
i=0

∫ ti+1

ti

∂χ(s, ψ)

∂ψ
(tn+1 − ψ)−γdψ

=
n

∑
i=0

χ(s, ti+1)− χ(s, ti)

∆t

∫ ti+1

ti

(tn+1 − ψ)−γdψ + ln+1
∆t

=
n

∑
i=0

χ(s, ti+1)− χ(s, ti)

∆t

∫ tn+1−i

tn−i

σ−γdσ + ln+1
∆t

=
n

∑
i=0

χ(s, tn−i+1)− χ(s, tn−i)

∆t

∫ t1+i

ti

σ−γdσ + ln+1
∆t

=
1

1− γ

n

∑
i=0

χ(s, tn−i+1)− χ(s, tn−i)

∆tγ
((i + 1)1−γ − i1−γ)

+ ln+1
∆t

=
1

1− γ

n

∑
i=0

qi
χ(s, tn−i+1)− χ(s, tn−i)

∆tγ
+ ln+1

∆t ,

(16)

where qi = (i + 1)1−γ − i1−γ and σ = (tn+1 − ψ). From definition of CTFD, we have

∂γχ(s, tn+1)

∂tγ
=

1
Γ(2− γ)

n

∑
i=0

qi
χ(s, tn−i+1)− χ(s, tn−i)

∆tγ
+ ln+1

∆t . (17)

Define the semi-discrete FD operator Vγ
t as:

Vγ
t χ(s, tn+1) :=

1
Γ(2− γ)

n

∑
i=0

qi
χ(s, tn−i+1)− χ(s, tn−i)

∆tγ
.

Then, Equation (17) can be taken as:

∂γχ(s, tn+1)

∂tγ
= Vγ

t χ(s, tn+1) + ln+1
∆t , (18)

where ln+1
∆t is the truncation error (TE) between ∂γχ(s,tn+1)

∂tγ and Vγ
t χ(s, tn+1) in [20]. The

scheme (1) using Vγ
t χ(s, tn+1) may be expressed below as an approximation of time-

fractional CD at time point t = tn+1,

Vγ
t χ(s, tn+1) + η

∂4χ(s, tn+1)

∂s4 = g(s, tn+1).

The given equation yields the following form when using Equation (17)

chin+1(s) + µηχn+1
ssss = (1− q1)χ

n(s) +
n−1

∑
i=1

(qi − qi+1)χ
n−i(s) + qnχ0(s) + µgn+1(s), n = 1(1)K− 1, (19)

where χn+1(s) = χ(s, tn+1) and µ = ∆tγΓ(2− γ), with BCs and the following IC

χ0 = v0(s), 0 ≤ s ≤ b.

Remark 1. These are the characteristics of the coefficients qi in Equation (16)

• qi’s are non-negative when i = 0, 1, . . . , n
• 1 = q0 > q1 > q2 > q3 > . . . > qn, qn → 0 as n→ ∞
• ∑n

i=0(qi − qi+1) + qn+1 = (1− q1) + ∑n−1
i=1 (qi − qi+1) + qn = 1
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Also the term ln+1
∆t is bounded. i.e.,

ln+1
∆t ≤ c∆t2−γ, (20)

where c is a constant that is determined by χ.

To apply this three time level approach, the χ0 and χ1 time levels are required. The
scheme (19) can be stated in the following way for n = 1 as:

χ2(s) + µηχ2
ssss = (1− q1)χ

1(s) + q1χ0(s) + µg2(s). (21)

For n = 0, the scheme can be written as:

χ1(s) + µηχ1
ssss = v0(s) + µg1(s). (22)

Also, the Equations (19) and (22), as well as BCs and IC, make up the entire semi-
discrete issue of Equation (1). The term ln+1 is defined as follows [20]:

ln+1 := µ

(
∂γχ(s, tn+1)

∂tγ
−Vγ

t χ(s, tn+1)

)
. (23)

The error term ln+1 derives from Equations (18) and (20) and has the following form:∣∣∣ln+1
∣∣∣ = v

∣∣∣ln+1
∆t

∣∣∣ ≤ cχ∆t2, (24)

where v = Γ(2− γ)∆tγ.
In order to bring the weak representation of the problem, several functional spaces,

along with their established norms and inner product (IP), are defined as follows:

P2(Λ) =
{

ψ ∈ L2(Λ), ψs, ψss ∈ L2(Λ)
}

,

P2
0 (Λ) =

{
ψ ∈ P2(Λ), ψ|∂Λ = 0, ψs|∂Λ = 0

}
,

Pk(Λ) =

{
ψ ∈ L2(Λ),

drψ

dsr ∈ L2(Λ), for all positive integer r ≤ k
}

,

where ψs =
dψ
ds and ψss =

d2ψ

ds2 . The IP and norm of P2(Λ) can be determined by

〈φ, ψ〉2 = 〈φ, ψ〉+ 〈φs, ψs〉+ 〈φss, ψss〉, ‖ψ‖2 = 〈ψ, ψ〉
1
2
2 .

The norm ‖.‖ of the space Pk(Λ) is defined as:

‖ψ‖k =

(
k

∑
r=0

∥∥∥∥drψ

dsr

∥∥∥∥2

0

) 1
2

.

It is preferable to define ‖.‖2 by instead of using the above usual P2-norm

‖ψ‖2 =
(
‖ψ‖2

0 + µη‖ψss‖2
0

)1/2
. (25)

The following required variational weak version of Equations (19) and (22) is used to
investigate the stability and convergence, i.e., finding χk+1 ∈ P2

0 (Λ), such that ∀ψ ∈ P2
0 (Λ),
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〈χn+1, ψ〉+ µη〈∂
4χn+1

∂s4 , ψ〉 (26)

= (1− q1)〈χn, ψ〉+
n−1

∑
i=1

(qi − qi+1)〈χn−i, ψ〉+ qn〈χ0, ψ〉+ µ〈gn+1, ψ〉,

and

〈χ1, ψ〉+ µη〈∂
4χ1

∂s4 , ψ〉 = 〈χ0, ψ〉+ µ〈g1, ψ〉. (27)

2.4. The Stability Analysis

The following theorem discusses the semi-discrete problem’s stability analysis.

Theorem 1. In the sense that it holds for every ∆t > 0, the semi-discrete issue is unconditionally
stable ∥∥∥χn+1

∥∥∥
2
≤
(∥∥∥χ0

∥∥∥
0
+ µ

n+1

∑
i=1

∥∥∥gi
∥∥∥

0

)
, n = 0, 1, . . . , K− 1, (28)

where ‖.‖2 is defined in Equation (25).

Proof. To establish the result, mathematical induction is utilized. When n = 0 and ψ = χ1

are used in Equation (27), it may be expressed as follows:

〈χ1, χ1〉+ µη〈∂
4χ1

∂s4 , χ1〉 = 〈χ0, χ1〉+ µ〈g1, χ1〉. (29)

The preceding equation becomes the following when by parts integration is used

〈χ1, χ1〉+ µη〈∂
2χ1

∂s2 ,
∂2χ1

∂s2 〉 = 〈χ
0, χ1〉+ µ〈g1, χ1〉, (30)

Because of BCs on ψ, all boundary-related contributions have vanished. Using ‖ψ‖0 ≤
‖ψ‖2 and Schwarz inequality, Equation (30) yields∥∥∥χ1

∥∥∥2

2
≤

∥∥∥χ0
∥∥∥

0

∥∥∥χ1
∥∥∥

0
+ µ

∥∥∥g1
∥∥∥

0

∥∥∥χ1
∥∥∥

0
(31)

≤
∥∥∥χ0

∥∥∥
0

∥∥∥χ1
∥∥∥

2
+ µ

∥∥∥g1
∥∥∥

0

∥∥∥χ1
∥∥∥

2∥∥∥χ1
∥∥∥

2
≤

(∥∥∥χ0
∥∥∥

0
+ µ

∥∥∥g1
∥∥∥

0

)
.

Next, suppose that the result holds for ψ = χi. i.e.,

∥∥∥χi
∥∥∥

2
≤

(∥∥∥χ0
∥∥∥

0
+ µ

i

∑
j=1

∥∥∥gj
∥∥∥

0

)
, i = 2, 3, . . . , n. (32)

Let ψ = χn+1 in Equation (26), it can be written as:

〈χn+1, χn+1〉+ µη〈∂
4χn+1

∂s4 , χn+1〉 (33)

= (1− q1)〈χn, χn+1〉+
n−1

∑
i=1

(qi − qi+1)〈χn−i, χn+1〉+ qn〈χ0, χn+1〉

+µ〈gn+1, χn+1〉.
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The preceding equation becomes the following when by parts integration is used

〈χn+1, χn+1〉+ µη〈∂
2χn+1

∂s2 ,
∂2χn+1

∂s2 〉 (34)

= (1− q1)〈χn, χn+1〉+
n−1

∑
i=1

(qi − qi+1)〈χn−i, χn+1〉

+qn〈χ0, χn+1〉+ µ〈gn+1, χn+1〉,

Because of BCs on ψ, all boundary-related contributions have vanished. Using Schwarz
inequality and ‖ψ‖0 ≤ ‖ψ‖2, the above equation yields

∥∥∥χn+1
∥∥∥2

2
≤ (1− q1)‖χn‖0

∥∥∥χn+1
∥∥∥

0
+

n−1

∑
i=1

(qi − qi+1)
∥∥∥χn−i

∥∥∥
0

∥∥∥χn+1
∥∥∥

0
(35)

+qn

∥∥∥χ0
∥∥∥

0

∥∥∥χn+1
∥∥∥

0
+ µ

∥∥∥gn+1
∥∥∥

0

∥∥∥χn+1
∥∥∥

0
,

or ∥∥∥χn+1
∥∥∥2

2
≤ (1− q1)‖χn‖0

∥∥∥χn+1
∥∥∥

2
+

n−1

∑
i=1

(qi − qi+1)
∥∥∥χn−i

∥∥∥
0

∥∥∥χn+1
∥∥∥

2
(36)

+qn

∥∥∥χ0
∥∥∥

0

∥∥∥χn+1
∥∥∥

2
+ µ

∥∥∥gn+1
∥∥∥

0

∥∥∥χn+1
∥∥∥

2
,

or ∥∥∥χn+1
∥∥∥

2
≤ (1− q1)

∥∥∥χk
∥∥∥

0
+

n−1

∑
i=1

(qi − qi+1)
∥∥∥χn−i

∥∥∥
0
+ qn

∥∥∥χ0
∥∥∥

0
+ µ

∥∥∥gn+1
∥∥∥

0
. (37)

Using Equation (32), the above equation becomes

∥∥∥χn+1
∥∥∥

2
≤

[∥∥∥χ0
∥∥∥

0
+ µ

n

∑
i=1

∥∥∥gi
∥∥∥

0

](
(1− q1) +

n−1

∑
i=1

(qi − qi+1) + qn

)
+µ
∥∥∥gn+1

∥∥∥
0
.

Using properties of qi, it can be rewritten as:

∥∥∥χn+1
∥∥∥

2
≤

(∥∥∥χ0
∥∥∥

0
+ µ

n+1

∑
i=1

∥∥∥gi
∥∥∥

0

)
. (38)

Lemma 1. Consider χ(s, t) be the exact solution of problem (1) and {χn}K
n=0 be the time-discrete

solution of Equations (26) and (27) with IC. Then it holds

‖χ(tn)− χn‖2 ≤ cχq−1
n−1∆t2, n = 1, 2, . . . , K. (39)

Proof. Let en = χ(s, tn)− χn(s), for n = 1, by coalescing Equations (1), (25) and (27), the
error equation can be expressed in following form as:

〈e1, ψ〉+ µη〈∂
2e1

∂s2 ,
∂2ψ

∂s2 〉 = 〈e
0, ψ〉+ 〈l1, ψ〉, ∀ψ ∈ P2

0 (Λ).

Let ψ = e1, noting e0 = 0 gives∥∥∥e1
∥∥∥

2
≤
∥∥∥l1
∥∥∥

0
.
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From above equation and Equation (24),∥∥∥χ(t1)− χ1
∥∥∥

2
≤ cχq−1

0 ∆t2. (40)

Thus, the Equation (39) is completed for n = 1.
The Equation (39) satisfies for n = 1(1)r, i.e.,

‖χ(tn)− χn‖2 ≤ cχq−1
n−1∆t2. (41)

The Equations (1), (25) and (26) can be used for n = r + 1, the error equation for all
ψ ∈ P2

0 (Λ) can be written as:

〈en+1, ψ〉+ µη〈∂
2en+1

∂s2 ,
∂2ψ

∂s2 〉

= (1− q1)〈en, ψ〉+
n−1

∑
i=1

(qi − qi+1)〈en−i, ψ〉+ qn〈e0, ψ〉+ 〈ln+1, ψ〉.

Take ψ = en+1 , use the induction assumption and the relation q−1
i

q−1
i+1

< 1 for all non

negative integer i, then above equation becomes∥∥∥en+1
∥∥∥

2
≤ cχq−1

n ∆t2.

Using the definition of qn, the following equation may be derived as:

lim
n→∞

q−1
n−1
nγ

= lim
n→∞

n−γ

n1−γ − (n− 1)1−γ

= lim
n→∞

n−1

1− (1− 1
n )

1−γ

=
1

(1− γ)
.

The function Θ(y) can be defined as: Θ(y) := y−γ

y1−γ−(y−1)1−γ . This function is increasing

on y for all y > 1 since Θ
′
(y) ≥ 0, ∀y > 1. It can be concluded that 1 < n → ∞,

q−1
n−1
nγ is increasingly tends to 1

(1−γ)
. As, n−γq−1

n−1 = 1 for n = 1, hence it can written in
following form

n−γq−1
n−1 ≤

1
(1− γ)

, n = 1, 2, . . . , K.

Consequently, for all n such that n∆t ≤ T,

‖χ(tn)− χn‖2 ≤ cχq−1
n−1∆t2

= cχn−γq−1
n−1nγ∆t2−γ+γ

≤ cχ
1

1− γ
(n∆t)γ∆t2−γ

≤ cχ,γTγ∆t2−γ.

The above results can be summarized in the following theorem as:
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Theorem 2. Let χ be the exact solution of Equation (1) and {χn}K
n=0 be the time-discrete solution

of Equations (26) and (27) with IC χ0 = v0(s), 0 ≤ s ≤ b, then it holds

‖χ(tn)− χn‖2 ≤ cχ,γTγ∆t2−γ, n = 1, 2, . . . , K. (42)

2.5. Space Discretization

Consider the grid points (sj, tn) of a uniform mesh with, to discretize the region
[0, b]× [0, T], where sj = jh, j = 0, 1, . . . , k, and tn = n∆t, n = 0, 1, . . . , K, T = K∆t. The ∆t
and ρ are the step sizes in the time and space, respectively.

The space discretization of Equation (19) using SPS is carried out as:

Pn+1
j + µηGn+1

j = (1− q1)Pn
j +

n−1

∑
i=1

(qi − qi+1)Pn−i
j + qnvj + µgn+1

j . (43)

The operator Ω is defined as follows:

Ωpi = 246pi + 56(pi−1 + pi+1) + (pi−2 + pi+2). (44)

Now, Equation (13) can be written as:

ΩGj =
360
ρ4 (Pj−2 − 4Pj−1 + 6Pj − 4Pj+1 + Pj+2). (45)

Using operator Ω, the Equation (43) yields,(
Pn+1

j−2 + 56Pn+1
j−1 + 246Pn+1

j + 56Pn+1
j+1 + Pn+1

j+2

)
(46)

+µη
360
ρ4

(
Pn+1

j−2 − 4Pn+1
j−1 + 6Pn+1

j − 4Pn+1
j+1 + Pn+1

j+2

)
= (1− q1)

(
Pn

j−2 + 56Pn
j−1 + 246Pn

j + 56Pn
j+1 + Pn

j+2

)
+

n−1

∑
i=1

(qi − qi+1)
(

Pn−i
j−2 + 56Pn−i

j−1 + 246Pn−i
j + 56Pn−i

j+1 + Pn−i
j+2

)
+qn

(
vj−2 + 56vj−1 + 246vj + 56vj+1 + vj+2

)
+µ(gn+1

j−2 + 56gn+1
j−1 + 246gn+1

j + 56gn+1
j+1 + gn+1

j+2 ),

n = 1, 2, . . . , K− 1. (47)

The system gets simpler once, it has been simplified((
1 + µη

360
ρ4

)
Pn+1

j−2 +

(
56− 4µη

360
ρ4

)
Pn+1

j−1 +

(
246 + 6µη

360
ρ4

)
Pn+1

j (48)

+

(
56− 4µη

360
ρ4

)
Pn+1

j+1 +

(
1 + µη

360
ρ4

)
Pn+1

j+2

)
= Qj, n = 1, 2, . . . , K− 1, j = 2, 3, . . . , k− 2,

where,

Qj = (1− q1)
(

Pn
j−2 + 56Pn

j−1 + 246Pn
j + 56Pn

j+1 + Pn
j+2

)
+

n−1

∑
i=1

(qi − qi+1)
(

Pn−i
j−2 + 56Pn−i

j−1 + 246Pn−i
j + 56Pn−i

j+1 + qn−i
j+2

)
+qn

(
vj−2 + 56vj−1 + 246qj + 56vj+1 + vj+2

)
+ µ(gn+1

j−2 + 56gn+1
j−1

+246gn+1
j + 56gn+1

j+1 + gn+1
j+2 ).
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In the (k − 1) unknowns (Pn+1
j , j = 1, 2, . . . , k − 1), the system (48) gives (k − 3)

equations, hence two additional equations are required to obtain a full solution for Pn+1
j to

be derived.

2.6. Initial State

A five-point approach has been proposed. To use this approach, there is need to find
the values of P2 = [P2

1 , P2
2 , . . . , P2

k−1]
T and P1 = [P1

1 , P1
2 , . . . , P1

k−1]
T . To obtain the value of

P2, there is need to find P1. The value of P1 can be obtained, solving Equation (18) using
SPST, as: ((

1 + µη
360
ρ4

)
P1

j−2 +

(
56− 4µη

360
ρ4

)
P1

j−1 +

(
246 + 6µη

360
ρ4

)
P1

j (49)

+

(
56− 4µη

360
ρ4

)
P1

j+1 +

(
1 + µη

360
ρ4

)
P1

j+2

)
= Jj, j = 2, 3, . . . , k− 2,

where,

Jj =
(
vj−2 + 56vj−1 + 246vj + 56vj+1 + vj+2

)
+ µ(g1

j−2 + 56g1
j−1

+246g1
j + 56g1

j+1 + g1
j+2).

The Equation (49) provides a system of linear equations (k − 3)× (k − 1) with un-
known (P1

j , j = 1, 2, . . . , k− 1). For a unique solution of this system, we have added two
end equations which are given by:((

28− 2µη
360
ρ4

)
P1

0 +

(
245 + 5µη

360
ρ4

)
P1

1 +

(
56− 4µη

360
ρ4

)
P1

2 (50)

+

(
1 + µη

360
ρ4

)
P1

3

)
= (28v0 + 245v1 + 56v2 + v3) + µ(28g1

0 + 245g1
1 + 56g1

2 + g1
3),

and ((
1 + µη

360
ρ4

)
P1

k−3 +

(
56− 4µη

360
ρ4

)
P1

k−2 +

(
245 + 5µη

360
ρ4

)
P1

k−1 (51)

+

(
28− 2µη

360
ρ4

)
P1

k

)
= (vk−3 + 56vk−2 + 245vk−1 + 28vk) + µ(g1

k−3 + 56g1
k−2 + 245g1

k−1 + 28g1
k).

Let v = [v1, v2, . . . , vk−1]
T , g = [g1

1, g1
2, . . . , g1

k−1]
T , ṽ = [v0, 0, . . . , 0, vk]

T and g̃ =

[g1
0, 0, . . . , 0, g1

k ]
T be the (k− 1) dimensional column vectors. The system given by (49)–(51)

can be written in matrix form as follows:
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AP1 = B(v + g) + C(ṽ + g̃),

where,

A =



245 + 5µη 360
ρ4 56− 4µη 360

ρ4 1 + µη 360
ρ4

56− 4µη 360
ρ4 246 + 6µη 360

ρ4 56− 4µη 360
ρ4 1 + µη 360

ρ4

1 + µη 360
ρ4 56− 4µη 360

ρ4 246 + 6µη 360
ρ4 56− 4µη 360

ρ4 1 + µη 360
ρ4

. . .

1 + µη 360
ρ4 56− 4µη 360

ρ4 246 + 6µη 360
ρ4 56− 4µη 360

ρ4 1 + µη 360
ρ4

1 + µη 360
ρ4 246 + 6µη 360

ρ4 56− 4µη 360
ρ4 56− 4µη 360

ρ4

1 + µη 360
ρ4 56− 4µη 360

ρ4 245 + 5µη 360
ρ4


,

B =



245 56 1
56 246 56 1
1 56 246 56 1

. . .

1 56 256 56 1
1 56 246 56

1 56 245


,

and

C =



28 0 0 . . . 0
1 0 0 . . . 0
0 0 0 . . . 0

. . .

0 0 0 . . . 0
0 · · · 0 1
0 . . . 0 28


.

are (k− 1)× (k− 1) matrices.

2.7. Truncation Error For The Spatial Direction

The Equation (46) can be written in the following form, as:

ρ4(360 + 60δ2
s + δ4

s )Pn+1
j + 360µηδ4

s Pn+1
j = Qj, (52)

where,

Qj = ρ4((1− q1)
(

360 + 60δ2
s + δ4

s

)
Pn+1

j +
n−1

∑
i=1

(qi − qi+1)
(

360 + 60δ2
s + δ4

s

)
Pn−i

j

+qn

(
360 + 60δ2

s + δ4
s

)
vj + µ(360 + 60δ2

s + δ4
s )gn+1

j
)
.

Expanding Equation (52) with Taylor series in terms of P(sj, tn) and its spatial deriva-
tives, the following relations are obtained

δ4
s P(sj, tn) =

(
ρ4D4

s +
ρ6

6
D6

s +
ρ8

80
D8

s +
17ρ10

3024
D10

s +
62ρ12

10!
D12

s + . . .
)

P(sj, tn),

δ2
s P(sj, tn) =

(
ρ2D2

s +
2ρ4

4!
D4

s +
2ρ6

6!
D6

s +
2ρ8

8!
D8

s + . . .
)

P(sj, tn). (53)
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Using Equations (52) and (53), the truncation error is obtained as:

Tj = ρ4(360 + 60δ2
s + δ4

s )Pn+1
j + 360µηδ4

s Pn+1
j − ρ4((1− q1)

(
360 + 60δ2

s + δ4
s

)
Pn+1

j

+
n−1

∑
i=1

(qi − qi+1)
(

360 + 60δ2
s + δ4

s

)
Pn−i

j + qn

(
360 + 60δ2

s + δ4
s

)
vj + µ(360 + 60δ2

s

+δ4
s )(D2−γ

t + ηD4
s )Pn+1

j
)
,

Tj = ρ4
(

360 + 60
(

ρ2D2
s +

2ρ4

4!
D4

s +
2ρ6

6!
D6

s +
2ρ8

8!
D8

s + . . .
)
+
(

ρ4D4
s +

ρ6

6
D6

s +
ρ8

80
D8

s

+
17ρ10

3024
D10

s +
62ρ12

10!
D12

s + . . .
))

Pn+1
j + 360µη

(
ρ4D4

s +
ρ6

6
D6

s +
ρ8

80
D8

s +
17ρ10

3024
D10

s

+
62ρ12

10!
D12

s + . . .
)

Pn+1
j − ρ4

(
(1− q1)

(
360 + 60

(
ρ2D2

s +
2ρ4

4!
D4

s +
2ρ6

6!
D6

s

+
2ρ8

8!
D8

s + . . .
)
+
(

ρ4D4
s +

ρ6

6
D6

s +
ρ8

80
D8

s +
17ρ10

3024
D10

s +
62ρ12

10!
D12

s + . . .
))

Pn+1
j

+
n−1

∑
i=1

(qi − qi+1)

(
360 + 60

(
ρ2D2

s +
2ρ4

4!
D4

s +
2ρ6

6!
D6

s +
2ρ8

8!
D8

s + . . .
)
+
(

ρ4D4
s +

ρ6

6
D6

s

+
ρ8

80
D8

s +
17ρ10

3024
D10

s +
62ρ12

10!
D12

s + . . .
))

Pn−i
j + qn

(
360 + 60

(
ρ2D2

s +
2ρ4

4!
D4

s +
2ρ6

6!
D6

s

+
2ρ8

8!
D8

s + . . .
)
+
(

ρ4D4
s +

ρ6

6
D6

s +
ρ8

80
D8

s +
17ρ10

3024
D10

s +
62ρ12

10!
D12

s + . . .
))

vj

+µ

(
360 + 60

(
ρ2D2

s +
2ρ4

4!
D4

s +
2ρ6

6!
D6

s +
2ρ8

8!
D8

s + . . .
)
+
(

ρ4D4
s +

ρ6

6
D6

s +
ρ8

80
D8

s

+
17ρ10

3024
D10

s +
62ρ12

10!
D12

s + . . .
))

(D2−γ
t + ηD4

s )Pn+1
j

)

=
(

360ρ4 + 60
(

ρ6D2
s +

2ρ8

4!
D4

s +
2ρ10

6!
D6

s +
2ρ12

8!
D8

s + . . .
)
+
(

ρ8D4
s +

ρ10

6
D6

s +
ρ12

80
D8

s

+
17ρ14

3024
D10

s +
62ρ16

10!
D12

s + . . .
))

Pn+1
j + 360µη

(
ρ4D4

s +
ρ6

6
D6

s +
ρ8

80
D8

s +
17ρ10

3024
D10

s

+
62ρ12

10!
D12

s + . . .
)

Pn+1
j − ρ4

(
(1− q1)

(
360 + 60

(
ρ2D2

s +
2ρ4

4!
D4

s +
2ρ6

6!
D6

s

+
2ρ8

8!
D8

s + . . .
)
+
(

ρ4D4
s +

ρ6

6
D6

s +
ρ8

80
D8

s +
17ρ10

3024
D10

s +
62ρ12

10!
D12

s + . . .
))

Pn+1
j

+
n−1

∑
i=1

(qi − qi+1)

(
360 + 60

(
ρ2D2

s +
2ρ4

4!
D4

s +
2ρ6

6!
D6

s +
2ρ8

8!
D8

s + . . .
)
+
(

ρ4D4
s +

ρ6

6
D6

s

+
ρ8

80
D8

s +
17ρ10

3024
D10

s +
62ρ12

10!
D12

s + . . .
))

Pn−i
j + qn

(
360 + 60

(
ρ2D2

s +
2ρ4

4!
D4

s +
2ρ6

6!
D6

s

+
2ρ8

8!
D8

s + . . .
)
+
(

ρ4D4
s +

ρ6

6
D6

s +
ρ8

80
D8

s +
17ρ10

3024
D10

s +
62ρ12

10!
D12

s + . . .
))

vj

+µ

(
360 + 60

(
ρ2D2

s +
2ρ4

4!
D4

s +
2ρ6

6!
D6

s +
2ρ8

8!
D8

s + . . .
)
+
(

ρ4D4
s +

ρ6

6
D6

s +
ρ8

80
D8

s

+
17ρ10

3024
D10

s +
62ρ12

10!
D12

s + . . .
))

(D2−γ
t + ηD4

s )Pn+1
j

)
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With the help of above discussion and Theorem 2, the scheme obtained is of O(ρ4 + t2−γ).

3. Results and Discussion

In this section, two numerical examples of proposed method are presented to check
the accuracy, effectiveness, and correctness of the proposed approach by adding 3D graphs
and some results in tabular form. 3D Graph technology is such a technique to be used for
projecting multidimensional data/arrays into a visual form that is easier to understand,
analyze and interpret, thus authors showed an accuracy of approximate solutions to the
true solution by 3D plots. Mathematica and Matlab are used to do the computations using
the steps given in Algorithm 1.

Algorithm 1: Coding algorithm for the proposed scheme

Input b, N, k, K, and γ.
Step 1. Define each sextic spline segment Tj(s).
Step 2. Construct consistency relation Equation (13) and two end Equations (14)
and (15).

Step 3. Approximate Caputo FD at time t = tn+1 as in Equation (17).
Step 4. Using the semi-discrete FD operator Vγ

t , the Equation (17) is converted to
Equation (19).

Step 5. Using SPS for space discretization to convert Equations (19) to (43).
Step 6. Compute the elements of the vectors v, g, ṽ and g̃.
Step 7. Compute the elements of the matrices A, B and C.
Step 8. Compute the elements of the matrice P1 = A−1B(v + g) + A−1C(ṽ + g̃).
Output χK

n

Example 1. Consider a higher-order PDE

∂γχ

∂tγ
+ η

∂4χ

∂s4 = g(s, t), s ∈ [0, 1], t ∈ (0, T],

with the IC

χ(s, 0) = sin(πs), s ∈ [0, 1]

and BCs

χ(s, t)|s=0 = χ(s, t)|s=1 = 0,

χss(s, t)|s=0 = χss(s, t)|s=1 = 0, t ∈ [0, T],

where g(s, t) = sin(πs)t1−γE1,2−γ(t) + ηπ4 exp(t) sin(πs) and Eγ,µ(s) is the two parameter
function of Mittag-Leffler type. The analytical solution of the proposed problem is

χ(s, t) = sin πs exp(t).

The above equation yields the following equation when γ is one,

∂χ

∂t
+ η

∂4χ

∂s4 = g(s, t), s ∈ [0, 1], t ∈ [0, T]. (54)

The γ = 0.75 and η = 0.01 are used to solve this problem. The greatest absolute L∞ and
L2 error norms for k = 40 and k = 80 with ∆t = 0.000001 are reported in Table 1. To prevent
contaminating spatial and temporal-discretization errors, ∆t is set to a relatively modest value in
this problem. The Kth time level is modified to assess the correctness of the presented approach,
which demonstrates its efficiency. The suggested technique accurately approximates the analytical
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solution, as shown in Table 1. As illustrated in Figure 1, the numerical and precise solutions are
displayed using k = 40, K = 500, and ∆t = 0.000001.

Table 1. The error norms for various k when ∆t = 0.000001.

γ = 0.75 k K ‖eK‖∞ ‖eK‖2

40 100 1.1389× 10−3 1.2733× 10−4

500 4.0224× 10−3 4.4972× 10−4

1000 6.9266× 10−3 7.7442× 10−4

80 100 1.1389× 10−3 9.0036× 10−5

500 4.0224× 10−3 3.18× 10−4

1000 6.9266× 10−3 5.476× 10−4

γ = 1

40 100 1.9246× 10−4 2.1518× 10−5

500 9.8211× 10−4 1.098× 10−4

1000 1.9692× 10−3 2.2016× 10−4

80 100 1.9246× 10−4 1.5215× 10−5

500 9.8211× 10−4 7.7642× 10−5

1000 1.9692× 10−3 1.5568× 10−4

1.0

1.5

2.0

t
10

20

30

40

s

0.0

0.5

1.0

¿

1.0

1.5

2.0

t
10

20

30

40

s

0.0

0.5

1.0

¿

Figure 1. Numerical & analytical solutions when k = 40, K = 500 and γ = 0.75 for Example 1.

Example 2. Consider another higher-order PDE

∂γχ

∂tγ
+ η

∂4χ

∂s4 = g(s, t), s ∈ [0, 1], 0 < t ≤ T,

with the IC

χ(s, t)|t=0 = 0, s ∈ [0, 1]

and BCs

χ(s, t)|s=0 = χ(s, t)|s=1 = 0,

χss(s, t)|s=0 = χss(s, t)|s=1 = 0, 0 ≤ t ≤ T,
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The true solution of the problem is

χ(s, t) = t sin πs.

The above equation yields the following equation when γ is one,

∂χ

∂t
+ η

∂4χ

∂s4 = g(s, t), s ∈ [0, 1], t ∈ [0, T]. (55)

Here g(s, t) = sin(πs) 1
Γ(2−γ)

t1−γ + ηπ4t sin(πs). The γ = 0.5 and η = 0.05 are used
to solve this problem. The greatest absolute L∞ and L2 error norms for k = 40 and k = 80 with
∆t = 0.000001 are reported in Table 2. To prevent contaminating spatial and temporal-discretization
errors, ∆t is set to a relatively modest value in this problem. The Kth time level is modified to assess
the correctness of the presented approach, which demonstrates its efficiency. The suggested technique
accurately approximates the analytical solution, as shown in Table 2. As illustrated in Figure 2, the
numerical and precise solutions are displayed using k = 40, K = 500, and ∆t = 0.000001.

Table 2. The error norms for various k when ∆t = 0.000001.

γ = 0.5 k K ‖eK‖∞ ‖eK‖2

40 100 9.9755× 10−5 1.1153× 10−5

500 4.999× 10−4 5.5891× 10−5

1000 9.9994× 10−4 1.118× 10−4

80 100 9.9755× 10−5 7.8863× 10−6

500 4.999× 10−4 3.9521× 10−5

1000 9.9994× 10−4 7.9052× 10−5

γ = 1

40 100 9.7001× 10−5 1.0845× 10−5

500 4.9701× 10−4 5.5567× 10−5

1000 9.9701× 10−4 1.1147× 10−4

80 100 9.7001× 10−5 7.6686× 10−6

500 4.9701× 10−4 3.9292× 10−5

1000 9.9701× 10−4 7.8821× 10−5

Figure 2. Numerical and analytical solutions for Example 2 when k = 40, K = 500 and γ = 0.5.

4. Conclusions

The fourth-order problems play a significant role in modern science and engineering
and their solutions are need to be examined in order to understand the dynamical frame-
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work of plate-models of bridge slabs, floor systems, window glasses and airplane wings.
The approximate solution of 4th-order EP with time-fractional CD has been accomplished
using an SPST in this study. The time discretization has been done using the backward
Euler formula. Sextic spline approach has been utilized for spatial derivative discretization.
The approximate solution converges to the analytical solution with order O(ρ4 + ∆t2−γ).
Numerical test applications have been presented to show the accuracy of the sextic spline
technique. The presented scheme has been found to provide highly accurate results. The
efficacy of the proposed techniques has been established by calculating the error norms for
the obtained results.
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Appendix A. An Alternative Derivation

In this appendix, we explain how the expression of the Equation (13) is symmetric
with respect to j± 2, j± 1? This can be given systematically as follows:

Tj(s) = aj(s− sj)
6 + bj(s− sj)

5 + cj(s− sj)
4 + dj(s− sj)

3 + ej(s− sj)
2 + gj(s− sj) + vj, s ∈ [sj, sj+1], (A1)

Tj(s) = ãj(s− sj)
6 + b̃j(s− sj)

5 + c̃j(s− sj)
4 + d̃j(s− sj)

3 + ẽj(s− sj)
2 + g̃j(s− sj) + ṽj, s ∈ [sj−1, sj]. (A2)

Since Tj ∈ C5 at s = sj, we have,{
b̃j = bj, c̃j = cj, d̃j = dj,
ẽj = ej, g̃j = gj, ṽj = vj.

(A3)

We denote,

Tj(sj) = Pj, T(2)
j (sj) = Sj, T(4)

j (sj) = Gj, (A4)

Tj(sj+1) = Pj+1, T(2)
j (sj+1) = Sj+1, T(4)

j (sj+1) = Gj+1, (A5)

Tj(sj−1) = Pj−1, T(2)
j (sj−1) = Sj−1, T(4)

j (sj−1) = Gj−1. (A6)
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By equation (A4), we have 
Pj = Tj(sj) = vj,

Sj = T(2)
j (sj) = 2ej,

Gj = T(4)
j (sj) = 24cj.

(A7)

The sum of (A5) and (A15) implies

Pj+1 + Pj−1 = Tj(sj+1) + Tj(sj−1) (A8)

= (aj + ãj)ρ
6 + 2cjρ

4 + 2ejρ
2 + 2vj

= Ajρ
6 +

1
12

Gjρ
4 + Sjρ

2 + 2Pj,

Sj+1 + Sj−1 = T(2)
j (sj+1) + T(2)

j (sj−1) (A9)

= 30(aj + ãj)ρ
4 + 24cjρ

2 + 4ej

= 30Ajρ
4 + Gjρ

2 + 2Sj,

Gj+1 + Gj−1 = T(4)
j (sj+1) + T(4)

j (sj−1) (A10)

= 360(aj + ãj)ρ
2 + 48cj

= 360Ajρ
4 + 2Gj,

where, Aj = (aj + ãj).
We employ the notation of Ω defined in Equation (44) and introduce the discrete

Laplacian L and its square L2 by
Lpi = pi+1 − 2pi + pi−1,
L2 pi = pi+2 − 4pi+1 + 6pi − 4pi−1 + pi−2,
Ωpi = pi+2 + 56pi+1 + 246pi + 56pi−1 + pi−2 = (L2 p + 60Lp + 360p)i.

(A11)

Using these notation, we write (A8)–(A10) as:

LP = ρ6 A +
1

12
ρ4G + ρ2S, (A12)

LS = 30ρ4 A + ρ2G, (A13)

LG = 360ρ2 A. (A14)

Then, L(A12) + ρ2(A13)− ρ4
(

1
360 L + 1

12

)
(A14) provides

L2P = ρ4
(

G +
1
6

LG +
1

360
L2G

)
=

ρ4

360
ΩG. (A15)

In this case, it is noted that Zj does not contribute to the computation and the results.
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